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Fusing Binary Templates for Multi-biometric Cryptosystems

Guangcan Mai, Meng-Hui Lim, Pong C. Yuen∗

Department of Computer Science, Hong Kong Baptist University, Kowloon Tong, Kowloon, Hong Kong

Abstract

Biometric cryptosystem has been proven to be a promising approach for template protection. Cryptosystems such as fuzzy extractor
and fuzzy commitment require discriminative and informative binary biometric input to offer accurate and secure recognition. In
multimodal biometric recognition, binary features can be produced via fusing the real-valued unimodal features and binarizing the
fused features. However, when the extracted features of certain modality are represented in binary and the extraction parameters are
not known, real-valued features of other modalities need to be binarized and the feature fusion needs to be carried out at the binary
level. In this paper, we propose a binary feature fusion method that extracts a set of fused binary features with high discriminability
(small intra-user and large inter-user variations) and entropy (weak dependency among bits and high bit uniformity) from multiple
sets of binary unimodal features. Unlike existing fusion methods that mainly focus on discriminability, the proposed method focuses
on both feature discriminability and system security: The proposed method 1) extracts a set of weakly dependent feature groups
from the multiple unimodal features; and 2) fuses each group to a bit using a mapping that minimize the intra-user variations and
maximize the inter-user variations and uniformity of the fused bit. Experimental results on three multimodal databases show that
fused binary feature of the proposed method has both higher discriminability and higher entropy compared to the unimodal features
and the fused features generated from the state-of-the-art binary fusion approaches.

Keywords: Biometric, Binary Representation, Binary Feature, Multi-biometric, Feature Fusion, Template Protection,
Cryptosystems

1. Introduction

Multimodal biometric systems, consolidating multiple traits
(e.g., face, fingerprint, palmprint, voice, iris), address limi-
tations of unimodal biometric systems in matching accuracy,
spoofing difficulty, universality, and feasibility [1]. By lever-
aging information from multiple biometric sources for recog-
nition, multi-biometric systems generally achieve better match-
ing accuracy and are much harder to spoof. In addition, multi-
biometric systems are able to recognize individuals using a sub-
set of biometric traits via feature selection. This enables the
systems to cover a wider range of population when some of the
users cannot be identified by a certain trait.

Biometric template security is a critical issue because bio-
metrics is unique and irrevocable once it is compromised. This
security is especially crucial in multi-biometric systems be-
cause they store and process information about multiple bio-
metric traits per user. Once the system storage is compromised,
sensitive biometrics information could be revealed if biomet-
ric templates are not protected. An adversary can then cre-
ate physical spoofs of the traits from the revealed templates to
masquerade the target user in accessing the compromised sys-
tem or other systems illegitimately [2–5]. Even worse, if the

∗Corresponding author
Email addresses: csgcmai@comp.hkbu.edu.hk (Guangcan Mai),

menghuilim@comp.hkbu.edu.hk (Meng-Hui Lim),
pcyuen@comp.hkbu.edu.hk (Pong C. Yuen )

original biometric images corresponding to multiple traits of a
user can all be reverse-engineered from the revealed biometric
templates, it would cause permanent compromise of this user’s
biometrics.

To date, several template protection approaches have been
proposed to ensure the security of the biometric templates.
They can be categorized into feature transformation (e.g., can-
cellable biometric [6], RGHE [7], BioHash [8]), biometric
cryptosystem (e.g., fuzzy extractor [9], fuzzy vault [10], fuzzy
commitment [11]) and hybrid approach [12]. In the feature
transformation approach, templates are transformed through a
one-way transformation function using a user-specific random
key. This approach provides cancellability, where a new trans-
formation (based on a new key) can be used if any template is
compromised. A biometric cryptosystem stores a sketch that is
generated from the enrollment template, where an error correct-
ing code (ECC) is employed to handle the intra-user variations.
The security of the biometric cryptosystem is based on the ran-
domness of the templates and the error correcting capability of
the ECC. A hybrid approach combines the advantages of both
feature transformation and biometric cryptosystem to provide
stronger security and template cancellability.

Biometric cryptosystem takes a query sample and an earlier-
generated sketch of the target user and produces a binary de-
cision (accept/reject) in the verification stage. In a multi-
biometric cryptosystem, the information of multiple traits could
be fused at feature level or score/decision level:
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(a) [feature-level] features from different biometric traits are
fused and then protected by a single biometric cryptosys-
tem.

(b) [score/decision-level] features from each biometric trait are
protected by a biometric cryptosystem and then the individ-
ual scores/decisions are fused.

The feature-level-fusion-based multi-biometric cryptosys-
tems are arguably more secure than the score/decision-level-
fusion-based systems [13]. In feature-level-fusion-based sys-
tems, a sketch generated from the multimodal template is
stored, while in score/decision-level-fusion-based systems,
multiple sketches corresponding to the unimodal templates are
stored. As the adversarial effort for breaking a multimodal
sketch is often much greater than the aggregate effort for break-
ing the unimodal sketches, feature-level-fusion-based systems
are more secure. This has also been justified in a recent work
[13] using hill-climbing analysis.

