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Can Hong Kong price-manage its public transportation’s ridership?  1 

Abstract 2 

This paper is motivated by the usefulness of own- and cross-price elasticity 3 

estimates in managing Hong Kong’s demand for public transportation. It uses a 12-4 

year sample of monthly data from January 2006 to December 2017 to estimate a 5 

Generalized Leontief system of six mode-specific passenger volume regressions. Its 6 

key findings are: (1) the own-price elasticity estimates are -0.45 for taxi, -0.30 for 7 

minibus, -0.24 for bus, -0.23 for ferry, -0.06 for tram, and -0.07 for train (i.e., Mass 8 

Transit Railway); (2) the cross-price elasticity estimates are positive and smaller in 9 

size than the own-price elasticity estimates; and (3) the aggregate own-price elasticity 10 

estimate is -0.048 for the entire public transportation system. These findings of low 11 

price responsiveness imply that reducing public transportation fares and raising 12 

private transportation’s average usage cost will likely have a minimal impact on Hong 13 

Kong public transportation’s ridership. Hence, mitigating Hong Kong’s traffic 14 

congestion and vehicular emissions may require such policy measures as restricting 15 

private car ownership and improving Hong Kong public transportation’s non-fare 16 

attributes of accessibility and travel time performance.   17 

 18 

Keywords: demand management, public transportation, passenger volume, price 19 

elasticities, Hong Kong 20 
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1. Introduction 1 

Hong Kong is a densely populated metropolis that houses 7.5 million residents 2 

in a small geographic area of 1100 km2 (Census and Statistics Department, 2019). Its 3 

2017 per capita income of US$46,000 rivals those of OECD countries (OECD, 2019). 4 

According to Transport and Housing Bureau (2017), Hong Kong has a highly efficient 5 

and affordable public transportation system,1 comprising six modes of bus, minibus, 6 

taxi, train (i.e., Mass Transit Railway (MTR)), tram, and ferry; see Fig. 1 and 7 

Appendix 1.2 When compared to Hong Kong’s population of 7.5 million, the 8 

system’s total passenger volume is huge, approximately 12.6 million per day 9 

(Transport Department, 2018). 10 

As the Hong Kong Government sets the fares charged by public transportation 11 

companies and affects private transportation’s usage cost through vehicular fuel taxes 12 

and car registration fees, a substantive question thus arises: can Hong Kong price-13 

manage its public transportation’s ridership? This question’s policy relevance is 14 

underscored by Hong Kong residents who daily see travel delays, like those living in 15 

other large cities of the world (e.g., London, Paris, New York, Toronto, Singapore, 16 

Tokyo, Beijing, and Shanghai).  17 

                                                      
1 Hong Kong’s Census and Statistics Department reports that an average household’s spending on 
public transportation is less than 4% of the household’s total expenditure (Census and Statistics 
Department, 2019).   
2 The appendices are available from the corresponding author upon request. 
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Transport and Housing Bureau (2017) suggests that increasing public 1 

transportation’s utilization can ease Hong Kong’s road congestion, thanks to the 2 

relatively large passenger capacity of public transportation’s non-taxi modes (e.g., 3 

bus, tram and train) when compared to that of private cars (e.g., sedan, sports utility 4 

vehicle and van). It can also reduce Hong Kong’s vehicular emissions because with 5 

the exception of taxi, public transportation is more fuel-efficient than private 6 

transportation on a per passenger basis. Thus, this paper is motivated by the 7 

usefulness of price elasticity estimates in public transportation’s demand management 8 

and Hong Kong’s lack of up to date own- and cross-price elasticity estimates.  9 

Using a newly developed sample of monthly aggregate data for the 12-year 10 

period of January 2006 to December 2017, it estimates a Generalized Leontief (GL) 11 

system of six mode-specific passenger volume regressions to delineate the volume 12 

effects of prices, income, weather, traffic congestion, road safety, mode-specific 13 

capacities, MTR reliability, monthly public holidays, and monthly calendar days. 14 

Presented below are the paper’s key findings, which are, to the best of our knowledge, 15 

new.  16 

First, Panel A of Table 1 reports the own- and cross-price elasticity estimates 17 

for Hong Kong’s six public transportation modes.3 The own-price elasticity estimates 18 

                                                      
3 These estimates are near the low end of the ranges reported in literature surveys (e.g., Graham and 
Glaister, 2004; Balcombe et al., 2006; Litman, 2017) and meta analyses (e.g., Nijkamp and Pepping, 
1998; Holmgren, 2007; Wardman, 2014; Fearnley et al., 2018). 
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are -0.45 for taxi, -0.30 for minibus, -0.24 for bus, -0.23 for ferry, -0.06 for tram, and -1 

0.07 for MTR4, suggesting that changing tram and MTR fares is unlikely to alter tram 2 

and MTR passenger volumes. Thirty two of the 36 cross-price elasticity estimates are 3 

below 0.1 and suggest limited inter-mode substitution. To be sure, larger substitution 4 

effects do exist between two similar modes, as revealed by the 0.24 cross-price 5 

elasticity estimate that measure taxi passenger volume’s responsiveness to private car 6 

use cost and the 0.17 estimate that measure minibus passenger volume’s 7 

responsiveness to bus fare.  8 

Second, Hong Kong public transportation’s total passenger volume is highly 9 

price-inelastic. Its own-price elasticity estimate reported in Panel B of Table 1 is -10 

0.048, smaller in size than the range of -0.15 to -0.25 reported in Hau (1988), the only 11 

econometric study of the demand for Hong Kong public transportation that we have 12 

found via an extensive literature search.5 13 

Third, the paper documents the expected percentage changes in Hong Kong 14 

public transportation’s total volume for three pricing proposals: (1) reduce the mode-15 

specific fares by 20%; (2) increase the private transportation usage cost by 10%; and 16 

