
https://doi.org/10.1137/050630246
https://scholars.hkbu.edu.hk/en/publications/079f48b3-7494-49e4-b810-70c140009a8d
https://doi.org/10.1137/050630246


SIAM J. NUMER. ANAL. c� 2006 Society for Industrial and Applied Mathematics
Vol. 44, No. 4, pp. 1780�1800

FINDING NUMERICAL DERIVATIVES FOR UNSTRUCTURED
AND NOISY DATA BY MULTISCALE KERNELS�

LEEVAN LING�

Abstract. The recently developed multiscale kernel of R. Opfer [Adv. Comput. Math., 25
(2006), pp. 357�380] is applied to approximate numerical derivatives. The proposed method is truly
mesh-free and can handle unstructured data with noise in any dimension. The method of Tikhonov
and the method of L-curve are employed for regularization; no information about the noise level is
required. An error analysis is provided in a general setting for all dimensions. Numerical comparisons
are given in two dimensions which show competitive results with recently published thin plate spline
methods.
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1. Introduction. Evaluating derivatives of a function using only information
from discrete function values is a typical ill-posed problem. Small measurement er-
rors, including rounding errors, will be greatly ampli�ed during the numerical di�er-
entiation process. The problem of numerical di�erentiation arises in many branches
of science and engineering. Some practical examples are the identi�cation of disconti-
nuities in image reconstruction [10, 13], resolution enhancement of spectra [17], solv-
ing Abel integral equations [7, 12], determination of peaks in chemical spectroscopy
[24], determination of discontinuous points of the exact solutions [33], solving integral
equations [8], determination of source parameter and di�usion coe�cient in parabolic
di�erential equations [6, 14], simulation of constrained mechanical systems of parti-
cles [19], singular convolution [25], and many other inverse problems in mathematical
physics. The previous literature on numerical di�erentiation featured plenty of nicely
calculated practical solutions, but most research papers on this topic are limited to
one dimension or highly structured grids [4, 14, 20, 26, 27, 30, 33]. Numerical meth-
ods for higher dimensions are very limited. In particular, many existing methods
are based on �nite di�erence schemes [2], wavelet methods [5], and thin plate splines
approximation [34]. The goal of this paper is to supply a new, e�cient, and practical
alternative for scientists and engineers who need to compute numerical di�erentiation
from real-life, large-scale, and noisy multivariate data.

Given some set of real-life data in any dimension, multivariate functions are re-
constructed from unstructured data by some specially designed multiscale kernels

�(x, •) =
u�

j=0

�

k�Zd

�j
��(2jx � k)�(2j • �k).

Since multiscale kernels are proven to be positive de�nite, for every set of data
points we can solve an interpolation problem and write the interpolant in the form
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NUMERICAL DERIVATIVES BY MULTISCALE KERNELS 1781

of the kernel representation:

s =
n�

i=1

�i�(xi, •).(1.1)

The multiscale property, found in wavelet analysis, is considered a major breakthrough
in the development of kernel-based mesh-free methods. We can go one step further
and express (1.1) in its frame representation:

s =
u�

j=1

�

k�Zd

�j
�cj

k�(2j • �k),(1.2)

where cj
k = cj

k({xi}, �i) are called the frame coe�cients. The interpolant obtained
will have a frame representation on structured grids instead of the unstructured data.
The solution process involves solving a sparse matrix system if the multiscale kernel
is compactly supported. Once we determine the multivariate function that interpo-
lates the noisy data, this newly developed method has potential applications in many
branches of science and engineering. The well-developed wavelet techniques (e.g., de-
noising, compression, shape detection, etc.) can be applied thereafter. In this paper,
we focus on a classical ill-posed numerical di�erentiation problem. The derivative of
(1.2) can be obtained by replacing � by D��. An overview of multiscale kernels will
be given in section 2.

In section 3, the instability of numerical di�erentiation is regularized by the
Tikhonov regularization method that seeks a stable approximate interpolant. Error
estimates in section 3.1 show that the errors of numerical derivatives blow up when
the noise level is high or when the minimum separation distance of the data points
is small. This agrees with the ill-posed nature of numerical di�erentiation. On the
other hand, both errors in interpolation and in the derivatives can be minimized with
an optimal regularization parameter. In section 4, the L-curve method is employed
to numerically locate the optimal regularization parameter. Finally, two bivariate
examples are given in section 5 to conclude the paper.

2. Finding numerical derivatives. Consider a symmetric function of the form
� : � × � � R for some � � Rd and let N� be the reproducing kernel of a native
Hilbert space [29] of �. It is proven in the same article that the native space N� for a
given symmetric positive de�nite kernel � is unique if it exists, and it coincides with
the closure of the space of �nite linear combination of functions �(x, •), x � � under
the inner product de�ned via

(�(x, •), �(y, •))N� = �(x, y) for all x, y � �.

That is, for every �xed point x � � and function �(x, •) belongs to N�, every f �
N� can be recovered by an inner product of the form f(x) = �f, �(x, •)�, x � �.
For a detailed treatise of reproducing kernel Hilbert spaces, see Aronszajn [3] or
Meschkowski [21].