Biometric cryptosystems such as fuzzy extractor and fuzzy
commitment mainly accept binary input. To produce a binary
input for biometric cryptosystems, an integrated binary string
needs to be extracted from the multimodal features. However,
features of different modalities are usually represented differ-
ently, e.g., point-set for fingerprint [14], real-valued for face
and binary for iris [15]. To extract the integrated binary string,
one can either

(a) convert features of different types into point-set or real-
valued features, fuse the converted features, and binarize
them;

(b) convert point-set [16–18] and real-valued [12, 19–22] fea-
tures into binary, then perform a binary feature fusion on
these features.

When commercial black-box binary feature extractors such as
IrisCode [15] and FingerCode [23] are employed for some bio-
metric traits, the extraction parameters such as quantization and
encoding information are not known. Hence, these binary fea-
tures cannot be converted to other forms of representation ap-
propriately. In this case, the second approach that is based on
binary feature fusion is usually adopted.

In this paper, we focus on binary feature fusion for multi-
biometric cryptosystems, where biometric features from mul-
tiple modalities are converted to a binary representation be-
fore being fused. Generally, in a multi-biometric cryptosystem,
there are three criteria for its binary input (fused binary feature)

• Discriminability: The fused binary features have to be dis-
criminative in order not to defeat the original purpose of rec-
ognizing users. The fused feature bits should have small
intra-user variations and large inter-user variations.

• Security: The entropy of the fused binary features have to
be adequately high in order to thwart guessing attacks, even
if the stored auxiliary data is revealed. The fused feature bits
should be highly uniform and weakly dependent among one
another.

• Privacy: The stored auxiliary data for feature extraction and
fusion should not leak substantial information on the raw bio-
metrics of the target user.

A straightforward method to fuse binary features is to com-
bine the multimodal features using a bitwise operator (e.g., OR,
XOR). Concatenating unimodal binary features is another pop-
ular option for binary fusion [24, 25]. However, the fusion re-
sult of these methods is often suboptimal in terms of discrim-
inability, because the redundant or unstable features cannot be
removed. Selecting discriminative binary features is a better ap-
proach of obtaining discriminative binary representation. How-
ever, similar to bitwise fusion and concatenation, the inherent
dependency among bits cannot be improved further. As a result,
the entropy of the bit string could be limited, leading to weak
security consequence.

To produce a bit string that offers accurate and secure recog-
nition, we propose a binary fusion approach that can simultane-
ously maximize the discriminability and entropy of the fused bi-
nary output. As the properties for achieving both discriminabil-
ity and security criteria can be divided into multiple-bit-based
(i.e., dependency among bits) and individual-bit-based (i.e.,
intra-user variations, inter-user variations and bit uniformity).
the proposed approach consists of two stages: (i) dependency-
reductive bit-grouping and (ii) discriminative within-group fu-
sion. In the first stage, we address the multiple-bit-based prop-
erty: We extract a set of weakly dependent bit-groups from mul-
tiple sets of binary unimodal features, such that, if the bits in
each group is fused into a single bit, these fused bits, upon con-
catenation, will be weakly interdependent. Then, in the second
stage, we address the individual-bit-based properties: We fuse
bits in each bit-group into a single bit with the objective of min-
imizing the intra-user variation, maximizing the inter-user vari-
ation and maximizing uniformity of the bits. As maximizing
bit uniformity is equivalent to maximizing the inter-user varia-
tion of the corresponding bit, which will be discussed further in
Section 3.3, the fusion function is designed to only maximize
discriminability (minimize intra-user variations and maximize
inter-user variations). The preliminary version of this work has
been presented in [26].

The structure of this paper is organized as follows. In the
next section, we review several existing binary feature fusion
techniques. In Section 3, we describe the proposed two-stage
binary feature fusion. We present the experimental results to
justify the effectiveness of our fusion approach in Section 4.
Finally, we draw a few concluding remarks in Section 5.

2. Related Work

To date, concatenation and bit selection are two typical bi-
nary fusion approaches. Sutcu et al. [27] concatenate binary
representation of iris and face together to yield the fused bi-
nary string. Kanade et al. obtain the fused binary feature by
concatenating the iris codes of both left and right iris [24] and
concatenating the binary features of both iris and face [25].
Although concatenation of multiple binary features is compu-
tationally efficient, this approach treats features from multiple
modalities equally and it could limit the discriminability of the
fused feature if the multimodal features have different discrim-
ination power.
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Figure 1: The proposed binary feature level fusion algorithm

Alternatively, bit selection can be adopted to generate a more
discriminative fused binary feature by selecting bits with high
discriminability from the multimodal features. Kelkboom et al.
[21] select a subset of reliable features based on the estimated
z-score of the features, which is the ratio between the distance
of the estimated mean with respect to the quantization threshold
and the estimated standard deviation. Nagar et al. [28] present a
discriminability-based bit selection method to select a subset of
bits from each biometric trait individually based on the genuine
and impostor bit-error probability and concatenate the selected
bits together. Bits with high discriminability are very likely
to be mutually dependent because some of the discriminative
information may be represented using multiple bits. It is rather
difficult for the bit-selection approach to select discriminative
bits with high entropy for multi-biometric cryptosystems.