                                                      
4 MTR’s small own-price elasticity estimate corroborates the statistically insignificant estimate found 
by a recent study of 97 urbanized areas (Shyr et al., 2017). 
5 The difference between our estimates and Hau’s is attributable to the differences in passenger volume 
data, sample period, and estimation method. Specifically, our estimate comes from an estimation of a 
GL system, using the monthly passenger volumes of six public transportation modes for the 144-month 
sample period of January 2006 – December 2017. In contrast, Hau’s estimates come from an estimation 
of linear and double-log regressions, using the annual aggregate volume data for the 22-year sample 
period of 1966-1987. 
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(3) combine (1) and (2). Mostly attributable to bus, minibus and taxi, the resulting 1 

price-induced total volume changes are miniscule, only 1.33% even under Proposal 3. 2 

As a result, implementing these proposals cannot materially increase Hong Kong 3 

public transportation’s ridership. 4 

Fourth, Hong Kong public transportation’s total passenger volume tends to be 5 

lower in hot and wet than cool and dry weather, echoing the weather effects found by 6 

Liu et al. (2015), Böcker et al. (2016), Zhou et al. (2017), and Tao et al. (2018).  7 

Finally, MTR reliability does not have a statistically significant impact (p-8 

value > 0.2) on Hong Kong public transportation’s total passenger volume. This 9 

finding is at odds with the conclusion of Redman et al. (2013) that reliability 10 

improvement can encourage public transportation ridership. A primary reason for this 11 

finding is the lack of intra-year variations in the MTR reliability data, which hampers 12 

a precise estimation of the volume effect of MTR’s reliability performance. 13 

This paper makes three contributions to the literature on the demand for public 14 

transportation. First, it proposes a GL system to quantify the many price and non-price 15 

effects on public transportation’s mode-specific ridership, a research feat seldom seen 16 

in extant studies. Second, it uses a recent sample of Hong Kong’s monthly data to 17 

demonstrate the GL system’s real-world application, yielding a comprehensive set of 18 

own- and cross-price elasticity estimates for all six public transportation modes. 19 
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Finally, it documents the limited effectiveness of three pricing proposals in managing 1 

Hong Kong public transportation’s ridership, suggesting that mitigating Hong Kong’s 2 

traffic congestion and vehicular emissions may entail restricting private car ownership 3 

and improving public transportation’s accessibility and travel time performance. 4 

The rest of this paper proceeds as follows. Section 2 provides the paper’s 5 

background, presents the GL system, discusses our estimation strategy, proposes 6 

testable hypotheses and elasticity calculations, and suggests pricing proposals for 7 

demand management. Section 3 describes our monthly data sample. Section 4 8 

discusses our empirical results. Section 5 concludes. 9 

2. Materials and methods 10 

2.1. Background 11 

Price elasticity estimates play an important role in managing a city’s 12 

transportation demand (Balcombe et al., 2004). To see this point in Hong Kong’s 13 

context, let Pj denote the average passenger fare of public transportation mode j (= 1 14 

for bus, …, 6 for ferry),6 and P7 the average cost of private car usage.7 Our use of 15 

average price and cost data in the presence of nonlinear pricing triggers two important 16 

econometric issues identified in the demand estimation literature (e.g., Hausman, 17 

                                                      
6 The average fare data are fare indices published by Hong Kong Transport Department, which are 
used in computing Hong Kong’s consumer price index. 
7 P7 includes the costs for car purchase and O&M, motor fuel, and licenses and insurance. Its 
construction is based on the cost indices published by Hong Kong Transport Department. 



7 
 

1985; Berndt, 1991, Chapter 7; Reiss and White, 2005; Ito, 2014). For the sake of 1 

readability, however, we decide to address these issues later in Section 4.  2 

Based on Woo et al. (2018a), a price-induced percentage change in mode j’s 3 

passenger volume is:  4 

dlnXj = Σk εjk dlnPk,           (1) 5 

where dlnXj = dXj / Xj = percentage change in passenger volume Xj; εjk = ∂lnXj / ∂lnPk 6 

= Xj’s price elasticity with respect to Pk for k = 1, …, 7; and dlnPk = dPk / Pk = 7 

percentage change in Pk. Due to the unavailable data of passenger volume of private 8 

car, our analysis is limited to a system of six mode-specific passenger volume and 9 

seven prices.     10 

In equation (1), εjj is mode j’s own-price elasticity and εjk cross-price elasticity 11 

for j≠k. While empirical studies of price elasticities abound, two general 12 

observations can be made from literature surveys (e.g., Graham and Glaister, 2004; 13 

Balcombe, et al., 2006; Litman, 2017) and meta analyses (e.g., Nijkamp and Pepping, 14 

1998; Holmgren, 2007; Wardman, 2014; Fearnley et al., 2018). First, the main 15 

research focus is own-price elasticity estimates, found to be diverse, negative and 16 

relatively small in size (< 1.0). Second, cross-price elasticity estimates are small and 17 

positive, reflecting modes like bus, train and tram having limited substitutability 18 

because of their preset schedules, routes, and intra-route stops. 19 
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In this paper, we use Hong Kong’s aggregate data to estimate passenger 1 

volume regressions. The popular specifications are the linear and double-log (Litman, 2 

2017).8 Our literature search yields only one such study of Hong Kong public 3 

transportation’s total passenger volume (Hau, 1988). Using annual data for the 22-4 

year period of 1966 – 1987, Hau (1988) estimates linear and double-log volume 5 

regressions, finding own-price elasticity estimates of -0.15 to -0.25. While 6 

informative, these estimates are based on a 20-year old sample that masks the 7 

substitution possibilities among Hong Kong’s six public transportation modes, a 8 

research challenge to be addressed in the sections below. 9 

2.2. Model 10 

2.2.1 Utility maximization 11 

This section sketches the microeconomic foundation of our demand system for 12 

analyzing Hong Kong public transportation’s mode-specific passenger volumes. 13 

Intentionally brief for easy understanding by a general audience, it relies on the theory 14 

of consumer demand (Deaton and Muellbauer, 1980) and household production 15 

(Pollak and Wachter, 1975). In particular, it postulates a household’s utility 16 

maximization as a two-stage optimization problem. In the first stage, the household 17 

procures transportation services to meet its travel requirements triggered by such 18 