To begin, we reconstruct multivariate functions from unstructured data by a
multiscale technique. The basic concepts of this technique were �rst investigated by
Opfer [23]. The implementation of a multiscale kernel (MSK) is out of the scope of
this paper and the developments of MSK are only sketched here. We refer the reader
to the original dissertation of Opfer for the details.
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1782 LEEVAN LING

A function � : Rd � R is called re�nable if there is a sequence {hk}k�Zd of real
numbers such that

� =
�

k�Zd

hk�(2 • �k).(2.1)

For every level-j � Z we de�ne the shift invariant space

Vj :=

�
�

k�Zd

ck�(2j • �k) : ck � R,
�

k�Zd

(ck)2 < �

�

.(2.2)

By standard wavelet arguments it follows from (2.1) that the spaces {Vj}j�Z form a
nested sequence, i.e., V0 � V1 � • • • � Vu. The main idea here involves several levels
of Vj in one reconstruction scheme.

Let � : Rd � R be a function in L2(Rd) with decay �(x) = O
�
(1+�x�)�(d+1)/2�

.
Let u 	 0 be a �xed integer and � > d/2 be a positive real number. Then the kernel
�� : Rd × Rd � R given by

��(x, y) :=
u�

j=0

�j
�

�
�

k�Zd

�(2jx � k)�(2jy � k)

�

	 
� �
��,j

,(2.3)

where �� := 2d�2�, is a MSK.
Theorem 2.1 (see [23, Theorem 5.4]). Every MSK in the form of (2.3) is positive

semide�nite. Let B�(c) be a ball of radius � with center c � Rd such that supp(�) �
B�(c). If the point set X � Rd satis�es

hX,min := min
i �=j

�xi � xj�2 > � 2�u+1,(2.4)

then the matrix AX :=
�
��(xi, xk)

�
1�i,k�n is positive de�nite.

In this paper, we are mainly interested in compactly supported re�nable functions
� that clearly satisfy the decay condition required in Theorem 2.1. The resulting MSK
are therefore positive de�nite.

We can �nd to any given data Y an interpolant of the form (1.1) by solving a
sparse symmetric linear collocation system for � � Rn,

yj =
n�

i=1

�i��(xi, xj), 1 
 j 
 n.(2.5)

Theorem 2.1 implies that (2.5) has a unique solution if the integer u = u(hX,min) is
large enough with respect to the density of the data points X. The MSK scheme
is based on the following idea: The kernel representation can be decomposed into a
frame representation due to the specially designed structure of ��. First, s � N� is
decomposed into a sequence of functions sj � Vj ,

(2.6)

s =
n�

i=1

�i��(xi, •) =
n�

i=1

�i

u�

j=0

�j
���,j(xi, •) =

u�

j=0

�j
�

n�

i=1

�i��,j(xi, •)

	 
� �
sj

=
u�

j=0

�j
�sj ,
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NUMERICAL DERIVATIVES BY MULTISCALE KERNELS 1783

such that each sj � Vj can be further decomposed into

sj =
n�

i=1

�i��,j(xi, •) =
�

k�Zd

�
n�

i=1

�i�(2jxi � k)

�

	 
� �
cj

k

�(2j • �k) =
�

k�Zd

cj
k�(2j • �k).

(2.7)

Combining (2.6) and (2.7) gives us the frame representation in the form of (1.2).
Functions in lower levels capture the smooth structure of f while the higher levels
contain the �ne structure of f , including noise. Furthermore, the re�nability of the
function � allows the frame coe�cients cj

k for 0 
 j 
 u � 1 to be computed via

cj
k = ��j

�

�

µ�Zd

hµ�2kcj+1
µ , k � Zd.

Computation of frame coe�cients cj
k requires a nearest neighbor search, e.g., kd-tree

[35, Chapter 14], to locate all x � X inside the support of �(2u • �k). Note that the
number of nonzero cj

k is �nite due to the fact that |X| is �nite and � is compactly
supported. The native space N� and each Vj in (2.2) can be equipped with a norm,
respectively,

�s�2
N�

=
u�

j=0

��j
� �sj�2

Vj
and �sj�2

Vj
=

�

k�Zd

(cj
k)2.

Let hX,� denote the �ll distance of the data points X � � given by

hX,� := sup
y��

inf
xi�Xh

�y � xi�2.

If � satis�es certain smoothness and decay properties, then N� � W �,2 are norm
equivalent and the interpolant obtained by MSK satis�es the standard native space
error bound:

Theorem 2.2 (see [23, Theorem 5.21]). Let the MSK �� be constructed with a
scaling function � of an r-regular multiscale analysis of L2(�d) with r > d/2. Fix an
� with d/2 < � < r. Further we assume that X := {x1, . . . , xn} � � is a set of points
with �ll distance hX,�, where � � Rd is a compact set with Lipschitz boundary which
satis�es an interior cone condition. Let f � H�(Rd) and s be the interpolant. Let
1 
 q 
 � and � = (�1, . . . , �d) be a multi-index such that |�| < �� � d/2. Then,
there is a constant C > 0 independent of f and hX,� such that

�s � f�W |�|,q(�) 
 C1h
��|�|�d

�
1/2�1/q

�
+

X,� �f�N� ,

where (x)+ = x if x 	 0 and (x)+ = 0 if x < 0.