Another possible approach for generating the fused binary
features from multiple unimodal binary features is to apply a
transformation such as PCA, LDA [29] and CCA [30] on the
binary features, followed by a binarization on the transformed
feature. However, this approach suffers from an unavoidable
trade-off between dependency among feature components and
discriminability. For instance, LDA and CCA features are
highly discriminative but strongly interdependent; while PCA
features are uncorrelated but less discriminative. With this ap-
proach, the discriminability and security criteria cannot be ful-
filled simultaneously.

3. The proposed binary feature fusion

3.1. Overview of the proposed method
The proposed two-stage binary feature fusion approach gen-

erates an S -bit binary representation z = {z1, · · · , zs, · · · , zS }

from an input binary string b = {b1, · · · , bm, · · · , bM}, where
typically S � M. The input binary string b consists of the
concatenated multimodal binary features of a sample. The pro-
posed approach can be divided into two stages: (i) dependency
reductive bit-grouping and (ii) discriminative within-group fu-
sion, where the block diagram is shown in Fig.1. The details of
the two stages in testing phase are described as follows:

(1) Dependency reductive bit-grouping: Input bits of b are
grouped into a set of weakly-dependent disjoint bit-groups
C = {ζ1, · · · , ζs, · · · , ζS } such that ∀s1, s2 ∈ [1, S ], ζs1 ∩

ζs2 = ∅,
⋃S

s=1 ζs ⊆ {b1, · · · , bm, · · · , bM}.
(2) Discriminative within-group fusion: Bits in each group ζs

are fused to a single bit zs using a group-specific mapping
function fs that maximizes the discriminability of zs.

The output bit zs of all groups is concatenated to produce the
final bit string z. To realize these two stages, optimum group-
ing information in stage one and optimum within-group fusion
functions in stage two need to be sought. In stage one, the
grouping information Ĉ = {ζ̂1, · · · , ζ̂s, · · · , ζ̂S } represents the
S groups of bit indices, specifying which of the bits in b should
be grouped together. Note that we use ′ x̂′ to denote the index
of the variable x throughout this paper unless stated otherwise.
In stage two, the mapping function fs specifies to which output
bit value the bits in group ζs are mapped.
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3.2. Dependency reductive bit-group search
To reduce the dependency among bits in the output binary

string, a set of weakly-dependent bit-groups C need to be ex-
tracted from the input b. One promising way to extract these
weakly-dependent bit-groups is to adopt a proper clustering
technique based on a dependency measure.

Existing clustering techniques can be categorized into par-
titional clustering (e.g., k-means) and hierarchical clustering
[31]. The partitional clustering directly creates partitions of
data and represents each partition using a representative (e.g.,
clustering center). However, the bit positions among which
dependence needs to be measured cannot be effectively repre-
sented in a metric space because dependence does not satisfy
the traingle inequality requirement of a metric space. As a re-
sult, partitional clustering is less feasible in our context. The
hierarchical clustering, on the other hand, serves as a better
option as it can operate efficiently based on a set of pairwise
dependencies. In this proposed method, we adopt the agglom-
erative hierarchical clustering (AHC). The basic idea of AHC
is as follows: we first create multiple singleton clusters where
each cluster contains a single bit, and then we start to merge
a cluster pair with the highest pairwise dependency iteratively,
until the termination criterion is met.

To measure dependencies between two bits or two groups of
bits, mutual information (MI) can be adopted [32, 33]. The MI
of clusters ζs1 and ζs2 can be expressed as

I(ζs1 , ζs2 ) = H(ζs1 ) + H(ζs2 ) − H(ζs1 , ζs2 ) (1)

where H(ζs1 ) and H(ζs2 ) denote the joint entropy of bits in an
individual cluster ζs1 or ζs2 , respectively, and H(ζs1 , ζs2 ) denotes
the joint entropy of bits enclosed by both clusters. However, the
above MI measurement is sensitive to the number of variables
(bit positions) and is proportionate to the aggregate information
of these variables. As a result, multiple MI measurements in-
volving different number of bit positions cannot be fairly com-
pared during the selection of cluster pair for cluster merging.
That is, if MI is adopted for dependency measurement, the hi-
erarchical clustering technique will always be inclined to select
a cluster pair that involves the largest cluster for merging in ev-
ery iteration, although this cluster pair may not be the pair with
the highest average bit interdependency.

