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NRxax SIMULATION OF MICROFLOWS WITH SHAKHOV MODEL*

ZHENNING CAIf, RUO LI¥, AND ZHONGHUA QIAO$

Abstract. In this paper, we propose a method to simulate the microflows with Shakhov model
using the NRzx method developed in [Z. Cai and R. Li, STAM J. Sci. Comput., 32 (2010), pp. 2875—
2907; Z. Cai, R. Li, and Y. Wang, Commun. Comput. Phys., 11 (2012), pp. 1415-1438; Z. Cai, R.
Li, and Y. Wang, J. Sci. Comput., to appear|. The equation under consideration is the Boltzmann
equation with force terms, and the Shakhov model is adopted to achieve the correct Prandtl number.
As the focus of this paper, we derive a uniform framework for different order moment systems on the
wall boundary conditions, which is a major difficulty in the moment methods. Numerical examples
for both steady and unsteady problems are presented to show the convergence in the number of
moments.
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1. Introduction. In kinetic theory, the degree of rarefaction of a gas is often
characterized by the dimensionless Knudsen number Kn = \/L, where ) is the mean
free path and L is the relevant characteristic length. The classic Navier—Stokes—
Fourier (NSF) equations are accurate only when Kn < 0.01. However, the ongoing
miniaturization of technical devices requires modeling of gas in microscopic channels,
for which the characteristic length L is so small that even under normal density and
temperature, the Knudsen number is beyond the available region of NSF equations.
Meanwhile, in the transitional regime (0.1 < Kn < 10), the traditional no-slip wall
boundary condition is no longer valid. In order to match the physical experimentation,
the interaction between wall and gas should be carefully conducted. We refer the
reader to [13] for more details.

For microflows, it is known that the Boltzmann equation with Maxwell bound-
ary conditions [15] is able to accurately describe the flow state. However, from the
computational perspective, the cost for solving the Boltzmann equation directly is
unacceptable in the general case. Grad’s pioneer work [7] extended Euler equations
to a 13-moment system, which opened a new way for modeling rarefied gas flow called
the moment method. However, it was discovered by Grad himself in [8] that this
system fails to give smooth shock profiles when the Mach number is larger than 1.65.
To remedy this drawback, some authors constructed parabolic systems similar to the
NSF equations, such as the Jin-Slemrod [12], COET [17], and R13 [9, 24] methods.
Concurrently, increasing attention was given to systems with more than 13 moments
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(see, e.g., [29, 21]). As a combination of these two directions, R20 and R26 equations
were, respectively, studied in [16] and [11]. In [4], a general method for numerically
solving the regularized moment equations of arbitrary order was proposed, and it was
improved in [5, 6] and abbreviated as the NRxz method in [6] for convenience. On
the other hand, the boundary condition for the moment methods is a major obstacle
for applications of moment methods in the field of microflows. In Grad’s paper [7],
the basic idea for the modeling of Maxwell boundary conditions in the framework of
moment methods is raised. The idea was also used in [28, 11] for R13 and R26 equa-
tions. However, for general moment equations, a numerical method for processing the
boundary conditions for NRzz method is as yet unavailable.

The major concern of this paper is to supply suitable boundary conditions for the
NRzx method. Before that is done, the NRxxz method is first improved such that it
is able to predict stress and heat flux correctly in the dense case. This is achieved
by replacing the Bhatnagar—Gross—Krook (BGK) collision model [2] used in [4, 5, 6]
with the Shakhov model [19]. Recall that for the BGK model, the collision term
can be analytically solved when using the NRzz method. Similarly, an analytical
solution for each moment can also be obtained when using the Shakhov model. At
the same time, the force term is also applied to the NRzz method, and this term
affects only the momentum equation, which is trivial when a splitting method is
employed.

As for the wall boundary conditions, we follow the idea of Grad [7] and try to
approximate the Maxwell boundary condition using a moment method. The Maxwell
boundary condition is a linear combination of specular reflection and diffusive re-
flection. According to Grad’s theory, only the moments of odd order in the normal
microscopic velocity are controlled by boundary conditions. These moments for the
specularly reflective part vanish. For the diffusive reflection, the incidence part and
the emergence part are considered separately. For the incidence part, one need to
calculate the moments of a distribution cut off by a half space. Since the distribution
is expressed by a finite expansion of Hermite series, the cut-off turns out to be quite
intricate. We eventually derive a simple recursive formula to obtain these moments
with careful investigation into the detailed expressions. The obtained formula only
slightly increases the computational cost. For the emergence part, which is a half
Maxwellian, the moments are obtained by direct integration, and the result is also
given in a recursive form. The overall boundary condition is the summation of both
the specular part and the diffusive part, which is rearranged into a simple formula-
tion. It is numerically implemented by first constructing a set of moments satisfying
the boundary conditions, and then approximating the flow state in the ghost cell
with a first order extrapolation of each moment. Thus, boundary conditions for the
NRzx method of all orders are collected into a uniform framework, which avoids sepa-
rate and involved implementation for different systems with sophisticated expressions
[26, 28, 11].

A number of numerical examples are presented to show the validity of the bound-
ary conditions. Both steady and unsteady problems are studied. Numerical simu-
lations up to a 455-moment system are carried out. The classic symmetric planar
Couette flow and force-driven Poiseuille flow are investigated as examples for steady
problems. All the numerical results exhibit the convergence of the NRxx method as
the number of moments increases.