2.1. Noise data. Let us assume we have points X := {x1, . . . , xn} � � � Rd

and noisy data

Y� := {y1, . . . , yn} � R,

where

yi = yi + �i = f(xi) + 	(xi),
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1784 LEEVAN LING

and �i are random noise. The noise function 	 here is not necessarily classically
di�erentiable or even continuous. Assume that we obtain an interpolant in the frame
representation

s�,X =
u�

j=0

�j
�s�,X,j =

u�

j=0

�

k�Zd

�j
�cj

k�(2j • �k),(2.8)

for some noisy data (X, Y�) by MSK with the following conditions satis�ed.
Assumption 2.3. The MSK in (2.3) is constructed by
1. � 	 2 and � > d

2 ,
2. a r-regular � smooth enough such that r >

�
2 + d

2

�
, i.e., � � Cr(�) with

compact support up to order r, and
3. for any given data points X, u = �1 + log2

�
hX,min

�, where hX,min is given in
(2.4) and � as in Theorem 2.1.

The reasons for the above assumptions will soon become clear when we look at the
error estimates in section 3.1. Throughout this paper, let � with |�| = �1+• • •+�d = 1
be a multi-index. Our interest is to approximate or reconstruct the derivatives of f
from the noisy data Y� via

(X, Y�) �� D�f.

From the frame representation (2.8), the numerical derivatives are given by

D�s�,X =
u�

j=0

�j
� D� s�,X,j =

u�

j=0

�

k�Zd

�j
�cj

k D��(2j • �k).(2.9)

This numerical procedure is highly unstable. Since the input data Y� contains noise,
the resulting approximated derivatives D�s�,X will contain large errors and therefore
are not trustworthy. We select a subset of frame coe�cients {rj

k} � {cj
k} to regularize

the numerical derivatives.
Any regularized interpolant g to s�,X is in the form of

g =
u�

j=0

�

k�Zd

�j
�rj

k �(2j • �k),(2.10)

where rj
k � {0, cj

k}. For some threshold t�(j) > 0 for 0 
 j 
 u and a �xed regular-
ization parameter 
, the regularized interpolant is de�ned to be

s� =
u�

j=0

�

k�Zd

�j
� rj

k �(2j • �k) such that rj
k =

�
cj

k if |cj
k| > t�(j) 
,

0 otherwise.
(2.11)

For practical problems, the optimal regularization parameter 
� is not attainable
unless 	 is known a priori. In the next section, we specify our choice of threshold
t�(j) using the Tikhonov regularization method. After giving a concrete formula of
the threshold t�(j), we make sure the errors in interpolation and in the gradient
of the regularized interpolant in (2.11) is both bounded and well behaved for some
suitable 
.
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NUMERICAL DERIVATIVES BY MULTISCALE KERNELS 1785

3. Regularization. The classical Tikhonov regularization method [31] is a com-
mon tool for �nding a solution from an unstable system. Using some a priori choice
strategy for regularization parameters, Hofmann and Yamamoto [18] prove conver-
gence rates for the Tikhonov regularization method. Despite the di�erences with the
classical problem, we seek a regularized interpolant s� to s�,X (considered to be �xed
here) by the Tikhonov regularization method. For any

�g =
u�

j=0

�

k�Zd

�j
��rj

k �(2j • �k) � Vu,

we de�ne the error measure by

E(�g) = E(�g; s�,X) := �s�,X�2
N�

� �g�2
N�

=
u�

j=0

�

k�Zd

��j
�

�
(cj

k)2 � (�rj
k)2

�
,(3.1)

and the roughness measure by

R(�g) :=
u�

j=0

�

k�Zd

�j
�|�rj

k| |�(2j • �k)|W 2,2(�),(3.2)

such that |�g|2W 2,2(�) 
 R(�g) for any �g � Vu. The error measure depends on the
interpolant s�,X but both are independent of 
.

Given any regularization parameter 
 	 0 (consider to be �xed here), the regu-
larized interpolant s� is de�ned to be the minimizer of E(•)+
 R(•) over all functions
in the form of (2.10), i.e.,

E(s�) + 
 R(s�) = inf
�

E(g) + 
 R(g) for all g as in (2.10)
�

.(3.3)

Although the number of nonzero functions in the form of (2.10) is �nite, we have the
following theorem to simplify our selection process.

Theorem 3.1. For any given 
 	 0 the optimizer to (3.3) is given by (2.11) with

t�(j) :=
�
2d�2�+4 |�|2W2,2

�j < � for all 0 
 j 
 u < �.

Proof. First by changing variables, we obtain

|�(2j • �k)|2W2,2(�) =

�����
�

|�|=2

D��(2j • �k)

�����

2

L2(�)

= 2j(4�d) |�|2W2,2(�).(3.4)

For any g in the form of (2.10), we have

E(g)+ 
 R(g) =
u�

j=0

�

k�Zd

��
��j

� (cj
k)2 � (rj

k)2
�

+ 
 �j
� |rj

k| 2j(4�d) |�|2W2,2(�)
�

=

�
u�

j=0

�

k�Zd

��j
� (cj

k)2
�

	 
� �
= �s�,X �2

��

�

�
u�

j=0

�

k�Zd

��j
� (rj

k)2 � 
 �j
� |rj

k| 2j(4�d) |�|2W2,2(�)

�

.
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1786 LEEVAN LING

Since �s�,X�2
��

is a �xed quantity, the minimizer of (3.3) corresponds to the following
condition on rj

k:

��j
� (rj

k)2 � 
 �j
� |rj

k| 2j(4�d) |�|2W2,2(�) > 0.