                                                      
8 Estimated in a single-equation setting, these two specifications’ popularity is due mainly to their 
implementation ease and consistency with the consumer theory of utility maximization (Hausman, 
1981; Woo et al., 2012). 
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activities as going to work, shopping, social gathering, …, etc. In the second stage, the 1 

household chooses the optimal mix of activities and their associated travel 2 

requirements to achieve its goal of utility maximization under budget and time 3 

constraints.  4 

An example of the two-stage optimization problem is the employment choice 5 

made by a hypothetical college graduate majoring in computer science and living in a 6 

suburban area far from Hong Kong’s Central district where most financial companies 7 

headquarter. Upon graduation, the graduate considers three job opportunities of 8 

working as: (1) a self-employed programmer at home, (2) a junior engineer at a 9 

nearby factory, and (3) a management trainee at a large bank in Central. The net 10 

income from each job is the job-specific earning less work-related commuting costs. 11 

The stage-1 solution is determined by each job’s least-cost travel plan. While self-12 

employment does not require traveling, walking and public transportation are 13 

preferred for the engineering job close to home and the trainee job in Central, 14 

respectively. Under the admittedly simplifying assumption that all three jobs entail 15 

similar effort and offer comparable career prospects, the stage-2 solution is the job 16 

with the highest net income.  17 

2.2.2 Aggregate travel cost  18 

This section derives an aggregate travel cost formulation shaped by Hong 19 
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Kong’s public data availability. It begins by considering an urban traveler going from 1 

point A (e.g., home) to point B (e.g., a grocery store) who may walk, ride public 2 

transportation, use private transportation, or employ a combination thereof. Each 3 

least-cost trip is based on the stage-1 solution described in the last section.  4 

The traveler chooses a daily plan for all of his/her A → B trips to minimize 5 

his/her total travel cost, the sum of (a) the out-of-pocket cost at trip prices {Pj}; and 6 

(b) the remaining cost that depends on commonly known non-price factors (e.g., 7 

travel comfort, travel time under uncongested road conditions, trip delays due to 8 

traffic jams, service reliability, and road safety). Summing these daily plans over all 9 

travelers and calendar days in a given month (e.g., January) yields Hong Kong’s 10 

monthly mode-specific passenger volumes {Xj} for that month.  11 

As the aggregate remaining cost R is unobservable, it is assumed to depend on 12 

Z, a vector of M plausible non-price variables. These variables and their likely effect 13 

on R are listed below:9 14 

• Z1 = monthly real GDP. An increase in Z1 tends to increase R due to its effect on 15 

Hong Kong’s overall travel needs and private car usage. Specifically, rising 16 

income tends to increase travel needs. However, it may also encourage private car 17 

                                                      
9 The variable listed below are arguably “too general” to capture time costs of travel. The more 
appropriate variables are average travel time per km, waiting time and accessibility to terminals for 
different modes. Unfortunately, the data for these more appropriate variables are unavailable. Whether 
this data limitation would invalidate our empirical findings is an issue best judged by our regression 
analysis’ performance. Happily, Section 4 reports that our regression analysis and its findings are 
empirically reasonable. 
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usage that likely reduces the demand for public transportation. Hence, its net 1 

effect on passenger volumes is an empirical issue to be settled by our regression 2 

results described below.   3 

• Z2 = monthly number of vehicles per km of Hong Kong’s road network. An 4 

increase in Z2 tends to increase R due to its impact on road congestion.  5 

• Z3 = MTR reliability measured by the monthly car-km per train failure causing 6 

delays ≥ 5 minutes. An increase in Z3 tends to increase R because reliability 7 

deterioration disrupts travel plans and lengthens travel time. 8 

• Z4 = road safety measured by Hong Kong’s monthly total number of traffic 9 

accidents. An increase in Z4 tends to increase R due to worsening road safety.  10 

• Z5 to Z9 = mode-specific capacities measured by the monthly numbers of buses, 11 

minibuses, taxis, MTR cars, and ferries.10 Rising capacities tend to reduce R.  12 

• Z10 – Z13 = monthly weather conditions measured by cooling degree month [= 13 

max(monthly average of daily maximum temperatures – 18oC, 0)], heating degree 14 

month [= max(18oC - monthly average of daily minimum temperatures, 0)], 15 

monthly precipitation (mm), and monthly average humidity (%) (Woo et al., 16 

2018b). These variables are chosen to determine whether passenger volumes 17 

depend on weather conditions. For example, bad weather is expected to increase 18 

                                                      
10 We exclude tram because its number hardly varies within the sample period. 
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the use of taxis because it discourages travelers from walking or waiting for buses. 1 

It may also reduce the volumes for all modes because some travelers may choose 2 

to abandon their planned trips. The net weather effects are therefore another issue 3 

to be settled empirically via our regression analysis. 4 

• Z14 = monthly number of public holidays whose increase reduces work-related 5 

traveling but increases non-work-related trips. Its net effect is therefore a priori 6 

unknown. 7 

• Z15 = monthly number of calendar days because a longer month (e.g., January with 8 

31 days) tends to have more monthly trips than a shorter month (e.g., February 9 

with 28 days).   10 

Finally, we use time trend t (= 1 for the first month and T for the last month in our 11 

data sample) to capture the residual cost effects beyond those of Z (e.g., expansion of 12 

Hong Kong’s infrastructure, passengers’ changing tastes, …, etc.). 13 

Following Woo et al. (2015), we assume that the aggregate travel cost function 14 

for a given month is: 15 

C =  G(P, Z, t) + R(Z);           (2)  16 

where G = G(P, Z, t) = Σj Pj Xj
* = aggregate out-of-pocket cost at price vector P; and 17 