The layout of this paper is as follows. In section 2, we give a brief introduction to
the Boltzmann equation and the NRxx method. In section 3, the Shakhov collision
model and the force-induced acceleration terms are coupled with the NRxz method.
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In section 4, the derivation of boundary conditions are carried out. Numerical exam-
ples are shown in section 5, and some discussions on the validity and accuracy of the
NRzx method are given in section 6. Finally, we make some conclusions in section 7.

2. The Boltzmann equation and the NRxx method. The Boltzmann equa-
tion is the basic equation in kinetic theory, where a distribution function f(¢,x,&)
is introduced to provide a statistical description for the motion of molecules. Here
t € Rt is the time, and x,£& € R? are the position and velocity of particles. The
Boltzmann equation reads

0

(21) & Vaf + F-Vef = QU )

where F' is the acceleration of particles caused by external forces. The detailed ex-
pression of the collision term Q(f, f) is not presented here due to its complexity, but
we stress that Q(f, f) contains a five-dimensional integration, which causes great dif-
ficulty in the numerical simulation. Instead, simplified collision models such as the
BGK model [2] and the Shakhov model [19] are adopted in this paper. These models
read as follows:

1. BGK model:
of

(22) € Vaf +F Vef =~ (fu— f).

2. Shakhov model:

—_ I‘ — . — 2
(2.3) %+§-me+F-V§f:%{{l+(l ngz w)-q <|€ 9“' _5>] fM—f}.

Here p, u, 6, and q denote the density, mean velocity, temperature, and heat flux,
respectively, and these macroscopic variables are related to the distribution function

I by

p=/RSfd€, u:%/Rszds,

(2.4) 1 1
0= [ le-uPrae a=3 [ le-uPle-wrde

3p R3 2 R3
Besides, 7 is the relaxation time and fj; is the local Maxwellian, which can be ana-
lytically formulated by

__r € — ul?

In (2.3), Prstands for the Prandtl number, which is a constant. One can easily observe
that if Pr = 1, then the Shakhov model reduces to the BGK model, which agrees with
the common knowledge that the BGK model predicts an incorrect Prandtl number 1.

The NRzz method is a numerical tool for solving large moment equations. It
originated in [4] and was simplified in [5]. The basic idea is to expand the distribution
function f into the Hermite series

(2.6) Fta &) = 3 fult, )Mo (5‘“7(”’)) ,

a€eN3 e(t’ m)
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where Hg . is the basis function defined as

Nor-

and He,, are the Hermite polynomials

3
1, agt 2
(2.7) Ho o(v) = H —9‘dT+Head (vq) exp (—U—d) Va € N?,
’ V2T 2

(2.8) Hen(z) = (—1)" exp (g) ;72 exp (—%2) .

For convenience, we let Hep(z) =0 if n < 0. Thus Hg o (v) is zero when any of the
components of o are negative.

With the expansion (2.6), the coefficients f, can be considered as a set of infinite
moments, and we have the following relations:

3
fo=p, feo=0, > fo, =0,
d=1
(2.9) )
Oij = fecress Oii = 2f2es, G =2fse, + Y Faeaters
d=1

where i,7 = 1,2,3 and i # j, and oy; is the stress tensor or pressure deviator, which
can be deduced from the distribution function f by
(2.10)

3
1 . .
0ij = Dij — 55@ E paa with  p;; = /Rg (& —wi)(§ —uy) fdE, i,j=1,2,3.
d=1

In order to implement (2.6) numerically, a positive integer M > 3 is chosen and
only the coefficients { fa(t,®)}aj<ar are stored. Due to the absence of higher order
moments, the resulting moment system is not closed. According to [5], the (M + 1)st
order moments are approximated by

(2.11)
D

- 1 D 3(p0) 0 ou; D afafej
fa—’r{;z axj fozfej"'B JZa—xj ;fozerd_Z 0 895]

Jj=1

2. /o 1 96
d
+ ; <87j0fa—ed—ej + 5%(0fa—2ed—ej + (O‘J =+ l)fa—2@d+ej)> ‘| }

Here f, is taken as zero when any of a’s components are negative. The numerical
scheme for the force-free BGK model has been constructed in [6] based on the finite
volume scheme with linear reconstruction and the fractional step method. Suppose
the problem is one-dimensional and the grid is uniform with cell size Az. We denote
the cell centers as xj, and then a full time step of the scheme can be sketched as
follows:
1. Determine the time step size At.
2. Reconstruct the first Mth order moments for the distribution functions on
cell boundaries .+, /o with a conservative linear reconstruction.
3. Get the (M +1)st order moments for the distribution functions on cell bound-
aries with a direct discretization of (2.11).
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4. Apply the HLL scheme to solve the purely advective equation 0, f+&- Vg f =0
over a time step of length At.
5. Analytically solve the pure collision equation of the BGK model 0, f = (far —
f)/7 over a time step of length At.
We refer the reader to [4, 5, 6] for details of the algorithm. Here we only note that
step 4 is nontrivial since two distributions cannot be added up directly, and in step
5, the reason why the collision-only equation can be directly solved is that f; can be
expressed in the Hermite series {Hg o} trivially as far = foHe.o((& —u)/V0).

3. The NRzz method for the Shakhov model with force terms. As is
well known, the Prandtl number for monatomic gases is around 2/3, while the BGK
model gives a Prandt]l number 1, which causes incorrect prediction of the stress tensor
oi; or heat flux q for a dense gas. As a remedy, the Shakhov model was introduced in
[19] as a generalization of the BGK model. The difference between these two models
has been investigated in [31, 14]. In this section, we extend the NRzz method in [5]
to the Shakhov model, and the force terms in (2.3) are added.