After simpli�cation, we obtain (rj
k)2 > t�(j)|rj

k|
.
Once 
 is determined, Theorem 3.1 allows us to select {rj

k} from {cj
k} and con-

struct the regularized interpolant and its derivatives.

3.1. Error estimate. In general, interpolation does not make sense on L2(�)
and there are many possibilities of projecting L2(�) to N�. Moreover, there are many
new results on interpolation in cases where f is not in the native space [22, 28]. For
our problem, we will de�ne the necessary projection by interpolation.

Let � � Rd be a domain satisfying the conditions in Theorem 2.2. Suppose that
the MSK �� also satis�es Assumption 2.3 and f � N� = H�(�). For any �xed center
X and noise function 	 � L2(�) � C(�), the noise level is de�ned as

� := sup
x��

|	(x)|.

It is easy to verify that �	�L2(�) 
 V 1/2(�) �, where V (�) is the volume of � � Rd.
The noisy input data for interpolation at the points X � � is given by Y� := (f +	)

��
X

under the assumption that f and 	 are both well de�ned at all points x � �.
We de�ne a �nite dimensional subspace VX � N� to be the span of ��(z, •) and

V (�)
X to be the span of D���(z, •), where di�erentiation acts upon the second variable

of �� for all z � X. Furthermore, we de�ne a projection map

PX : L2(�) � C(�) � R|X| such that PXf = {f(x) : x � X}

that extracts discrete values from a function in L2(�)�C(�) at X so that interpolation
is possible and makes sense, and an interpolation map

IX : R|X| � VX such that IXPXf = IXf for all f � N�,

which maps discrete function values at X to a function in VX by interpolation using
MSK. Last, we de�ne a truncation map,

T� : {1}N×Zd
� {0, 1}N×Zd

for all 
 	 0

that smoothes out functions by truncating some of their frame coe�cients. Fur-
thermore, when no confusion arises, we treat T� as a map from VX and V (�)

X onto
themselves in the sense that,

T�

�
u�

j=0

�

k�Zd

�j
� cj

k �(2j • �k)

�

:=
u�

j=0

�

k�Zd

�j
� T�(cj

k) �(2j • �k), � = {�, D��}.

The truncation map T�, as in (2.11), is a nonlinear map whose actual form depends
on the parameter 
 and the data (X, Y�). It can also be interpreted as a countable
set {� j

k} � {0, 1}N×Zd
such that T�(cj

k) = � j
k(
)cj

k = rj
k(
), where

� j
k = � j

k(
) =
�

1 if rj
k = cj

k,
0 otherwise.

(3.5)
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NUMERICAL DERIVATIVES BY MULTISCALE KERNELS 1787

Since the number of nonzero cj
k � {0, 1}N×Zd

is �nite, there are in�nitely many cj
k = 0

and the corresponding � j
k = 1 because rj

k = 0 = cj
k for all 
 	 0 by (3.5). Thus, there

are in�nitely many � j
k = 1 (frame coe�cients being kept) and only a �nite number of

� j
k = 0 (frame coe�cients being truncated) for the selected frame coe�cients.

With the newly introduced notation, the unknown full interpolant can be ex-
pressed by s := IXPXf. Furthermore, we can write the regularized interpolant in
Theorem 3.1 as

s�,X := IXPX(f � 	) and s� = T�s�,X .

Moreover, (2.11) can be restated as

s� = T�s�,X =
u�

j=0

�

k�Zd

�j
� � j

kcj
k �(2j • �k).

Without any extra assumptions on the noise function 	, the threshold t�(j) and the
data points X, the truncation map has the following properties.

Proposition 3.2. Let |�| = 1 and nzj(•) be a function with respect to j that
returns the number of zero elements in the level-j of a set in {0, 1}N×Zd

. Denote the
L2(�)-induced norm for maps on VX by � • �L2(�) and de�ne

u� := sup
�

j
��� � j

k �= 0 for some k � Zd, 0 
 j 
 u
�

,(3.6)

to be the maximum nonzero frame level after truncation. Then the truncation map
T� satis�es:

1. �T��L2(�) = �T0 � T��L2(�) = 1 for 
 > 0.
2. �D�T��L2(�) = �T�D��L2(�) = 2u� �D���L2(�) ����1

L2(�).
3. For any given data (X, Y�), the number of frame coe�cients being truncated

by T�, denoted by nzj(1 � � j
k(
)) < �, is a bounded nondecreasing simple

function in 
 and nzj(1 � � j
k(0)) = 0.

Proof. The perfect candidate to evaluate the above norms is the scaled function
in the frame. For each nested space Vj (0 
 j 
 u), such function is given by

gj,k =
�
2jd/2 ����1

L2(�)

�
�(2j • �k) � Vj , 0 
 j 
 u,

such that �gj,k�L2(�) = 1 and �D�gj,k�L2(�) = 2j �D���L2(�) ����1
L2(�).

For Proposition 3.2.1 follows directly from the fact that T� �= 0 for all 
 	 0;
there exists some (j1, k1) and (j2, k2) such that � j1

k1
= 1 and � j2

k2
= 0 for 0 
 ji 
 u

and ki � Zd corresponding to a frame coe�cient that is kept and truncated by T�,
respectively. Hence, we have

�T�IXPXgj1,k1�L2(�) = 1, and �(T0 � T�)IXPXgj2,k2�L2(�) = 1.

To prove Proposition 3.2.2, we �rst note that the di�erential operator acts on each
� independently as in (2.9); thus, cj

k and � j
k are independent of the truncation process.