To obtain a better measure that precisely quantifies the bit
interdependency irrespective of the size of the clusters, we nor-
malize the MI using the size of clusters in the cluster pair. This
normalized measure indicates how dependent on average a bit
pair in a group is upon merging. We call this normalized mea-
sure as the average mutual information (AMI), such that

Iavg(ζs1 , ζs2 ) =
I(ζs1 , ζs2 )
|ζs1 | × |ζs2 |

(2)

With this AMI measure, we are able to identify cluster-pair
with the strongest average bit-pair dependency for merging
over cluster pairs of different sizes in each iteration. Our pro-
posed AMI-based AHC algorithm is shown in Algorithm.1. As
strongly-dependent cluster pairs will gradually be merged by
the clustering algorithm, we will eventually be able to obtain a

Algorithm 1 AMI-based agglomerative hierarchical clustering
1: Inputs:

N samples of all users’ binary features
B = {b1, · · · , bn, · · · , bN},

length of each binary feature M,
number of clusters S ,
maximum cluster size tsize

2: Outputs:
grouping information Ĉ = {ζ̂1, · · · , ζ̂s, · · · , ζ̂S }

3: Initialize:
Ĉtmp = {ζ̂1, · · · , ζ̂m, · · · , ˆζM} where ζ̂m = {m}
compute entropy of each cluster H(ζ) in Ĉtmp

htmp ← S -th largest cluster entropy in Ĉtmp

Ĉ ← Ĉtmp

h← 0
D = {dαβ}

α,β
α,β∈[1,M], where dαβ = Iavg(ζα, ζβ)

4: while |Ĉtmp| > S do
5: search for largest dαβ
6: if |ζ̂α| + |ζ̂β| > tsize then
7: dαβ ← −1
8: else
9: ζ̂λ ← ζ̂α ∪ ζ̂β

10: Ĉtmp ← Ĉtmp − {ζ̂α} − {ζ̂β} + {ζ̂λ}
11: compute entropy of each cluster H(ζ) in Ĉtmp

12: htmp ← S -th largest cluster entropy in Ĉtmp

13: if htmp > min(h, 1) then
14: Ĉ ← Ĉtmp

15: h← htmp

16: end if
17: for each ζ̂µ ∈ Ĉtmp, µ , λ do
18: update dλµ
19: end for
20: end if
21: end while
22: Discard the (|Ĉ| − S ) lowest-entropy cluster in Ĉ
{H(ζ) returns the entropy of cluster ζ, which is based on the
observation of bit combination ζn = {bnm}m∈ζ̂ that corresponds
to cluster ζ and training sample bn. }

set of (remaining) weakly-dependent bit groups that were not
selected for merging throughout the algorithm.

After the algorithm terminates, the grouping information Ĉ
is obtained. It is noted that the size of each resulted group ζ
specified in Ĉ determines the number of possible bit combina-
tions (i.e., 2|ζ | bit-combinations for groups size |ζ |). As we need
to estimate the occurrence probabilities of these bit combina-
tions from the training samples for within-group fusion search
in the second stage described in 3.3, it is usual that one may
not have arbitrarily large amount of training data in practice to
ensure accurate estimation of these probabilities. To overcome
this problem, we restrict the maximum group size to be tsize in
order to ensure the feasibility of optimal within-group fusion
search in the second stage.
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The final set of S clusters is taken based on the entropy of
the clusters. In the ideal scenario, every resulted bit group ζ
specified in Ĉ should contain at least one bit entropy. Accord-
ing to our analysis in Section 3.4, optimal inter-user variation of
the output bit of a group (during within-group fusion function
search in the second stage) can only be achieved when the en-
tropy of the corresponding group is not less than one bit. While
this ideal scenario cannot be guaranteed all the time especially
when the input bit string contains limited entropy, the entropy
of the S clusters should be made as high as possible so that
the possibility of obtaining high inter-user variation in the re-
sulted fused bit from each cluster in the second stage can be
heightened. Because the dependency (maximum AMI) of all
cluster pairs is non-increasing as the iteration proceeds (see Ap-
pendix.Appendix A for the proof), the output grouping informa-
tion Ĉ will be taken and updated whenever one of the following
conditions is satisfied:
(a) The S -th largest cluster entropy in Ĉtmp is greater or equal

to one bit;
(b) The S -th largest entropy of the clusters in Ĉ is less than one

bit and less than that in Ĉtmp.

3.3. Discriminative within-group fusion search
Suppose that we have obtained S groups of bits from the

first stage. For each group, we seek for a discriminative fusion
f : {0, 1}|ζ | → {0, 1} to fuse bits in group ζ to a single bit z. Here,
the function f maps each combination of |ζ | bits to a bit value.
The within-group fusion is analogous to a binary-label assign-
ment process, where each bit combination is assigned a binary
output label (a fused bit value). Since the dependency among
fused bits has been reduced using AMI-based AHC in stage
one, to obtain a discriminative bit string that contains high en-
tropy, the fusion should minimize the intra-user variation, max-
imize the inter-user variation and uniformity of the output bit.
Naturally, maximizing inter-user variations has an equivalent
effect of maximizing bit uniformity. This is because a bit with
maximum inter-user variation also indicates that the bit value
would distribute uniformly among the population users. Thus,
the fusion sought in the following need only to optimize the
discriminability of the output bit, i.e., minimizing the intra-user
variations and maximizing the inter-user variations.

The intra-user and inter-user variations of the fused bit z of
group ζ could be measured using the genuine bit-error proba-
bility pe

g and the impostor bit-error probability pe
i , respectively.