3.1. The governing equations. The moment system for the Shakhov model
(2.3) with moment set {fo(t,2)}aj<a Will be deduced here. As in [5], the strategy
is to expand (2.3) into Hermite series, and then match the coefficients for the same
basis functions. In order to simplify the notation, we define

_F e
(3.1) B=F V¢f,

o- i St (5 )]

It has been deduced in [5] that the Hermite expansion of A is
(3.2)

Ae Z { <8fa Z 8Udfa ot ;Zizf"‘ 2ed>

aeN3

+Z

afa €j 8foz 8f0£+@j
( 5 gy, Tt axj>

ou
+ Z 83;1 afafedfej + ujfozfed + (a] + 1)f0t7€d+€j)
J

1 06

2 a (0.]004—2ed—e]~ + ujfoz—2ed + (aj + 1),fo¢—2ed+ej)‘| }He,a (%) .

Rt

Using the differential relation of the Hermite polynomials, we have

Thus the Hermite expansion of the force term B can be easily deduced as

(3.4) Y Fufa ot (57“)

a€eN3 d=1
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The expansion of the collision term C' can also be obtained by direct calculation. The
result is

1|1-Prag E—u E—u
(35) C= - 3 qui}[&eﬂr&ﬂ,j <W) - Z faHo o (W)

i=1j=1 o] >2

Putting (3.2), (3.4), and (3.5) into the Boltzmann-Shakhov equation A+ B = C and
extracting coefficients for all basis functions, with a slight rearrangement, we get the
following general moment equations for the Shakhov model:
(3.6)

3

afa Ou du 1{o0 S 90\ <
Z d—’—z j d_Fd fa78d+§ a"‘zuj% Zfa*%id
d= j=1 J ) a=1
2 3ud
+ Z awj (ofa eq—ej + (aj =+ 1)foz—ed+ej)
j,d=1

0
+ a— (ofa 2eq—e; + (Oéj + 1)fa—26d+e]~):|

| =

0
Lj
N (game Bfa+( oy Here) 1 1—Pr§:5”()__5( Y
=1 0 ja O T 5 v i

J i,5=1
where 0;;(c) and d(«) are defined by
o1 ifa=e + 2ey, 1 if|a] > 2,
(3.7) 0ijle) = { 0 otherwise, 0(e) = { 0 otherwise.

Now we will explore something more from (3.6). Noting that f., =0Vj =1,2,3,
the following relation can be obtained if we put o = 0 into (3.6):

(3.8) gf@Z( 8f0+f08;3):0.
At J

This is the mass conservation law. If we set a = e4, d = 1,2, 3, the equations are

aud aud 00 0fy <  Oeure; _
(3.9)  fo +Z i< = Fu | + fog +68“ ; 8ja+1) o =0.

This equation can be simplified as

Oug 3 duy & Opja
‘ B j
(3.10) fol =+ E uj—xj Fq | + 2 Bz, =0.

Now we consider the case of |«| > 2. Substituting (3.10) into (3.6), the temporal dif-
ferentiation of u can be eliminated. In order to eliminate the temporal differentiation
of #, we multiply (2.3) by |€ —u|? on both sides and then integrate on R? with respect
to &. The result is

00 <~ 00 2 N ([ 0g;
(3.11) fo E+;uja—$j §Z<a%+z piag— | =
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Note that the force term does not appear in this equation, since
(3.12) [Je-upglae=—2 [ (& -urae—o
0¢;

Thus, the final form of the equations for |a| > 2 reads

(3.13)
3

Ofn 1 & B 0
E_f_;z Pgdfa “ T Z( qJ+Z Piaz )Zfa 2eq

3
+ Z |: ofa eq—e; T (O‘j + 1)f0z—ed+6j)

Jrd

|~

59
+ 8—3’] (efoz 2eq—ej + (aj + 1)fa28d+ej):|

& 3
5fa €j afa ) 8fa+€j _ 1 1 — PI' -
+ 2 ( oz + u; 5 + (o + 1)75% = 5 Z §ij(a)gi — () fu -

ij=1

In order to get a closed system, we collect (2.11), (3.10), (3.11), and (3.13) with
< |a] € M together. Then the governing system for the NRaxxz method with the
Shakhov model and force terms is formed.

Remark 1. In the Shakhov model, (2.11), the prediction of f, with |a] = M +1
derived for the BGK model is still available. In [5], (2.11) is deduced in the following
two steps:

1. Determine the orders of magnitude for all f, using Maxwellian iteration.
2. For |a] = M + 1, remove all the high order terms in the equations containing
only — f,/7 in their right-hand sides.
The Maxwellian iteration can also be applied to (3.13), and after the first iteration
step, we immediately get

(3.14) fa=0(1), la| =2, or a=-e +2¢, i,j=123,

and other moments with || > 2 remain zero. This result is the same as that derived
in the BGK model. We note that for |a] > 3 and o = (1,1,1), (3.13) is just the
corresponding equation for the BGK model. Thus, in view of order of magnitude, the
subsequent iterations are identical to the BGK case. Moreover, when M > 3, which
we have assumed in the last section, step 2 is also identical for both models. Hence
(2.11) still applies for the Shakhov model.