Di�erentiation after truncation is the same as truncation after di�erentiation, namely
we have D�T�sj = T�D�sj for all sj � Vj . For numerical e�ciency, the operation
D�T� is preferred for e�ciency.
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Since �D���L2(�) ����1
L2(�) is a �xed quantity once � is �xed, without regular-

ization the noise in the level-j will be greatly ampli�ed as expected,

�D�IXPXgj,k�L2(�) = �D�gj,k�L2(�) 
 2j �D���L2(�) ����1
L2(�).(3.7)

Let u� be the highest nonzero frame level appearing in the regularized interpolant as
in (3.6). Applying the regularization map T� will �cut o�� all levels higher than u�
exclusively and we arrive at the conclusion.

Last, Proposition 3.2.3 follows from the fact that the number of nonzero cj
k is

�nite and no regularization is applied when 
 = 0.
We now turn our focus to the error estimate for �f � s��. First of all,

�f � s��L2(�) 
 �f � IXPXf�L2(�) + �IXPXf � s�,X�L2(�) + �s�,X � T�s�,X�L2(�)

= �f � IXPXf�L2(�)	 
� �
interp. error

+ �IXPX	�L2(�)	 
� �
noise

+ �(T0 � T�)s�,X�L2(�)	 
� �
reg. error

.

The last inequality uses the fact that

�IXPXf � s�,X� = �IXPXf � IXPX(f � 	)� = �IXPX	�.

By Theorem 2.2 with q = 2 and |�| = 0, the �rst term (interpolation error) can
be bounded by

�IXPXf � f�L2(�) 
 C1h�
X,� �f�N� ,

and the second term (noise) is bounded by our assumption on 	,

�IX	�L2(�) 
 V 1/2(�) �.

It is straightforward to verify that

�sj�2
L2(�) 
 2�jd ���2

L2(�) �sj�2
Vj

for all sj � Vj .(3.8)

For the third term (regularization error), by Theorem 3.1 and (3.8) we have

�(T0 � T�)s�,X�2
L2(�) 


u�

j=0

�(T0 � T�)s�,X,j�2
L2(�)(3.9)


 ���2
L2(�)

u�

j=0

�

k�Zd

2�jd�
(1 � � j

k)cj
k
�2


 ���2
L2(�)

u�

j=0

2�jdnzj(1 � � j
k) t�(j)2
2



u�

j=0

2�2(��2)jnzj(1 � � j
k)|�|2j

W2,2
���2(j+1)

L2(�) 
2

:=
�
C2(
)


�2.

An immediate fact from Proposition 3.2.3 is that C2(
) is a bounded positive nonde-
creasing simple function with C2(0) = 0.
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For the error in the gradient, we have

��f � �s��L2(�) 
 ��f � �IXPXf�L2(�) + ��IXPXf � �T�IXf�L2(�)

+ ��T�IXPXf � �s��L2(�)


 ��f � �IXPXf�L2(�)	 
� �
interp. error

+ ��(T0 � T�)IXPXf�L2(�)	 
� �
reg. error

+ ��T�IXPXPX	�L2(�)	 
� �
noise

.

Using Theorem 2.2 with q = 2 and |�| = 1, the interpolation error in gradient is again
bounded by

��IXPXf � �f�L2(�) 
 C1h��1
X,� �f�N� .

Next, we need a stronger assumption than � 	 2 such that N� � W 2,2(�) to make
use of an inequality in [1, Theorem 4.14]: For any 0 < 0 there exists a constant
C3 = C3(0, �, d) > 0 such that for g � W 2,2(�) and for all 0 <  < 0,

��g�L2(�) 
 C3
�
 |g|W 2,2(�) + �1�g�L2(�)

�
.(3.10)

By assumption, the unknown function f is �smoother� than the random noise 	.
Hence, for all 
 	 0 the following statement holds

��(T0 � T�)IXPXf�L2(�) 
 ��(T0 � T�)s�,X�L2(�).

Similar to (3.9), by (3.4) we have

|(T0 � T�)s�,X |W 2,2 

u�

j=0

|(T0 � T�)s�,X,j |W 2,2(3.11)


 |�|2W 2,2

u�

j=0

�

k�Zd

2j(2�d/2)�(1 � � j
k)cj

k
�2


 |�|2W 2,2

u�

j=0

2j(2�d/2)nzj(1 � � j
k) t�(j)




u�

j=0

2(6�2�+d/2)jnzj(1 � � j
k)|�|2(j+1)

W 2,2 


:= C4(
)
.

We choose  = 1 < 0 for some �xed 0. Putting (3.9) and (3.11) into (3.10) yields

��(T0 � T�)IXf�L2(�) 
 C5(
)
.

Namely, C5(
) = C3(C2(
)+C4(
)) that is a bounded positive nondecreasing simple
function with C5(0) = 0.

All the terms considered so far are stable. Last, and most important, we consider
the error in gradient due to the presence of noise. By Proposition 3.2.2, if there exist
some (j, k) such that cj

k �= 0 and � j
k = 1, we have

��T�IXPX	�L2(�) 
 2d/2 2u� ����L2(�) ����1
L2(�) V 1/2(�) � := C6(
) �.(3.12)

Otherwise s�,X = 0, we clearly have ��T�IXPX	�L2(�) = 0 and C6(
) = 0.
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The function C6(
) in (3.12) is a bounded positive nonincreasing simple function.
Since 2u 	 2 �

hX,min
is the requirement of a positive de�nite kernel, the gradient error

in (3.7) will blow up when one takes �ner and �ner data points if the noise level � > 0
is �xed and no regularization is applied.