{Xj
*} = aggregate passenger volumes resulted from the cost minimization behavior of 18 

urban travelers. In equation (2), R(Z) is the arithmetic difference between C > 0 and 19 
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G(P, Z, t) > 0, measuring the unobservable aggregate remaining cost that has been 1 

assumed not to depend on P. 2 

2.2.3 A GL system of passenger volume regressions 3 

This section develops a GL system of passenger volume regressions by first 4 

considering the various functional forms (e.g., GL, Translog, Minflex Laurent, Almost 5 

Ideal Demand System (AIDS), and Flexible CES-GBC) described in Deaton and 6 

Muellbauer (1980), Barnett et al. (1985), Pollak and Wales (1992), and Tishler and 7 

Lipovetsky (1997). All these forms’ estimation can use Hong Kong’s publicly 8 

available data, thus equally applicable to other cities with similar data availability. 9 

 We choose the GL specification (Diewert, 1971) for three reasons: suitability, 10 

transparency and easy implementation. In terms of suitability, the GL specification 11 

has global properties (Caves and Christensen, 1980; Barnett et al., 1985) well-suited 12 

for quantifying the potentially low substitution among Hong Kong’s public 13 

transportation modes. In terms of transparency, it generates a system of linear 14 

regressions that directly use passenger volumes as regressands, unlike other 15 

specifications such as the Translog and AIDS that use cost shares. As a result, it is a 16 

more transparent representation of how passenger volumes move with changes in their 17 

price and non-price determinants. In terms of easy implementation, its linear structure 18 

is relatively simple, yet capable of nesting all six public transportation modes in the 19 
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context of travel cost minimization explained in the preceding section.  1 

 Our GL parameterization of G(P, Z, t) is: 2 

 G = Σj Σk αjk Pj
1/2 Pk

1/2 + Σj Σm βjm Pj Zm + Σj τj Pj t.    (3) 3 

Theoretical validity of G(P, Z, t) necessitates the following restrictions: (1) symmetry: 4 

αjk = αkj for j≠k; and (2) concavity in prices: αjk ≥ 0 for j≠k (Diewert, 1971). 5 

Invoking Shephard’s Lemma (Varian, 1992), mode j’s passenger volume is: 6 

Xj
* = ∂G/∂ Pj = αjj + Σk≠j αjk (Pk

 / Pj)1/2 +Σm βjm Zm + Σj τj t.   (4) 7 

We verify that Σj Pj Xj
* = G(P, Z, t) in equation (3). Further, C is homogeneous of 8 

degree one in P and R: λC = G(λP, Z, t) + λ R(Z) for λ > 0, as required by a 9 

theoretically valid cost function.   10 

2.3. Estimation strategy 11 

Data availability dictates our estimation strategy that comprises the following 12 

elements. First, there are no data for private car passenger volume. Hence, we can 13 

only estimate a GL system of six mode-specific passenger volume regressions for j = 14 

1, …, 6. Nevertheless, the resulting estimates for (α12, …, α67) suffice for our 15 

calculation of own- and cross-price elasticities by mode, as demonstrated by equations 16 

(7.a) and (7.b) below.11  17 

                                                      
11 Had private cars’ passenger volume data been available, the GL system could have an additional 
equation. As the unbiased estimates for (α17, …, α67) can come from our estimation of the six-equation 
GL system, the main impact of the additional equation is a precision improvement that reduces the 
standard errors of these coefficients. 
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Second, the actual volume Xjt for observation t in our sample necessarily 1 

differs from the postulated volume Xjt
* in equation (4). As a result, the right-hand-side 2 

of mode j’s estimable equation contains an additive random error µjt with zero mean 3 

and finite variance:  4 

Xjt =  αjj + Σk≠j αjk (Pkt
 / Pjt)1/2 +Σm βjm Zmt +τj t + µjt.   (5) 5 

Since E(µjt) = 0, E(Xjt) = E(Xjt
*). Further, modes j and k are substitutes when αjk ≠ 0, 6 

the basis for the testable hypotheses described below. 7 

We use the iterated seemingly unrelated regression (ITSUR) technique in SAS 8 

(2004) to estimate the GL system with cross-equation constraints of αjk = αkj for j≠k. 9 

To ensure that the estimated G(P, Z, t) is concave in prices, we impose the non-10 

negative constraints of αjk ≥ 0 for j≠k. If the binding constraints of αjk = 0 are 11 

statistically insignificant at the 5% level, we infer that the estimated GL system is an 12 

empirically plausible representation of the data generating process (DGP) underlying 13 

our monthly passenger volume data. 14 

Third, our monthly data can be non-stationary, casting doubt on our empirical 15 

results’ validity (Davidson and MacKinnon, 1993). Hence, we use the Phillips-Perron 16 

(PP) test (Phillips and Perron, 1988) to determine each series’ stationarity prior to our 17 

ITSUR estimation. The PP test results help determine if the GL system should be 18 

estimated using the level data as shown by equation (5) above, or the first-differenced 19 
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data as shown by equation (6) below: 1 

∆Xjt =  Σk≠j αjk ∆(Pkt
 / Pjt)1/2 +Σm βjm ∆Zmt +τj + ∆µjt,    (6) 2 

where ∆ = first difference operator (e.g., ∆Xjt  = Xjt - Xjt-1). Equation (6) highlights that 3 

a public transportation mode’s passenger volume change may occur due to (a) 4 

changes in the price variables ∆(Pkt
 / Pjt)1/2 or (b) variations in the non-price variables 5 

∆Zmt (Stock and Watson, 2015, pp.427-430).12  6 

2.4. Testable hypotheses and elasticity calculation 7 

We use the Wald test to test the following null hypotheses of policy interests: 8 