3.2. The numerical approach. The acceleration F' only appears in (3.10) in
the governing system, and thus a splitting method can be applied as follows:
1. Transportation: Solve the force-free Shakhov equation over a time step of
length At.
2. Acceleration: Solve dyu = F' over a time step of length At.
In order to solve the force-free Shakhov equation, another splitting of the convection
and the collision part is needed. For the convection part, the method is identical to
that used in the BGK model. We refer the reader to [4, 6] for details. For the collision
part, since a new collision model is adopted, the procedure is slightly different.
Now we consider the pure collision model, where p, u, and 6 are not changed while
time evolves. Therefore, the collision terms only exist in (3.13) with |a] > 2. Two
cases are considered as follows:
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(1) a = e; + 2ej, i,j = 1,2,3. In these cases, the pure collision equations are
written as
8f€71+2€j o (1 - Pf)%‘ - 5f€7',+2€j
o 57
1-Pr
5

(3.15)

3
2fsci + D fertae, | = ferae, |, H5=1,2,3.

Jj=1

1
T
In the general case, 7 depends only on p and 6. Thus it is invariant in the collision-
only system. This turns (3.15) into a linear ordinary differential system with nine
equations, which can be analytically integrated as
(3.16)

B e R GO R Y G §

where tg denotes the initial time.
(2) Other cases. For other a’s, the collision-only equation is the same as the BGK
model:

Ofa _1
(3.17) o = e
The solution is
t—to
(318) foz(t) = fa(tO) exp (_ = > .

When (3.16) and (3.18) are used in the numerical scheme, we replace t and ¢o with
tn+1 and t,, respectively. Note that when 7 is independent of u, the acceleration and
collision are not coupled with each other, and thus the splitting is applied only once
rather than twice. This makes it more efficient when the Strang splitting is employed.

4. Boundary conditions. In the moment methods, the boundary condition is
always a complicated issue when simulating microflows. As discussed in [7, 20, 26, 28,
11] and the references therein, delicate derivations and careful numerical techniques
are needed for a solid wall. In this section, a numerical way for dealing with boundary
conditions in the NRxx method is introduced, which appears to be uniform for all
orders of moment systems.

4.1. The kinetic boundary condition. In the kinetic theory, the most exten-
sively used boundary condition is the one proposed by Maxwell in [15]. According to
the common hyperbolic theory, for (2.3), the boundary condition is needed only when
& -n <0, where n is the outer normal vector of the boundary. For a point  on the
wall, supposing the velocity and temperature of the wall to be u"V (¢, ) and 6" (¢, x)
at time ¢, Maxwell proposed the following boundary condition:

X (2, &) + (1= x)f(t,z.&), CV-n<,
4. =
(4.1) f(t,x, &) { (). V.m0

where x € [0, 1] is a parameter for different gases and walls, and
(4.2) g =¢-2C% -n)n, CV =¢—-u"(t ),

AL I )

(4.3) fir (t,z, €) = @r07 (t,2))°72 20 (t, )

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Redistribution subject to SIAM license or copyright; see https://epubs.siam.org/terms-privacy

NRzz SIMULATION OF MICROFLOWS WITH SHAKHOV MODEL A347

The functions u" (¢, ) and 6" (¢, z) are prescribed and stand for the wall velocity
and temperature at time ¢ and position , and p"V (¢, ) ensures the conservation of
the mass at the wall, that is,

/ (C" - m)f(t,x, &) dE
(4.4) R
([, @ e [ (@ g ie) <o

For this boundary condition, the normal velocity of gas on the boundary is the
same as the normal velocity of the wall. However, in the case of shear flow, velocity
slip and temperature jump will appear on the boundary.

4.2. The boundary conditions for the NRzxz method. The boundary con-
dition can be derived by taking moments on both sides on (4.1). Before that, we
define

(27T)3/29|a\+3

(4.5) Copo=—F——— VO >0, oecN>.
’ (11!0[2!043!
This definition leads to
(4.6) Jo = Ceﬂ/ 9(€)Hp.o(v) exp(|v|*/2) dv,
RS

where v = (€ — u)/V# and g(€) is a distribution function expanded into Hermite
series as g(§) = > cns GaHo,o(v). In order to simplify the calculation, we suppose
n = (0,1,0)”. Thus, taking moments for (4.1) requires half-space integration

(47) Craa [, 96 Hoalo)exp(of/2) v

Suppose an Mth order system is used in the NRzx method; that is, an (M +
1)st order approximation of the distribution can be obtained through (2.11). This
approximation is directly used in (4.7) so that the integral can be actually worked
out. Concretely speaking, (4.7) is approximated as

(@5) S 6o [ HoalolHos(o)expllof/2)do.
BI<M+1 ¢a>uy’
Since us = u¥ on the boundary, the region of integration can be written as {vy > 0}.

Thus, we need only calculate

(4.9) Io3(0) = Ch.o Ho.o(v)Ho g(v) exp(|v[?/2) dw.

V2 20

The details can be found in Appendix B, and the result is

ag—Pa
(410) Iaﬁ(o) = S(O‘27ﬁ2)9 2 504151 50&353
and
1/2, m=n=0,
) K(1,n—1), m =0 and n # 0,
(4.11) S(m,n) = K(m,0), m # 0 and n =0,

K(m,n)+S(m—1,n—1)-n/m otherwise,
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where

(27T)71/2

(4.12) K(m,n) = -

He,,—1(0)He, (0).
The above deduction leads to the following proposition.