We summarize all results by the following theorem.
Theorem 3.3. For any given data (X, Y�), let s� be the regularized interpolant

obtained by a MSK satisfying Assumption 2.3 and regularized by Theorem 3.1. There
exist a constant C1, two bounded positive nondecreasing simple functions C�

2 (
) 	
C�

5 (
) such that C�
2 (0) = 0 = C�

5 (0), and a bounded nonnegative nonincreasing
simple function C	

6 (
) with C	
6 (0) > 0 such that the errors in regularized interpolant

are bounded by

�f � s��L2(�) 
 C1h�
X,� �f�N� + V 1/2(�) � + C�

2 (
)
,(3.13)

and

��f � �s��L2(�) 
 C1h��1
X,� �f�N� + C�

5 (
)
 + C	
6 (
) �,(3.14)

for all 
 	 0. Furthermore, if the noise level � 	 K(f, �), there exists a nonzero
optimizer 
� that minimizes the sum of the upper bounds in (3.13) and (3.14).

Proof. For any given data (X, Y�), the minimizer 
� in the theorem is also a
minimizer to the function

�
C�

2 (
) + C�
5 (
)

�

 + C	

6 (
) �.(3.15)

By the properties of C�
2 (
) and C�

5 (
), we know that the term
�
C�

2 (
)+C�
5 (
)

�

 is

a monotone increasing piecewise linear function. Its jump discontinuities are governed
by the term nzj(1 � � j

k(
)).
The terms C	

6 (
)� is a nonnegative nonincreasing simple function having jump
discontinuities at 0 =: 
u+1 < 
u 
 • • • 
 
0 < �, where 
j is the in�mum over 

such that jth level is completely truncated, i.e., for all 0 
 j 
 u


j := inf{ 

�� rj

k(
) = � j
kcj

k = 0 for all k � Zd}.

De�ne �kG(
) = G(
u�k) � G(
u�k+1) for all 0 
 k < u. If, for su�ciently large
�, the accumulated drop due to term C	

6 (
)� is larger than the accumulated growth
due to the term

�
C�

2 (
) + C�
5 (
)

�

, i.e.,

� > K(f, �) := min
0�j<u

� j�

k=1

�k
(C�

2 (
) + C�
5 (
))


C	
6 (
)

�

,(3.16)

then an optimizer 
� > 0 exists.
To end this section, note that the constant term K(f, �) in (3.16) decreases as �

increases. If the unknown function f is su�ciently smooth with respect to the noise
level �, our MSK scheme is able to regularize the interpolant. Consider � < K(f, �).
These cases correspond to small noise levels that are negligible to our regularization
technique. As shown in section 5 when � = 0, while 
� = 0 is the theoretical optimizer
to (3.15), we would numerically obtain an approximation 
LC to 
� such that 0 <

LC < mach (machine epsilon). In these cases, we set the approximation 
LC =
�mach to �lter out extremely small frame coe�cients for e�ciency.
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4. L-curve method. The theoretical existence of 
� does not help us pinpoint
its whereabouts. Choosing an optimal 
�, or an approximation 
LC , is a separate
topic that will be considered in this section.

The L-curve (LC) method was investigated by Hansen and O�Leary [16] to regu-
larize ill-posed systems under di�erent values of the regularization parameter 
. The
knowledge of the noise level � is not necessary. Vogel [32] shows that the L-curve
regularization parameter selection method may fail to converge for a certain class
of problems. In our numerical experiments, however, we �nd that the LC method
provides a stable algorithm to �nd the regularization parameter 
.

Our version of the LC method is derived from simplifying both measures in (3.1)
and (3.2) for the ease of computation. First, we order the frame coe�cients cj

k by
de�ning an ordered set,

{
�
��, 	�

�
}nz(cj

k)
�=1 =

�� ���cj
k�(2j � k)

���
2

L2(�)
, R

�
cj

k�(2j � k)
��

: cj
k �= 0

�

0�j�u, k�Zd

such that 	�/�� forms a monotone nondecreasing sequence where nz(•) returns the
number of nonzero elements in the set and R(•) is the roughness measure in (3.2).
Then we compute a �nite set of points in R2 by

L =

��

�s�,X�2
��

�
p�

�=0

��,
p�

�=0

	�

�

� R2, p = 0, 1, . . . , nz(cj
k)

�

,

which is known as the L-curve.
A suitable regularization parameter 
LC is the one near the corner on a log-

log scale of the L-curve [15]. In numerical computation, �nite di�erence schemes
are applied to (the log-values of) these discrete points in order to approximate the
curvature of the L-curve. The point with maximum curvature will be labeled as the
corner of the L-curve. For numerical e�ciency, we impose an extra condition that


LC 	 mach.

We show some results with the L-curve method in Figure 4.1. The L-curve is
shown in Figure 4.1(a) with a corner at 
LC = 5.3761e-12. This value is chosen from
the curvature of the L-curve, see Figure 4.1(b).