• H1: Passenger volumes are not price-sensitive, implying αjk = 0 for all j≠k. If H1 9 

is rejected, we infer that price-management of Hong Kong’s public transportation 10 

passenger volumes will have statistically significant effects. 11 

• H2: Raising the private car usage cost does not move public transportation’s 12 

passenger volumes, implying αj7 = 0 for all j = 1, …, 6. Rejecting H2 implies that 13 

raising P7 will have a statistically significant impact on Hong Kong public 14 

transportation’s ridership.  15 

To compute the price elasticities of public transportation, we use the formulae 16 

in Woo et al. (2015). Based on equation (5), mode j’s monthly cross-price elasticity 17 

                                                      
12 We assume µjt (or ∆µjt) follows an AR(n) process. We empirically select n based on the AR 
parameter estimates’ statistical significance at the 5% level. Furthermore, we exclude non-price 
variables with highly insignificant estimates (p-value > 0.2) in all six passenger volume regressions. 
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formula for j ≠ k is: 1 

εjkt  = ∂ lnXjt
 /∂ lnPkt  = 1/2 αjk (Pkt

 / Pjt)1/2 / Xjt.   (7.a) 2 

Mode j’s monthly own-price elasticity formula is: 3 

εjjt  = ∂ lnXjt
 /∂ lnPjt   = - 1/2 Σk≠j αjk (Pkt

 / Pjt)1/2 / Xjt.  (7.b) 4 

As mode j’s passenger volume depends on the price ratios, its own- and cross-price 5 

elasticities sum to zero (i.e., Σk εjkt = 0 for k = 1, …, 7).13 Thus, the mode-specific 6 

elasticity estimates are the weighted average of the monthly estimates in our sample, 7 

computed by equations (7.a) and (7.b). 8 

To find Hong Kong public transportation system’s aggregate own-price 9 

elasticity, we first define the system’s total volume: X = X1 + … + X6. We then find 10 

dlnX = S1 dlnX1 + … + S6 dlnX6, where Sj = (Xj / X) and dlnXj = Σk εjk dlnPk for j = 11 

1, …, 6 and k = 1, …, 7. Because Σk εjk = 0, the aggregate own-price elasticity is  12 

dlnX  =  - (S1ε17 + … + S6 ε67)         (8)  13 

evaluated at dlnP1 = … = dlnP6 = 1% and dlnP7 = 0. 14 

2.5. Price management of Hong Kong’s public transportation demand 15 

To inform Hong Kong’s public debate on transportation, we consider three 16 

pricing proposals to encourage the use of public transportation.14 We use equation (1) 17 

                                                      
13 We verify this point by recognizing that Xj for j = 1, …, 6 is homogeneous of degree zero in prices, 
implying Σk Pk ∂Xj/∂Pk = 0 for k = 1, …, 7.  
14 We do not consider whether each proposal is publicly acceptable to all stakeholders (e.g., the Hong 
Kong Government, public transportation users, public transportation providers, private car owners, and 
environment advocates), chiefly because such a consideration is well beyond the scope of this paper. 
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and the estimated price elasticities to compute the percentage changes in passenger 1 

volumes caused by the implementation of each proposal, thus illustrating the elasticity 2 

estimates’ usefulness stated in Section 2.1. For empirical verification, we also use the 3 

GL system’s coefficients directly to repeat the impact calculation, as similarly done by 4 

Woo et al. (2015). Section 4.3 below reports that the impact estimates thus obtained 5 

closely match those based on the estimated elasticities.  6 

The three pricing proposals are as follows: 7 

• Proposal 1: Reduce all public transportation fares by 20%, possibly funded by the 8 

Hong Kong Government’s annual budget surplus, which is about HK$138B  9 

(US$17.7B) in the 2017/18 fiscal year (Hong Kong Free Press, 2018). 10 

• Proposal 2: Raise the private car price P7 by 10%, which might come from fee 11 

increases for car registration, tax increases for vehicular fuels, or both. 12 

• Proposal 3: Combine the above proposals. This proposal imposes a less fiscal 13 

burden on the Hong Kong Government than Proposal 1 when the fare reductions 14 

are to be partially offset by the revenue generated under Proposal 2. 15 

3. Data description 16 

Our sample contains monthly data observed in the 12-year period of January 17 

2006 to December 2017. Appendix 2 reports the monthly data’s sources and 18 

descriptive statistics. Figs. 2 and 3 graphically illustrate our monthly data. Fig. 2 19 
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shows that MTR and bus are the most popular modes. Thanks to the rail network’s 1 

expansion during the 12-year sample period, MTR’s passenger volume rose gradually, 2 

unlike the remaining modes’ largely stable passenger volumes. The left-hand-side of 3 

Fig. 3 shows the generally upward fare trends for bus, minibus, taxi and MTR, while 4 

the right-hand-side portrays the rising ferry fare, the stepped tram fare, and the 5 

fluctuating average cost of private car use.  6 

4. Results  7 

The PP test results reported in Appendix 2 show that, except for the price 8 

series, all series are found to be stationary at the 5% level. All first-differenced series, 9 

however, are found to be stationary. As a result, we decide to use the differenced data 10 

to estimate equation (6). 11 

4.1 ITSUR estimation 12 

After determining that all regression residuals are stationary, we use Table 2 to 13 

summarize our ITSUR regression results.15 The six regressions have a reasonable fit, 14 

with adjusted R2 values between 0.72 and 0.97. The regression residuals are found to 15 

follow an AR(n ≤ 3) process because the fourth parameter estimates of an AR(4) 16 

process turn out to be highly insignificant (p-value > 0.2).  17 

We now turn our attention to the αjk estimates for the square-rooted price 18 

                                                      
15 The SAS file, program, log and output listing are available from the corresponding author upon 
request. 
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ratios, which suggest that the estimated GL system is an empirically plausible DGP 1 

for the differenced passenger volumes. While eight of the 21 estimates have been 2 

restricted to zero, only one restriction (α45 = 0) for the MTR and tram regressions is 3 

statistically significant at the 5% level.16 The remaining 13 estimates are positive, 4 

with the α12 estimate in the bus and minibus regressions being highly statistically 5 

significant (p-value = 0.0014). There are two positive estimates that are significant at 6 

the 10% level: (a) the α14 estimate (p-value = 0.0783) in the bus and MTR 7 

regressions; and (b) the α23 estimate in the bus and minibus regressions (p-value = 8 