Genuine bit-error probability is defined as the probability where
different samples of the same user are fused to different bit val-
ues, while the impostor bit-error probability is defined as the
probability where samples of different users are fused to differ-
ent bit values. Let xt denotes the t-th bit-combination of group
ζ, where t = {1, 2, · · · , 2|ζ |} and let X(0) and X(1) denote the sets
of bit-combinations in group ζ that to be fused to ‘0’ and ‘1’,
respectively. The genuine bit-error probability of fused bit z
corresponding to group ζ can be expressed as

pe
g = Pr(ζn1 ∈ X(0), ζn2 ∈ X(1)|ln1 = ln2 )

=
∑

xt1∈X(0)

∑
xt2∈X(1)

Pr(ζn1 = xt1 , ζ
n2 = xt2 |ln1 = ln2 ) (3)

where ln1 and ln2 denote the label of n1-th and n2-th training
sample, respectively, ζn1 and ζn2 denote the group ζ corre-
sponding to the n1-th and n2-th training samples, n1 , n2 and
n1, n2 ∈ {1, 2, · · · ,N}.

Similarly, the impostor bit-error probability can be expressed
as

pe
i = Pr(ζn1 ∈ X(0), ζn2 ∈ X(1)|ln1 , ln2 )

=
∑

xt1∈X(0)

∑
xt2∈X(1)

Pr(ζn1 = xt1 , ζ
n2 = xt2 |ln1 , ln2 ) (4)

To seek the function f that minimizes genuine and max-
imizes impostor bit-error probability, we solve the follow-
ing minimization problem using the integer genetic algorithm
[34, 35],

min
f

(
pe

g − pe
i

)
=

∑
xt1∈X(0)

∑
xt2∈X(1)

(
Pr(ζn1 = xt1 , ζ

n2 = xt2 |ln1 = ln2 )

−Pr(ζn1 = xt1 , ζ
n2 = xt2 |ln1 , ln2 )

)
(5)

subject to
f (xt1 ) = 0, f (xt2 ) = 1

where f (xt1 ) and f (xt1 ) denote the fused bit value of bit-
combination xt1 and xt2 , respectively. Note that this function
f has to be sought for every bit group.

3.4. Discussion and analysis

An important requirement in Algorithm 1 is that each re-
sulted bit group (joint entropy of bits in the group) should con-
tain at least one-bit entropy to warrant the achievability of high
inter-user variation. This is because when the group entropy is
less than one bit, the probability of one of the fused bit values
would become larger than 0.5, thus making the distribution of
bit values less uniform among the population users. In the fol-
lowing, we analyze how group entropy that is less than one bit
could negatively influence the impostor error probability of the
fused bit.

Let pt denotes the occurrence probability of a bit combina-
tion xt in group ζ, where t = {1, 2, · · · , 2|ζ |}. The corresponding
joint entropy of bits in group ζ is expressed as

H(x) = −

2|ζ |∑
t=1

pt log2 pt (6)

where |ζ | denotes group size and
∑2|ζ |

t=1 pt = 1. If H(x) < 1,

(a) there exists a bit combination that has the highest occur-
rence probability pmax = maxt(pt) > 0.5; and

(b) the impostor bit-error probability pe
i (the larger, the better)

of the fused bit in stage two is upper bounded by

pe
i ≤ 2pmax(1 − pmax) < 0.5 (7)
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Proof. (a) To prove that there is an input bit combination that
has the highest probability pmax = maxt(pt) > 0.5 when H(x) <
1, we construct a lower bound of entropy HL(x) w.r.t. pmax that
is described as follows:

HL(x) = max (HL1(x),HL2(x))

=

HL1(x) = − log2 pmax, 0 < pmax ≤ 0.5
HL2(x) = Hb(pmax), 0.5 ≤ pmax ≤ 1

(8)

where HL1(x) and HL2(x) are two lower bound functions and
Hb(pmax) is the binary entropy function

Hb(pmax) = −pmax log2(pmax) − (1 − pmax) log2(1 − pmax)

The two lower bound functions HL1(x) and HL2(x) are derived
as follows:

H(x) = −

2|ζ |∑
t=1

pt log2 pt

≥ −

2|ζ |∑
t=1

pt log2 pmax = − log2 pmax = HL1(x)

(9)

H(x) = −

2|ζ |∑
t=1

pt log2 pt

≥ −

1∑
z=0


 ∑

t, f (xt)=z

pt

 log2

∑
t, f (xt)=z

pt


≥ Hb(pmax) = HL2(x)

(10)

The inverse function of Eq.(8) is plotted as the solid curve
in Fig.2, where the admissible region of pmax lies within the
grey-shaded area, indicating the possible pmax values given an
entropy value H(x) of a bit group. Based on this plot, it can be
observed that when group entropy H(x) < 1, all of the possible
pmax values in the dark-grey-shaded area are greater than 0.5,
which completes the proof.

Proof. (b) The impostor bit-error probability pe
i is the probabil-

ity of getting a different fused bit value from that of the target

genuine user. Hence, we obtain the following:

pe
i = Pr(z = 0) Pr(z = 1) + Pr(z = 1) Pr(z = 0)

= 2 Pr(z = 0) Pr(z = 1)
≤ 2pmax(1 − pmax)
< 0.5

(11)

With this, the lower H(x) < 1 is, the larger the pmax, and
the smaller the impostor bit-error probability pe

i will be. This
completes the proof.