The number of nonzero frame coe�cients in the regularized interpolant s� is
1735 and 520 for 
 = mach and 
 = 
LC , respectively. Figure 4.2(a) for mach and
Figure 4.2(b) for 
LC show all |cj

k| and label the selected rj
k in boldface dots. All cj

k
are ordered by levels, from level-0 on the left to level-u on the right. In both cases,
only the cj

k in the lower few levels with large absolute values are chosen.

Table 4.1
MSK(3, 3) frame coe�cients among all levels on a 41 × 41 uniform grids for section 5.1.

Level-j 0 1 2 3 4 5 6 7
|cj

k| > 0 64 144 400 1296 4624 17424 26896 26896

|cj
k| > �mach 56 121 361 1225 4489 17161 24025 24025

|rj
k| > 0 by �LC 49 121 350 0 0 0 0 0

|rj
k| > 0 by �mach 49 121 361 1204 0 0 0 0
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1792 LEEVAN LING

(a) L-curve in log-log scale. (b) Corner of L-curve.

Fig. 4.1. L-curve method applied to MSK(3, 3) in section 5.1 with � = 1.018×10�3 on a 41×41
uniform grids.

At �rst glance, the computation of all nonzero cj
k may look tremendous. In

fact, we are showing all 77744 nonzero frame coe�cients in Figure 4.2 but some are
extremely small, e.g., 2.4e-42. If we are only interested in frame coe�cients whose sizes
are larger than machine epsilon, we are looking at 71463 coe�cients. The distribution
of the frame coe�cients among all levels are in Table 4.1. After regularization, the
maximum evels appears in {rj

k} are lu� = 2 for 
 = 
LC and u� = 3 for 
 = mach;
readers may already see how this can be computed e�ciently.

Our L-curve only makes use of the local property of each function cj
k�(2j • �k).

Pretruncation does not a�ect the �nal outcome. One could pick an intermediate
value 0 < � < u and compute frame coe�cients up to level-� only. A safeguard of this
approach is that the maximum level appearing in the regularized interpolant should
be strictly less than �. If this is not the case, one can compute the frame coe�cients
for level-(�+1) and reapply the LC method.

100
10�40

10�20

100

(a) 1735 frame coe�cients for � = �mach.

100
10�40

10�20

100

(b) 520 frame coe�cients for � = �LC .

Fig. 4.2. Selected frame coe�cients {rj
k} � {cj

k} corresponds to Figure 4.1.
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5. Numerical comparison and demonstration. We demonstrate some bi-
variate examples in this section. All codes are written in MATLAB. Random noise is
generated by the built-in routine RAND with STATE reset to 0. Generated random
numbers are scaled to [�1, 1] and multiplied by the noise level �. For the problem
in R2, tested values for � are 2 or 3, see Assumption 2.3. The MSK �� in (2.3)
is constructed with the univariate B-spline of order m de�ned on the knot sequence
[0, 1, . . . , m], denoted by bm, see [9],

�(x, y) = bm(x) bm(y) such that x, y � R, m = {3, 4},

that ful�lls all assumptions in the previous discussion. Values of � and m are speci�ed
by the notation MSK(m, �) throughout the section.

5.1. Comparison with TPS-based method. The recent work of Wei, Hon,
and Wang [34] uses the thin plate spline (TPS) to compute numerical derivatives. The
presented TPS-based method requires triangular partitions of data points; the authors
claim that the method can become truly mesh-free with additional assumptions. Two
regularization parameters are studied in the same paper: 
1 = �2 obtained by a
priori rule and 
2(�) obtained by Morozov�s discrepancy principle. We denote them
by TPS-AP and TPS-DP, respectively, hereafter. TPS-DP is reported to be the more
e�ective and stable method between the two.

The clear advantages of MSK with L-curve are that it is already in a truly mesh-
free setting for any dimension and it does not require any a priori knowledge about
the noise level �. Moreover, resultant linear systems of MSK in (2.5) are sparse. To
make the comparison as fair as possible, we compare the accuracies of all methods on
uniformly distributed grids among many given examples in their papers. Please be
reminded that there are still some di�erences between the problem settings here and
in [34].

Let � = [�2, 2]2. The noise levels are chosen to be the reported � = 1.018e-3 and
� = 1.020e-2. The unknown function to be approximated is given by

f(x, y) = sin(� x) sin(� y) exp(�x2 � y2), (x, y) � R2,

with �f�L2(�) � 0.387 and ��f�L2(�) � 4.235. Since the number of evaluation points
is not reported in [34], we use the same root mean square (RMS) errors on a 100×100
uniformly distributed grids x


i � � to measure accuracy for interpolation,

�(s�) =
1

100

�
1002�

i=1

(s�(x

i) � f(x


i))
2

�1/2

,

and for gradient approximation,

�(�s�) =
1

100

�
1002�

i=1

��s�(x

i) � �f(x


i)�
2
�2

�1/2

.

Table 5.1 shows the RMS errors for both tested noise levels on a 21 × 21 uniform
grids. The di�erences in error should not be overinterpreted as they are in�uenced
by the regularization parameter 
LC and the noise function 	. It is more important
to note that all choices of m and � result in the same order of accuracy. Under this
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1794 LEEVAN LING

Table 5.1
Comparison to TPS-based methods on a 21 × 21 uniform grid with di�erent noise levels.