0.0738). Taken together, the 21 αjk estimates paint a picture of limited substitution 9 

among the six public transportation modes and between public and private 10 

transportation. This picture, however, does not mean that a price-management 11 

proposal is completely ineffective because H1 is decisively rejected by the highly 12 

significant Wald statistic (p-value < 0.0001).  13 

The Wald statistic for testing H2 is insignificant (p-value = 0.3985), implying 14 

that raising the average cost of private car use will not have a statistically significant 15 

impact on Hong Kong public transportation’s mode-specific passenger volumes, 16 

echoing Hong Kong residents’ car dependence documented by Cullinane and 17 

Cullinane (2003). 18 

                                                      
16 This finding suggests that MTR and tram are compliments rather than substitutes. A plausible 
explanation is that some urban travelers (e.g., tourists) may use the tram service to reach their 
destination (e.g. the Victoria Peak) after leaving a MTR station (e.g. Central).  
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Looking at the βjm estimates for the non-price variables with statistically 1 

significant effects at the 5% level in at least one of the six regressions, we find that 2 

GDP tends to increase passenger volumes, as does the number of total traffic 3 

accidents. In contrast, hot and wet weather tends to reduce passenger volumes. 4 

Further, a month with more public holidays tends to see a higher passenger volume 5 

for ferry, not so for the remaining modes. This makes sense because Hong Kong 6 

residents reduce their work-related travel on public holidays but increase their 7 

holiday-related trips to the outlying islands. Finally, a longer month (e.g., January) 8 

has, as expected, more passenger volume than a shorter one (e.g., February).  9 

We end this section by discussing the non-price variables that have been 10 

excluded from Table 2 due to their statistical insignificance. These variables are: (a) 11 

the monthly number of vehicles per km of Hong Kong’s road network; (b) MTR’s 12 

monthly car-km per train failure; (c) the monthly numbers of buses, minibuses, taxis, 13 

MTR cars, trams, and ferries; and (d) the time trend. While (a) to (c) are expected to 14 

matter, their minimal month-to-month variations prevent a precise detection of their 15 

potentially significant volume effects. Finally, the estimates for the time trend 16 

coefficients {τj } are statistically insignificant, reflecting the time trend’s correlation 17 

with the GDP and price series. 18 

4.2 Final checks 19 
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We perform several final checks of our regression results reported in Section 1 

4.1. First, we add the monthly unemployment rate and the time trend variable to the 2 

estimation model. We find that the added variables are insignificant. We also replace 3 

the total passenger volumes with per capita volumes and monthly GDP with per capita 4 

GDP. The regression results thus obtained closely match those reported in Table 2. 5 

Second, we use a double-log and a linear specification to estimate the six 6 

passenger volume regressions. We find that some of the own-price estimated 7 

coefficients are positive and significant (p-value < 0.05). These counter-intuitive 8 

results cause us to abandon the double-log and the linear specification. 9 

Finally, the price and cost series used in our GL estimation are based on 10 

average fares and private car usage cost. Under nonlinear pricing, these average data 11 

trigger two econometric issues. The first issue is whether consumers respond to 12 

average or marginal prices. Recent evidence suggests that they respond to average 13 

prices (Ito, 2014), lending support to our use of the average fare and cost data.  14 

The second issue is the potential estimation bias caused by the average fares 15 

and cost being volume-dependent and therefore endogenous (Hausman, 1985; Berndt, 16 

1991, Chapter 7; Reiss and White, 2005).17 To assess the impact of this bias due to 17 

                                                      
17 Using electricity demand estimation as an example, a random shock (e.g., a summer heat wave) that 
increases electricity consumption also raises the average electricity price under an inclining block tariff. 
Thus, the electricity consumption and price data tend to be positively correlated, which in turn may 
shrink the presumably negative own-price elasticity estimate’s size. Absent details of the fares’ 
nonlinear structures, however, we cannot make a similar assessment on Hong Kong public 
transportation’s mode-specific price elasticity estimates. 
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the price data’s correlations with the GL system’s random errors, we first consider the 1 

following two-step procedure (Wooldridge, 2001, p.91): 2 

• Step 1: Obtain the predicted values for Pjt based on the following regression: Pjt = 3 

Yt ψj + ηjt; where Yt = vector of variables known to be uncorrelated with the GL 4 

system’s random errors; ψj = vector of coefficients; and ηjt = random error. The 5 

variables included in Yt are: (1) Hong Kong’s monthly wage determined by Hong 6 

Kong’s aggregate labor market and import prices for gasoline and diesel set by the 7 

world’s fuel markets (Census and Statistics Department, 2019);18 and (2) binary 8 

indicators for months of the year. Reflecting the supply side’s cost reasons, our 9 

choice of (1) is based on an OLS regression analysis that shows Hong Kong’s 10 

wage and fuel price variations cause transportation price variations. The same 11 

OLS analysis supports our choice of (2) to account for residual cost variations not 12 

captured by (1).  13 

• Step 2: Repeat the ITSUR estimation after replacing Pjt’s actual values with 14 

predicted values.  15 

However, “[c]arrying out the two-step procedure explicitly makes one 16 

susceptible to harmful mistakes” (Wooldridge, 2001, p.91) because the coefficients 17 

from Step 2 can be inconsistent with incorrect standard errors. Hence, Our GL 18 

                                                      
18 Hong Kong’s wage index is available at the quarterly level. The monthly wage index is found by 
linear interpolation. 
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system’s coefficients are estimated by the iterated three-stage least squares (IT3SLS) 1 

method (Wooldridge, 2001, pp.194-195). We find that using the IT3SLS technique 2 

does not materially alter the empirics in Tables 1 and 2.19 3 

4.3 Estimated percentage changes in passenger volumes  4 

To demonstrate the usefulness of elasticity estimates in assessing a pricing 5 

proposal’s demand management effectiveness, we employ equation (1) and Table 1 to 6 

estimate the percentage changes in Hong Kong’s mode-specific passenger volumes. 7 