4. Experimental Results

4.1. Database and experiment setting

We evaluated the proposed fusion algorithm using a real and
two chimeric multi-modal databases, involving three modali-
ties: face, fingerprint and iris. The real multi-modal database,
WVU [36], contains images of 106 subjects, where each sub-
ject has five multi-modal samples. The two chimeric multi-
modal databases are obtained by randomly matching images
from a face, a fingerprint and an iris database. The first
chimeric multi-modal database named Chimeric A consists of
faces from FERET [37], fingerprints from FVC2000-DB2 and
irises from CASIA-Iris-Thousand [38]. The second database
named Chimeric B consists of faces from FRGC [39], fin-
gerprints from FVC2002-DB2 and irises from ICE2006 [40].
These chimeric databases contain 100 subjects with eight multi-
modal samples per subject. Fig.3 shows the sample images
from the three databases.

Table 1: Experimental settings

WVU Chimeric A Chimeric B
Subjects 106 100 100

Samples per subject 5 8 8
Training Sample 3 4 4
Testing Sample 2 4 4

Genuine Attempts 106 300 300
impostor attempts 111,30 19,800 19,800

The training-testing partitions for each database is shown in
Table.1. Our testing protocol is described as follows. For the
genuine attempts, the first sample of each subject is matched
against the remaining samples of the subject. For the impos-
tor attempts, the i-th sample of each subject is matched against
the i-th sample of the remaining subjects. Consequently, the
number of genuine and impostor attempts in WVU multi-modal
database are 106 (106× (2−1)) and 11,130 ((106×105)/2×2),
respectively, while the number of genuine and impostor at-
tempts in the two chimeric multi-modal databases are 300
(100 × (4 − 1)) and 19,800 ((100 × 99)/2 × 4) respectively.

Prior to evaluating the binary fusion algorithms, we ex-
tract the binary features of face, fingerprint and iris from the
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(c)  Chimeric B

(a) WVU Multimodal (b)  Chimeric A

Figure 3: Sample face, fingerprint, and iris images from (a) WVU; (b) Chimeric
A (FERET, FVC2000-DB2, CASIA-Iris-Thousand); and (c) Chimeric B
(FRGC, FVC2002-DB2, ICE2006)

databases. The images of each modality are first processed as
follows:

• Face: Proper face alignment is first applied based on the
standard face landmark. To eliminate effect from variations
such as hair style and background, the face region of each
sample is cropped and resized to 61×73 pixels in FERET and
FRGC databases, and 15×20 pixels in WVU database.

• Fingerprint: We first extract minutiae from each finger-
print using Verifinger SDK 4.2 [41]. The extracted minutiae
are converted into an ordered binary feature using the method
proposed in [16] without randomization. Following parame-
ters in [16], each fingerprint image is represented by a vector
with length 224.

• Iris: The weighted adaptive hough and ellipsopolar trans-
form (WAHET) [42] is employed to segment the iris. Then,
480 real features are extracted from the segmented iris us-
ing Ko et al.’s extractor [43]. Both segmentation and extrac-
tion algorithms are implemented using the iris toolkit (USIT)
[44].

After preprocessing, we apply PCA on face, and LDA on fin-
gerprint and iris to reduce the feature dimensions to 50. Then,
we encode each feature component with a 20-bit binary vector
using LSSC [22] and obtain a 1000-bit binary feature for each
modality.

In this comparative study, we compare the proposed method
with the following existing methods:

− single modality baselines: face, fingerprint, iris
− bit selection [28]
− concatenation [24, 25]
− bit-wise operation: AND, OR, XOR
− decision fusion: AND, OR (denoted as ‘andd’ and ‘ord’ in

the experimental results, respectively)

For the proposed method, the parameter of largest cluster
size tsize in stage one is set to 8. Throughout the comparative
study, features produced by the evaluated methods are made to
be of the same length for comparison fairness purpose, except
the concatenation method. For instance, the original length of
the unimodal binary features is reduced to the evaluated length
through discriminative selection using a discriminability crite-
rion [28]. The features of the bit-wise operation and the results

of decision-level fusion methods are obtained from these se-
lected uni-biometric features.

4.2. Evaluation measures for discriminability and security

Discriminability. The discriminability of the fused feature is
measured using the area under curve (AUC) of the receiver op-
erating characteristic (ROC) curve. The higher the AUC, the
better the matching accuracy would be.

Security. The security of the template is evaluated using
quadratic Renyi entropy [45]. Specifically, the quadratic Renyi
entropy measures the effort for searching an identified sample
of the target template. Assuming that the average impostor
Hamming distance (aIHD) or the impostor Hamming distance
per bit obeys binomial distribution with expectation p and stan-
dard deviation σ, the entropy of the template can be estimated
as

H = − log2 Pr(aIHD = 0)

= − log2 p0(1 − p)N∗ = −N∗ log2(1 − p)
(12)

where p and σ denote the mean and standard deviation of the
aIHD, resp., and N∗ = p(1 − p)/σ2 denotes the estimated num-
ber of independent Bernoulli trials.