PROPOSITION 1. Suppose g(v) is a function defined on R® which can be denoted
by a finite expansion of Hermite basis functions

(4.13) g(v) = Z gaHo,a(v)

o] <M+1

for some 6 > 0. Let g(v) be a half-space cut-off of g(v) as

(4.14) g(v) = { gf”)’ Zi i gf

Then g can also be expanded into Hermite series as

(4.15) )= Y gslapO)Hoalv),

a€NS |BI<M+1

where I, 3(0) is defined as in (4.10)—-(4.12).
Proof. It is already known in [4] that {#Hg o (v)}aens is an orthogonal basis of the
weighted L? space L?(R3;exp(|v|?/2) dv). Since

/ 15(0)? expl(jo]2/2) dv = / l9(0)? exp([v[2/2) dv
R3 09 >0

(4.16)
/|g Zexp(|v]?/2) dv = Z Ce |9a|? < +00,

o] <M+1

g(v) also lies in L?(R3; exp(|v|?/2) dv). Thus the validity of (4.15) can be naturally
obtained. O

The following proposition depicts the sparsity of I, g.

PROPOSITION 2. If I, g(0) is nonzero, then (1) ax = 1, (2) as = B3, and (3)
ay — By is zero or odd. When a = 3, I 3(0) is equal to 1/2.

Proof. If I, g(0) is nonzero, (4.10) directly gives oy = 81 and oz = f3. If ag — 52
is a nonzero even integer, K (oo, 52) is zero since Hey(0) is zero when n is odd. In
order to prove I, g(f) = 0 in this case, according to (4.10), we need only prove
S(ag, B2) = 0. This can be done by induction as follows:

(1) If g =0 or B2 = 0, both @y and B2 must be even, but one of them must be
positive. Equation (4.11) shows S(aa, f2) = 0 directly.

(2) Suppose S(ag — 1,082 — 1) = 0. Then, according to the last case in (4.11),
S(az, B2) is also zero.

Finally, when a = 3, (4.10) gives I, g(6) = S(aq, f2). The subsequent proof can
also be done by induction, since S(0,0) = 1/2 and K(n,n) =0 for n > 0. O

According to Proposition 2, we find that only ([a2/2] + 1) terms are nonzero in
the summation (4.8). This greatly reduces the computational cost.

Now let us return to the boundary conditions. According to Grad’s theory [7, 9],
in order to ensure the continuity of boundary conditions when y — 0, only a subset
of moments {f, | |a| < M + 1 and «ay is odd} should be used to formulate boundary
conditions. This will be completed in the following three subsections. Later in this
section, for conciseness, the variables t and x are omitted in our statement if not
specified, and all spatially dependent functions are considered to be on the boundary.
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4.2.1. Determination of p". For simplicity, we factorize the right-hand side
of (4.1) into three parts and consider each part independently. Define
(4.17)

w UW 2/uVV .
po={ JHO e wo={ ¢ 22 Ho-wo+ae)

622”27 €2<U2,

Then (4.1) can be rewritten as

(4.18) f(&) = xp(&) +xa(§) + (1 —x)r(&).
Suppose the Hermite expansion of f is
E—u
(4.19) f(§) = faHo.a (—) :
|a§/1+1 \/5

Then ¢(§) can also be expanded into Hermite series according to Propositions 1 and
2 as

(4.20) 00 = Y aton ().

a€ENS

Substituting (4.3) and (4.20) into (4.4), p"" can be worked out as

[M/2]
(4.21) q/owq@ ’/0W Z S(1,2k)0127F fore,,

where the expression of ¢., is derived from (4.10), (4.15), and Proposition 2.

4.2.2. The moments of p and r. Now the moments for ¢(£) have been cal-
culated in (4.20), but we still need to get Hermite expansions of p(¢) and r(&). We

suppose that p(€) can be expanded under the basis {7—[97&((5 — u)/\/g) }a6N3 as
£ - U>

4.22 = aHoo | —— | -

(122 W= 3 mit (55

Then, according to (4.3), the coefficients can be formulated by

W W2 2
- v _JE-uT” il
(423)  pa=Coa /U2<o 207 )72 exp < 5GW ) Ho,o(v) exp < 5 ) dv,

where &€ = Vv + u. Define

1 s41 oo 1 |\/5y - JJ|2

4.24 s(r) = —6072 —————— | Hey ,
(4.24) Js(z) 5!9 v exp ( g es(y) dy

~ 1 e [© 1 |\/5y — JJ|2
4.2 s(r) = —072 —————— | Hey .
@) dw =50 [ e ( V) Hely) dy
Then p, can be expressed by
(4.26) Pa = " Ty (0l = 101) T (0l = 112) o (ul) = 1),
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Jo(z) and J(z) can be calculated recursively as

(4.27) Ju(z) = % (0% — 0)Juca(z) + 2 Ter(2)], s> 15

(4.28) J(z) = % (07— 0)J.2(@) + 2da ()] ~ Haw), s> 1
s—2

(4.29) Hy(x) = —mem 2(x), s$=2

(4.30) Joa(x) =0,  Jo(z) =1,
(4.31) Jo(x) =0, Jo(z) = %erfc ( ;HW) :

CEZ
(4.32) Hy(z) =0, Hy(z) = g exp <_29—W> .

The detailed derivation of (4.27)-(4.32) can be found in Appendix C. Noting that
us = ud’, (4.26) can be further simplified as

(4.33) Pa = pWJoq(u}/V - ul)jazjaz (“IB/V — us),
where
jszl(aw—e)j572_-[:]s; 8217 I:Is:_ (S 1)9Hs 25 5227
s s(s —
(4.34)
GW

Ji=Hy=0, Jo=1/2, H =1/—.
2

Here we emphasize that due to (4.21), all p,’s depend only on { fore, fo<k<ar/2] and
w6, and W .