Columns 2 to 7 of Table 3 show that the estimated changes under Proposal 1 are 8 

small, ranging from 0.00% for MTR and tram to 4.97% for taxi. The changes under 9 

Proposal 2 are smaller, with a range of 0.00% to 2.49%. Finally, Proposal 3 is 10 

estimated to have mode-specific changes of 0.00% to 7.46%.  11 

The last column of Table 3 reports the total percentage change estimates for 12 

the entire system: 0.89% under Proposal 1, 0.44% under Proposal 2, and 1.33% under 13 

Proposal 3. As all volume changes are found to be fairly small, price-managing Hong 14 

Kong public transportation’s ridership will only be minimally effective.20 15 

5. Conclusion 16 

Using publicly available monthly data for the 12 year-period of 2006-2017, we 17 

                                                      
19 Appendix 3 reports the IT3SLS-based price elasticity estimates that are close to those in Table 1. 
Appendix 4 reports the IT3SLS regression results that resemble the ITSUR regression results in Table 
2. 
20 For comparison, we use equation (11) in Woo et al. (2015, p.102) and the coefficients in Table 2 to 
estimate the percentage changes in passenger volumes. These alternatively developed estimates are 
close to those in Table 3. 
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estimate a GL system of six mode-specific volume regressions for Hong Kong’s 1 

public transportation system. Our main finding of low own- and cross-price elasticity 2 

estimates has two policy implications. First, price-based demand management alone, 3 

irrespective whether it is done via equiproportional or differential price changes, can 4 

only have a minimal impact on Hong Kong public transportation’s ridership. Second, 5 

non-price-based measures such as capping the number of private cars and improving 6 

the public transportation system’s accessibility and travel time performance are likely 7 

necessary to mitigate Hong Kong’s road congestion and vehicular emissions. 8 

We make the following closing remarks on how our results relate to previous 9 

studies from Hong Kong and other parts of the world. First, our mode-specific own-10 

price elasticity estimates for taxi, bus, minibus and ferry are larger in size than the 11 

elasticity estimates of -0.15 to -0.25 previously found by Hau (1988). However, the 12 

same cannot be said for MTR and tram. Second, our aggregate price elasticity 13 

estimate of -0.048 is smaller in size than those in Hau (1988). Finally, our price 14 

elasticity estimates are also smaller in size than those reported for other parts of the 15 

world in literature reviews (e.g., Graham and Glaister, 2004; Balcombe et al., 2006; 16 

Litman, 2017) and meta analyses (e.g., Nijkamp and Pepping, 1998; Holmgren, 2007; 17 

Wardman, 2014; Fearnley et al., 2018). These remarks imply that a city should, 18 

whenever possible, develop its own set of updated price elasticity estimates with 19 
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sufficient details for assessing the effectiveness of price-managing its public 1 

transportation system. This is because overstating the effectiveness of a fare decrease 2 

proposal may cause the city to overlook non-fare-based proposals that can better 3 

promote the city’s public transportation ridership.  4 

To conclude, our demand system estimation is useful for determining whether 5 

price-management is effective in promoting public transportation ridership. 6 

Unfortunately, it cannot determine the effectiveness of non-fare-based proposals yet to 7 

be implemented, chiefly because it uses aggregate data that are necessarily ex post. A 8 

more suitable approach is discrete choice modeling of survey data collected from a 9 

large sample of urban travelers (Train, 1986, 2003; Hensher et al., 2005), a research 10 

endeavor that is well beyond the intent and scope of our paper.   11 
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Table 1. Hong Kong’s own- and cross-price elasticity estimates based on the regression results in Table 2; sample period: January 2006 - December 2017 4 
 5 
Panel A: Disaggregate elasticities (εjk for j = 1, …, 6 and k = 1, …7) by public transportation mode 6 

Xj: Passenger 

volume of mode j 
P1: Bus fare P2: Minibus fare P3: Taxi fare P4: MTR fare P5: Tram fare P6: Ferry fare 

P7: Average cost 

of private car use 

X1: Bus -0.2350 0.0807 0.0224 0.0735 0.0019 0.0000 0.0565 

X2: Minibus 0.1725 -0.3003 0.0618 0.0000 0.0001 0.0104 0.0556 

X3: Taxi 0.0916 0.1184 -0.4470 0.0000 0.0000 0.0000 0.2371 

X4: MTR 0.0648 0.0000 0.0000 -0.0662 0.0000 0.0014 0.0000 

X5: Tram 0.0374 0.0007 0.0000 0.0000 -0.0629 0.0248 0.0000 

X6: Ferry 0.0000 0.1446 0.0000 0.0483 0.0376 -0.2348 0.0043 

 7 
Panel B: Aggregate own- and cross-price elasticity estimates of the Hong Kong public transportation’s total passenger volume 8 

Own-price elasticity with respect to public transportation’s passenger fares Cross-price elasticity with respect to the average cost of private car usage 

-0.0480 0.0480 

 9 
Notes:  (1) Panel A shows that taxi has the most price-responsive volume, followed by minibus, bus, ferry, MTR and tram. However, all modes have price-inelastic volumes. 10 

(2) Section 2 shows that mode-specific passenger volume Xj depends on the price ratios, implying that its own- and cross-price elasticities sum to zero (i.e., Σk εjk = 0 11 
for k = 1, …, 7). 12 
(3) The aggregate own-price elasticity estimate in Panel B is based on equation (8) in the main text. Because Σk εjk = 0, the aggregate own- and cross-price elasticity 13 
estimates have the same size. 14 