Trade-off analysis. The GAR-Security (G-S) analysis [28] is
an integrated measure for template discriminability and security
in biometric cryptosystems. It analyzes the trade-off between
matching accuracy and security in a fuzzy commitment system
by varying the error correcting capability. The G-S analysis is
based on the decoding complexity of Nagar’s ECC decoding al-
gorithm [28], where a query is accepted only if the correspond-
ing decoding complexity is less than a given threshold.

A G-S point is produced via computing the GAR and the
minimum decoding complexity among all impostor attempts
given an error correcting capability. More details of the decod-
ing complexity can be found in [28]. We estimate the entropy
of the binary feature using the quadratic Renyi entropy [45],
which is a more accurate measure than the Daugman’s DOF
[46] that is only reliable as the aIHD expectation p = 0.5.

4.3. Discriminability evaluation

The AUC for fusion bit length from 150 to 600 is shown in
Fig.4. It can be observed that the proposed method has compa-
rable performance compared to bit selection and concatenation
on all three databases and it outperforms the remaining meth-
ods in general. On WVU multi-modal database, the proposed
method performs as good as the unimodal face baseline.

For the results on WVU multi-modal database in Fig.4(a),
the proposed method outperforms the curves of bit selection,
concatenation and face. When the bit length equals 350, the
AUC of the proposed method is 0.9961, which is slightly higher
than the AUC of bit selection (0.9896), concatenation (0.9946)
and the best single modality: face (0.9890). Compared to face,
the proposed method has a marginal improvement of 0.71%.

For the results on Chimeric A database shown in Fig.4(b), the
proposed method performs equally well with bit selection and
concatenation methods. The AUC of the proposed method, the
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(c)  Chimeric B

Figure 4: Comparison of area under ROC curve on (a) WVU multi-modal, (b) Chimeric A, (c) Chimeric B databases.

bit selection and the concatenation methods are 0.9992, 0.9985,
and 0.9973 at 350-bit feature length, respectively. This shows
a 3.4% improvement of the proposed method compared to the
best-performing unimodality: face (AUC = 0.9656).

For the results of Chimeric B database in Fig.4(c), it can
be observed that the AUC of the proposed method is slightly
higher than the bit selection method when the bit length is less
than 500. For this database, the proposed method, bit selection
and concatenation methods outperform significantly the best-
performing unimodality: iris. At 350-bit feature length, the
AUC of the proposed method is 0.9823 compared to the con-
catenation (0.9793) and bit selection (0.9763) methods. The
AUC improvement of the proposed method is approximately
3.5% compared to iris (AUC = 0.9413) at 350-bit feature
length.

These results show that the proposed method could perform
equally well, or even slightly better than bit selection and con-
catenation although the biometric modalities could vary signif-
icantly in quality. It is noted that the difference between the
AUC of face and fingerprint is around 7 ∼ 10% on WVU mul-

timodal database and 2 ∼ 5% on Chimeric A database; while
the difference between the AUC of iris and face is around 10%
on Chimeric B.

Additionally, it is observed that there is no guarantee on the
performance of features produced based on AND-, OR- and
XOR-feature fusion rule. The features produced by XOR rule
are always the worst compared to AND and OR rules.

4.4. Security evaluation

In this section, the results on template security are shown,
which is measured using quadratic Renyi entropy [45]. The av-
erage Renyi entropy of the binary feature fused using the eval-
uated schemes are plotted in Fig.5. Here, the average Renyi en-
tropy is the Renyi entropy divided by the bit length of the fused
features, thus ranging from 0 to 1. A higher average Renyi en-
tropy implies stronger template security.

On all three databases, it can be observed that the proposed
method ranks second in terms of entropy. The best-performing
method turns out to be the XOR feature fusion because the fea-
tures tends to be more uniform upon XOR fusion, despite its
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(c)  Chimeric B

Figure 5: Comparison of average Renyi entropy on (a) WVU multi-modal, (b) Chimeric A, (c) Chimeric B databases.

poor performance in the discriminability evaluation.
For the WVU multi-modal database shown in Fig.5(a), it

is observed that at 350-bit feature length, the average entropy
achieved by the proposed method is 0.4674 bit, while the XOR-
feature fusion method achieves an average entropy of 0.9603
bit, which is nearly double of the proposed method. Besides
that the ‘andd’ method slightly underperforms the proposed
method, the remaining methods could only achieve at most half
of the average entropy of the proposed method.

Similar results can be seen on Chimeric A and B databases in
Fig.5(b) and (c). When the bit length equals 350, the proposed
method achieves an average entropy of 0.4896 bit in Fig.5(b)
and 0.4021 bit in Fig.5(c), that is half of that of the XOR-feature
fusion method but is at least double of that of the remaining
methods.

4.5. Trade-off analysis between discriminability and security
Using the parameters suggested in [28], the G-S curves of the

evaluated methods are plotted in Fig.6. The maximum accept-
able decoding complexity is fixed as 15 bits and the minimum
distance of the ECC ranges from 0.02 to 0.6 times the bit length

S . It can be observed that the proposed method outperforms the
bit selection method on all three databases. This implies that
the proposed method achieves a better discriminability-security
tradeoff than the bit selection method and the remaining meth-
ods.