Now we turn to the moments of 7(£). Note that only the moments with odd s
are needed. However, r(£) is an even function with respect to C3", which causes all
its moments with odd as to vanish. This indicates that r(£) can be simply neglected
when discussing the boundary conditions.

4.2.3. Construction of boundary conditions. Now we take moments with
odd as on both sides of (4.18). Making use of Proposition 2, we have

Kg(oz)

(435)  fa = XPa + Xda = XPa + xfa +X0 Y S0, 20)0°27F foy o —a)en
k=0

where Ky(a) = [(M — a1 — a3)/2]. A simple rearrangement gives

Kg(oz
(4.36) fa= f Pa + Z (v, 2k) g2/2= ¥ fo +(2k—az)es

Equations (4.36) with |a| < M + 1 and odd a2, together with us = u’, form the
boundary conditions of the dynamic moment equations. Recalling

(437) Pa :pa(uvuwaaaawa f07f2€27 B ~7f2]'M/2]eg)a
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one can find that the terms which appear on the left-hand side of (4.36) never appear
on its right-hand side. Thus, if an arbitrary distribution function denoted as (4.19) is
given, we can define a functional F* which maps (4.19) to another distribution f°(¢):

(4.38) PO= X . ().
la|<M+1 Ve

b

where u® = (uy,ud u3), 0® = 6, and

v Jfa if ap is even,
(4.39) Ja= { the right-hand side of (4.36) if a is odd.

Thus f° satisfies the boundary condition. The mapping F° will be used in the nu-
merical implementation of boundary conditions.

At the end of this section, we prove that u® and #° are the corresponding velocity
and temperature of the distribution function f*(&). This is equivalent to the following
proposition.

PROPOSITION 3. If a distribution f(&) with expression (4.19) satisfies

3
(440) fe1 :f€2:f€3:Zf2€d:07
d=1
then fb = F°(f) with expression (4.38) also satisfies
3
(4'41) é)l = 52 = gf; = Zfé)@d = 0'
d=1
Proof. Equation (4.39) gives

(442) gl :f617 53:.]0633 fged:erM d:13273

Thus it remains only to prove f2 = 0. According to (4.30), (4.33), and (4.34), pe,
can actually be expressed by

. . . oW
(4.43) pe, = p"V Jo(u)” —ur) i do(u —us) = p"V [(0" —0)J_1 — Hi] = —p"/ 7
Since Ka(ez) = [M/2], the above equation, together with (4.21) and (4.36), immedi-
ately gives fo =0. O

4.3. Numerical implementation of boundary conditions. In a finite vol-
ume scheme, the boundary conditions are often applied by ghost cell techniques.
Suppose the distribution function of the cell on the boundary is denoted as (4.19).
The distribution function of the ghost cell can be constructed as follows:

1. Apply F? on f(€) and suppose the result is (4.38).
2. Construct the ghost cell distribution as

(4.44) peete) = 3 (2f§—fa)7-le7a(

o] <M+1

SR
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Now we consider the time complexity of this operation. Suppose Ny = (M +
2)(M + 3)(M + 4)/6 is the number of moments involved in the boundary condition.
Obviously, (4.44) requires O(Nys) operations. For the calculation of F(f), we list
the cost as follows:

1. Half-space cut-off of f (4.20): O(M Nys) operations.

2. Calculation of p" (4.21): O(1) operations.

3. Calculation of p, (4.33): O(Nys) operations.

4. Evaluation of (4.39): O(Nas) operations.
Thus, the total computational cost is O(M Ny ), while the time complexity is O(Nar)
if no boundary condition is considered. However, since this procedure takes place
only on the boundary, it produces little increment of the computational time in real
computation.

Remark 2. Proposition 3 indicates the conservation of mass on the boundary
when using the HLL numerical flux as in [6]. One can find that when v}’ = 0, which
means a special reference coordinate system is used, the minimum and maximum
signal speeds in need of the HLL flux are opposite numbers. Together with p8host = p,
ug""" = —uy, the mass conservation of the HLL scheme follows naturally.

5. Numerical examples. In this section, three numerical examples are pre-
sented to validate our algorithm. In all these examples, a hard sphere gas is assumed,
for which the relaxation time is defined as

5 [2m Kn

(5.1) =15\ 5

following [3], where Kn is the Knudsen number. The CFL number is always 0.95. And
for all the tests, the wall is set to be a fully diffusive one (x = 1) with 8" = 1. The
POSIX multithreading technique is utilized in our simulation, and at most 8 CPU
cores are used.

5.1. The beginning of a shock wave’s formation. The first example is a
simulation of the interaction of a coming flow with a diffusive wall. The computational
domain is [—5, 0], and the global Knudsen number Kn used in (5.1) is set to be 0.5.
The left boundary is a free boundary, and the right is a stationary diffusive wall
parallel to the xz-plane. The initial condition is given by

(5.2) po(y) =1.0, wo(y) =(0,05,0)", 6o(y) =10  Vye[-50]

and the gas is in equilibrium everywhere. A leftward shock wave will form after a
sufficiently long time. Here we stop the computation at ¢t = 1.0 in order to check the
validity of the boundary condition. For a reference solution, we solve the Shakhov
equation (2.3) directly using a conservative discrete velocity method (CDVM) in-
troduced in [27]. For the computation of both the NRxz method and CDVM, a
uniform mesh with 500 grids is used to discretize the domain. For the CDVM, the
computational velocity domain is [—10, 10] x [—10, 10] x [—10, 10] and discretized by
50 x 100 x 50 grids.