  15 
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Table 2. Summary of ITSUR results for the GL system of mode-specific passenger volume regressions based on equation (6) and monthly first-differenced data for the 12-16 
year period of January 2006 - December 2017; standard errors in (   ); coefficients significant at the 5% level in bold 17 

Coefficient: variable  Passenger volume regression j for j = 1, …, 6 

1: Bus 2: Minibus 3: Taxi 4: MTR 5: Tram 6: Ferry 

Adjusted R2 0.899 0.9662 0.7736 0.9065 0.7176 0.7923 

Number of significant AR parameter estimates 3 3 1 2 3 3 

αjk: ∆(Pk / Pj)1/2 for j ≠ k, where P1 = average 

bus fare, …, P7 = average usage cost of private 

cars 

α12 19222.95 

(5896.90) 

α12 19222.95 

(5896.90) 

α13 5400.06 

(7541.30) 

α14 17577.33 

(9903.80) 

α15 456.54 

(2242.20) 

α16 0.00  

(0.00) 

α13 5400.06 

(7541.30) 

α23 7039.56 

(3904.80) 

α23 7039.56 

(3904.80) 

α24 0.00  

(0.00) 

α25 9.11 

(2459.30) 

α26 1189.18 

(2877.10) 

α14 17577.33 

(9903.80) 

α24 0.00  

(0.00) 

α34 0.00  

(0.00) 

α34 0.00  

(0.00) 

α35 0.00  

(0.00) 

α36 0.00  

(0.00) 

α15 456.54 

(2242.20) 

α25 9.11 

(2459.30) 

α35 0.00  

(0.00) 

α45 0.00  

(0.00) 

α45 0.00  

(0.00) 

α46 398.91 

(1706.70) 

α16 0.00  

(0.00) 

α26 1189.18 

(2877.10) 

α36 0.00  

(0.00) 

α46 398.91 

(1706.70) 

α56 309.79 

(1350.30) 

α56 309.79 

(1350.30) 

α17 13346.31 

(14507.00) 

α27 6188.26 

(5092.80) 

α37 13967.18 

(9473.30) 

α47 0.00  

(0.00) 

α57 0.00 

(0.00) 

α67 34.84 

(1875.50) 

βj1: ∆(monthly real GDP) 0.03  

(0.03) 

0.01  

(0.01) 

0.02  

(0.01) 

0.27  

(0.03) 

0.00  

(0.00) 

0.01  

(0.00) 

βj4: ∆(monthly total number of traffic 

accidents) 

3.33  

(1.62) 

1.68  

(0.43) 

0.65  

(0.58) 

7.33  

(1.98) 

0.18  

(0.19) 

-0.54  

(0.16) 
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βj10: ∆(monthly cooling degree month) -54.44  

(58.21) 

-4.15  

(15.52) 

81.83  

(24.43)  

-224.29  

(73.83) 

-36.67  

(7.33) 

-13.06  

(5.32) 

βj11: ∆(monthly heating degree month) -567.11  

(160.90) 

-184.57  

(43.72) 

102.20  

(59.75) 

-289.85  

(200.90) 

-81.70  

(19.24) 

-69.76  

(14.93) 

βj12: ∆(monthly precipitation) -5.16  

(1.01) 

-1.02  

(0.27) 

-0.48  

(0.37) 

-2.64  

(1.25) 

-0.36  

(0.12) 

-0.12  

(0.09) 

βj13: ∆(monthly average humidity) -101.17  

(39.67) 

-41.56  

(10.55)  

-13.83  

(14.43) 

-103.62  

(48.94) 

-13.86  

(4.62) 

-11.66  

(3.61) 

βj14: ∆(number of public holidays) -604.31  

(105.80) 

-363.33  

(30.40) 

-152.22  

(37.68) 

-936.03  

(131.00) 

-16.36  

(11.60) 

39.78  

(11.45) 

βj15: ∆(number of calendar days) 3333.78  

(258.70) 

1629.56  

(65.79) 

724.12  

(102.40) 

2515.76  

(318.70) 

237.82  

(30.70) 

166.70  

(23.79) 

Notes: (1) Eight of the 21 αj≠k estimates have been constrained to zero, implying that their standard errors are also equal to zero. Only the α45 coefficient estimate in italic is 18 
negative and significant at the 5% level but has been constrained to zero. We therefore infer that the estimated GL system with non-negative constraints on 19 
coefficients {αj≠k} is an empirically plausible representation of the data generating process for Hong Kong public transportation’s passenger volume data.   20 

 (2) The p-values of the Wald statistic are: (a) < 0.01 for testing H1: αjk = 0 for all j ≠ k; and (b) 0.39 for testing H2: αj7 = 0 for all j.  21 
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Table 3. Percentage change in the Hong Kong public transportation mode-specific passenger volumes based on equation (1) in the main text 22 
Proposal description Bus Minibus Taxi MTR Tram Ferry Total 

(1) Reduce all public transportation 

fares P1 to P6 by 20%, 
1.12% 1.12% 4.97% 0.00% 0.00% 0.09% 0.89% 

(2) Raise the average cost of 

private car use P7 by 10% 
0.56% 0.56% 2.49% 0.00% 0.00% 0.05% 0.44% 

(3) Combine (1) and (2)  1.68% 1.68% 7.46% 0.00% 0.00% 0.14% 1.33% 

Notes: (1) Taxi has the largest estimated changes, followed by bus and minibus. The remaining modes of MTR, tram and ferry are unaffected by the proposals’ 23 
implementation. 24 
(2) The total percentage change is a weighted average of the mode-specific percentage changes, with weights equal to the mode-specific volumes in 2017.  25 

26 
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 27 

Fig.1. Hong Kong’s MTR network, ferry routes and main highways  28 
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 29 

 30 

Fig. 2. Monthly passenger volumes (000) of Hong Kong’s public transportation system for the 12-year period of January 2006 - December 2017 31 
  32 
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Fig. 3. Hong Kong’s monthly transportation price indices for the 12-year period of January 2006 - December 2017 33 
 34 
  35 
 36 
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