For 40-bit security at 350-bit feature length, the proposed
method performs the best, achieving 69% GAR. This is fol-
lowed by the face (57% GAR) and bit selection method (38%
GAR). For the same settings on Chimeric A database, the pro-
posed method achieves 64% GAR, which is 13% higher than
face modality and 26% higher than bit selection method. As for
Chimeric B database, the proposed method achieves 20% GAR,
which is 11% higher than the iris modality and 17% higher than
bit selection method.

5. Conclusion

In this paper, we have proposed a binary feature fusion al-
gorithm that can produce discriminative binary templates with
high entropy for multi-biometric cryptosystems. The proposed
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binary feature fusion algorithm consists of two stages: depen-
dency reductive bit grouping and discriminative and uniform
within-group fusion. The first stage creates multiple weakly-
interdependent bit groups using grouping information that is
obtained from an average mutual information-based agglom-
erative hierarchical clustering; while the second stage fuses the
bits in each group through a function that minimizes intra-user
variation, and maximizes uniformity and inter-user variation of
the output fused bit. We have conducted experiments on WVU
multi-modal database and two chimeric databases and the re-
sults have justified the effectiveness of the proposed method in
producing a highly discriminative fused template with high en-
tropy per multimodal sample.

Appendix A. Proof of the Non-increasing of the Maximum
AMI

Appendix A.1. In the agglomerative clustering that merge
cluster pairs with maximum AMI at each iteration, let MIiter

avg

and MIiter+1
avg denotes maximum AMI among all cluster-pairs

in the start of iter-th and (iter + 1)-th iteration, resp., then
MIiter

avg ≥MIiter+1
avg .

Proof. (proof by contradiction) Suppose that the cluster-set
Citer = {ζ1, ζ2, · · · , ζS } in the start of iter-th iteration con-
tains L clusters, and the cluster-pair (ζs1 , ζs2 ), where s1, s1 =

{1, 2, · · · , S }, is the cluster-pair with highest AMI among all
possible cluster-pairs from Citer, i.e., MIiter

avg = Iavg(ζs1 , ζs2 ).
In the start of (iter + 1)-th (after iter-th) iteration, cluster-pair
(ζs1 , ζs2 ) is merged to cluster ζs3 , the corresponding cluster-set
Citer+1 contains ζs3 and all the clusters in Citer excluding ζs1 and
ζs2 , i.e.,

Citer+1 = Citer − {ζs1 } − {ζs2 } + {ζs3 }

As MIiter
avg = Iavg(ζs1 , ζs2 ), Iavg(ζs1 , ζs2 ) greater than the AMI of

all possible cluster-pair in Citer+1 excluding cluster ζs3 . There-
fore, if MIiter

avg < MIiter+1
avg , there must exist a ζs4 in Citer+1, such

that Iavg(ζs1 , ζs2 ) < Iavg(ζs3 , ζs4 ). Since

Iavg(ζs3 , ζs4 ) =
H(ζs3 ) + H(ζs4 ) − H(ζs3 , ζs4 )

|ζs3 ||ζs4 |

=
H(ζs3 ) + H(ζs4 ) − H(ζs3 , ζs4 )

(|ζs1 | + |ζs2 |)|ζs4 |

Furthermore, we have

H(ζs3 ) + H(ζs4 ) − H(ζs3 , ζs4 )
=Iavg(ζs1 , ζs4 )|ζs1 ||ζs4 | + Iavg(ζs2 , ζs4 )|ζs2 ||ζs4 |

+ H(ζs1 , ζs4 ) + H(ζs2 , ζs4 )

−
(
Iavg(ζs1 , ζs2 ) + H(ζs4 ) + H(ζs1 , ζs2 , ζs4 )

)
≤Iavg(ζs1 , ζs4 )|ζs1 ||ζs4 | + Iavg(ζs2 , ζs4 )|ζs2 ||ζs4 |

≤max{Iavg(ζs1 , ζs4 ), Iavg(ζs2 , ζs4 )}(|ζs1 | + |ζs2 |)|ζs4 |

Finally,

Iavg(ζs3 , ζs4 )

≤
max{Iavg(ζs1 , ζs4 ), Iavg(ζs2 , ζs4 )}(|ζs1 | + |ζs2 |)|ζs4 |

(|ζs1 | + |ζs2 |)|ζs4 |

≤max{Iavg(ζs1 , ζs4 ), Iavg(ζs2 , ζs4 )}(|ζs1 | + |ζs2 |)|ζs4 |

≤Iavg(ζs1 , ζs2 )

Therefore, there is no cluster ζs4 that fulfill the condition
Iavg(ζs1 , ζs2 ) < Iavg(ζs3 , ζs4 ), which means that MIiter

avg ≥ MIiter+1
avg

always true. This completes the proof.
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Figure 6: G-S Trade-off Analysis on (a) WVU multi-modal, (b) Chimeric A, and (c) Chimeric B.
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