Figures 1 and 2 are the results for the CDVM and NRzz method for M = 3
to 12. Only the part y € [—3,0] is shown since all variables for the remaining part
are almost constant. Since a large Knudsen number is considered, predictions from
lower order moment equations give very large deviations, so the necessity of high
order moment theory is obvious. As the number of moments increases, all profiles get
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(e) M =7

F1G. 1. Density and temperature plots for the problem in section 5.1. The left axis is shown by
the dashed lines, and the right azis is shown by the solid lines (continued on next page).

closer and closer to the results of the CDVM. When M reaches 11, the density and
temperature plots agree with the CDVM results very well, and the errors in o295 and
g2 are much smaller than the low order cases, though the errors are still observable.
It is reasonable that higher order moments converge more slowly than lower order
moments, which is also observed in [11].

5.2. Planar Couette flow. The planar Couette flow is a classic benchmark test
in the field of microflows. The moment method for this problem has been investigated
in many papers such as [25, 18, 26, 10, 28, 11]. Here we consider the symmetric Couette
flow. The gas lies between two plates parallel to the zz-plane. Two plates move in the
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Fi1c. 1 (continued). Density and temperature plots for the problem in section 5.1. The left axis
is shown by the dashed lines, and the right axis is shown by the solid lines.

opposite direction with constant velocities within their own planes. A steady state
can be obtained for a fully developed flow.

In this example, the computational domain is [—0.5,0.5]. The velocities of the
left and right plates are

(5.3) uy = (-0.6296,0,0)", wul = (0.6296,0,0)7.

The initial state is a global equilibrium with

(5.4) po(y) =1, wo(y) =0, bo(y)=1  Vye€[-0.5,0.5].

The steady state can be achieved if the computational time is sufficiently long. Also,
both the NRxx method and CDVM are applied to this problem. Three different
Knudsen numbers, Kn = 0.1,0.5, 1.0, are investigated. For the CDVM, the computa-
tional velocity domain is chosen as [—10,10] x [—10, 10] x [-10, 10], and 50 x 50 x 50
grids are used. Here we note that such a discretization may not produce numerical
results accurate enough to be the reference solution, but the computation is already
extremely slow.

Numerical results for Kn = 0.1 are shown in Figures 3 and 4. In this case,
most lines agree with each other. The convergence in the number of moments can
be observed; however, due to the numerical error from both the NRxx method and
CDVM, small deviations between the CDVM results and the possible limit of the
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F1c. 2. Stress and heat fluz plots for the problem in section 5.1. The left axis is shown by the
dashed lines, and the right azis is shown by the solid lines (continued on next page).

NRzx method can be found. One can disclose that lower order NRzz results deviate
from the CDVM results more than higher order ones. This correctly reflects the
behavior of the NRzxz method under low Knudsen numbers, as is also found by [4].
Now a larger Knudsen number Kn = 0.5 is considered, and the results are given
in Figures 5 and 6. In this case, the results for odd and even orders evidently break
into two groups, and they approach closer to the CDVM results separately. This can
be found also in Figures 1 and 2. For p and 6, the even group gives better results,
while for o192 and o022, the odd group is more accurate. The reason remains to be
further explored. The two subfigures in Figure 6 clearly exhibit the convergence. In
[28, 11], it was discovered that the normal stress o9 is difficult to match by R13 and
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F1a. 2 (continued). Stress and heat fluz plots for the problem in section 5.1. The left axis is
shown by the dashed lines, and the right axis is shown by the solid lines.

R26 equations. Here one may find that when the number of moments is increasing,
the quality of the approximation to this quantity is improved continuously. In the
case of M =9, the profile agrees with the CDVM result quite well, and when M = 10,
the relative difference is below 5%.

The severe case Kn = 1.0 is also studied. Similar results with the case Kn =
0.5 are obtained in Figures 7 and 8, while the magnitude of the difference is much
larger. For o99, now the relative difference for M = 9 is about 10%. But the rate of
convergence is still encouraging—compared with the result with M = 4, the error is
halved.

5.3. Force-driven Poiseuille flow. This is another example which is frequently
used to verify the boundary conditions of moment methods [28, 11]. Similarly to
the Couette flow, the gas also lies between two parallel plates, but the plates are
stationary and an external constant force parallel to the plates causes the flow to
reach a nonstationary steady state. In our settings, the computational domain is
again [—0.5,0.5], and the Knudsen number is set to be 0.1. The force introduces an
acceleration
(5.5) F = (0.2555,0,0)".

The initial condition is the same as the Couette flow. These settings are the nondi-
mensional form of the test in [32], where the result of direct simulation of Monte Carlo
(DSMC) is carried out, and this example is also considered in [30, 11]. Since it is quite
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(b) Temperature, 0

Fia. 3. Density and temperature plots for the planar Couette flow with Kn = 0.1.

difficult for us to exert the force term in CDVM, we have to use the DSMC result in
[32] for comparison in spite of the difference in the collision model.

The numerical results are presented in Figures 9 and 10. For all the profiles,
the convergence in the number of moments is legible, while the NRxx results do
not converge to the results of DSMC. This may be due to the difference between the
collision terms of the Shakhov model and DSMC. Taking the temperature plot (Figure
9(c)) as an example, the result of M = 3 matches the DSMC result best since, when
M = 3, the collision term of the Shakhov model is almost the same as that of the
DSMC. When the number of moments increases, the collision term gradually deviates
away from DSMC’s. Although the accuracy of collision models is not the topic of this
paper, two results are very close quantitatively, which indicates the correctness of the
boundary conditions and the Prandtl number of the NRxx method.
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Fic. 4. Shear and normal stress plots for the planar Couette flow with Kn = 0.1.