� = 1.018 × 10�3 � = 1.020 × 10�2

Method �(s�) �(�s�) �LC �(s�) �(�s�) �LC

TPS-AP 0.0028 0.0195 � 0.0699 0.3736 �
TPS-DP 0.0019 0.0157 � 0.0100 0.0659 �
MSK(3,2) 0.0011 0.0072 1.5543e-11 0.0042 0.0310 4.4899e-11
MSK(3,3) 0.0010 0.0075 9.1833e-12 0.0040 0.0260 5.1559e-13
MSK(4,2) 0.0014 0.0071 1.0479e-10 0.0042 0.0300 8.4749e-11
MSK(4,3) 0.0009 0.0048 7.4298e-11 0.0039 0.0242 7.8693e-13

Table 5.2
MSK(3, 2) RMS errors and �LC on 1609 unstructured data point with di�erent noise levels.

� �LC nz(rj
k) �(s�) �(�s�)

0 � = 0 100921 8.5518e-5 1.5045e-3
0 2.2204e-16 6081 1.0032e-4 1.2479e-3

1e-5 2.2204e-16 6076 1.0066e-4 1.2511e-3
1e-4 2.2204e-16 6158 1.1065e-4 1.4226e-3
1e-3 2.1649e-13 1800 4.8194e-4 4.8393e-3
1e-2 2.2794e-11 1678 3.4443e-3 3.8510e-2
1e-1 3.0885e-10 1633 3.4145e-2 3.8377e-1

point density, MSK shows competitive results and seems to outperform TPS.
For 1609 unstructured data points, see Figure 5.1(a), with minimum separation

distance hX,min = 5.092e-2 and �ll distance hX,� = 1.317e-1. We apply MSK(3,2) to
various noise levels. Results are listed in Table 5.2 and graphically demonstrated in
Figure 5.2. All regularization parameters are chosen by the LC method except the
�rst row of Table 5.2: 
 = 0 indicates the result of the full interpolant without regu-
larization. Our algorithm runs in the same way as if the data points were structured.
The number of selected frame coe�cients is listed under the column of nz(rj

k) in the
table.

Comparing the two noise-free results in Table 5.2, the interpolation error when

 = 0 is the smallest since the regularization error no longer exists. On the other
hand, due to the presence of rounding errors, the regularized interpolant gives better
approximation to the gradient than the unregularized full interpolant. In fact, this is
true up to � = 1e-4. When � 	 1e-3, we have 
LC > mach and our regularization
technique is functioning in these examples; see Theorem 3.3. Overall, the error pro�le
is extremely similar to the TPS-DP, see [34, Figure 5]. The monotonic trend shown
in 
LC suggests that the proposed LC method is capable of balancing the increasing
noise with an increasing regularization parameter.

Our MSK scheme performs equally well when the noise function 	 is smooth.1
For completion, MSK(3,2) results in �(s�) = 0.0025 and �(�s�) = 0.0046 on a 41×41
uniformly distributed grid. Whereas, TPS-DP results in �(s�) = 0.0035 and �(�s�) =
0.0159.

5.2. Derivative of a landscape data. We demonstrate another example with
a set of landscape data [11]; see Figure 5.1(b). The data set, containing 1669 data
points, is processed by MSK(3,2) and MSK(3,3) in order to estimate its derivatives.

1�(x, y) = 0.005 sin
� 1

2 �x
�
sin

� 1
2 �y

�
, see [34, Table 1].
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�2 �1 0 1 2
�2

�1

0

1

2

x

y

(a) 1609 unstructured points.

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

x

y

(b) Landscape data points.

Fig. 5.1. Data points distribution for examples in sections 5.1 and 5.2.

Unlike the previous example, data points are unevenly distributed and there is no
exact solution for this example. Hence, the full interpolant s�,X will be used for
comparison. We only demonstrate the x-derivatives; results for the y-derivatives are
similar and are omitted here.

The full interpolant s�,X and its x-derivative are shown in Figure 5.3. As we see
in section 3.1, the presence of noise does not introduce instability to the interpolation
problem. On the other hand, we observe serious oscillations in the derivatives of the
full interpolant; see Figure 5.3(b).

The MSK(3,2) regularized interpolants with 
LC = 5.0626e-14 (566 nonzero frame
coe�cients) are shown in Figure 5.4. The regularized interpolant in Figure 5.4 is very
similar to Figure 5.3 but with less local structures. The derivative of the regularized
interpolant in Figure 5.4(b) clearly reveal the local features of the landscape.

(a) RMS errors. (b) �LC .

Fig. 5.2. RMS and �LC errors as functions of the noise level �.
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(a) Full interpolant s�,X .
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(b) x-derivatives.

Fig. 5.3. Full interpolant for the landscape data and its x-derivatives.

The MSK(m,�) method assumes the unknown function f lies in N� and LC
regularizes the interpolant accordingly. If � is too large, the MSK �� is very smooth
and the MSK scheme will over-regularize the interpolant. Fortunately, nothing will
become unbounded. To see this, if we can write the unknown function f �� N� as
f = f1 + f2 where f1 � W �,2 and f2 � L2(�) � C(�), then our results in section 3.1
apply consequently. As an example, Figure 5.5 shows the regularized interpolant of
MSK(3,3). The regularization parameter is 
LC = 3.8654e-12 resulting in 122 frame
coe�cients. The resulting regularized interpolant in Figure 5.5 is much smoother than
that of MSK(3,2) in Figure 5.4. In fact, it seems too smooth for the landscape data.

For rough data from a function f �� N�, we shall treat 
LC as an upper estimated
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