6. Some discussions on the NRxx method.

6.1. Order of accuracy. For the macroscopic equations, a basic quantity de-
scribing its ability is the order of accuracy with respect to the Knudsen number. The
following definition of order of accuracy can be found in the textbook [22]:

A set of equations is said to be accurate of order \g, when the pressure

deviator o;; and the heat flux q; are known within the order O(EAO).
Here ¢ is a small parameter proportional to the relaxation time 7. As we have discussed
in Remark 1, in the view of order of magnitude, the process of Maxwellian iteration for
the Shakhov model is identical to the BGK model. Hence, for an arbitrary M > 3, the
leading order term of f, with || = M + 1 is known from the corresponding moment
equations (see [5] for details). And it has been deduced in [5] that f, ~ O(r[lel/3])
for all |a] > 4. Thus, from the analytical form of the moment equations (3.13), we
immediately have that f, with || = M is known up to ([(M + 1)/3] + 1)st order.
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Fic. 5. Density and temperature plots for the planar Couette flow with Kn = 0.5.

Subsequently, f, with |a| = M — 1 is known up to ([(M + 1)/3] + 2)st order, and
finally, fo with |a| = 2 is known up to ([(M +1)/3] + M — 1)st order. The general
result is the following.

PROPOSITION 4. For the moment equations described in section 3.1, f, has
([4(M +1)/3] — |a|)th order accuracy if 2 < |a| < M.

Now, using (2.9) and the definition of order of accuracy, we conclude that the
NRzx equations have the order of accuracy [(4M — 5)/3].

For boundary value problems, such a discussion is valid only in the bulk. In the
Knudsen layer, which is known to be of width O(Kn), we need to use X = z/Kn
as the spatial variable while investigating the accuracy of moment equations. In this
case, if we consider a steady state problem, the small parameter no longer appears in
the governing equations (3.13). This means the order of magnitude for f, does not
increase as |a| increases, as has been found in [23].
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F1G. 6. Shear and normal stress plots for the planar Couette flow with Kn = 0.5.

6.2. The validity of the NRxzax method for large Knudsen number and
in the Knudsen layer. As we have discussed above, there are two cases when
the order of accuracy is not so meaningful for describing the accuracy of the NRxx
method:

1. In the case of Kn ~ O(1), there are no “small parameters” in our concept.

2. In the Knudsen layer, the orders of magnitude of moments do not increase as

they behave in the bulk.

Nevertheless, we can still consider the NRxzz method as a solver for the Boltzmann
equation with spectral expansion in the velocity space, and the method should be
valid when f, decays sufficiently fast as || increases. Now we follow [23] and give
the average absolute values of the moments with the same order for different Kn and
different M in Figure 11. The result is based on the Couette flow problem in section
5.2, and the NRzz solution at z = —0.5 is used in these plots.
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Fia. 7. Density and temperature plots for the planar Couette flow with Kn = 1.0.

In these figures, we find that even when the Knudsen number is as large as 10,
the magnitudes of moments still decay very fast. Thus, the NRxx method can still
be considered to be valid and efficient. Although the methodology of regularization,
which is based on a small 7, is no longer valid, the regularization term (2.11) is
simply a prediction of higher order moments. Such a prediction differs from the Grad
equations’ guess f, = 0, but it also has a uniform expression for all Knudsen numbers.
When M goes to infinity, the regularization term is expected to vanish since f, decays.
On the other hand, this term smooths the profiles of the macroscopic variables, thus
avoiding the appearance of some unphysical phenomena such as subshocks (see [5]).
This indicates the meaningfulness of regularization for practical use.

7. Concluding remarks. A uniform numerical scheme for coupling the NRxx
method and the wall boundary conditions is developed in this paper, and the NRxx
method is extended to apply the force term and predict correct Prandtl number by
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Fic. 8. Shear and normal stress plots for the planar Couette flow with Kn = 1.0.

using the Shakhov collision model. To validate the proposed method, both steady and
unsteady problems are simulated. We are currently working on applying the NRzxz
method to two-dimensional problems.

Appendix A. Some properties of Hermite polynomials. The Hermite
polynomials defined in (2.8) are a set of orthogonal polynomials over the domain
(—00, +00). Their properties can be found in many mathematical handbooks such as
[1]. Some useful ones are listed below:
1. Orthogonality: fR He,,(z)He, (x) exp(—22/2) dz = m!N/ 276, .
2. Recursion relation: He,i1(x) = xHe,(z) — nHep,_1(x).
3. Differential relation: He! (z) = nHe,_1(z).

And the following equality can be derived from the last two relations:

(A1) [He,(z) exp(—22/2)) = —Henq1(2) exp(—22/2).
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Fia. 10. Stress and heat flux plots for the planar Poiseuille flow.
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Appendix B. Calculation of half-space integration. The detailed calcula-
tion of I, 5(0) (4.9) will be presented. Using the definition of Hy (v) (2.7), equation
(4.9) can be rewritten as

{(27‘1’)_1/20&1@;31@ Feo

Ozk!

(B1) Lns(0) =[]

k=1

2
Heq, (vi)Hep, (vi) exp (—'U;| ) dvk} :

Iy
where

—o00, k=1,3,

Applying the orthogonality of Hermite polynomials to (B.1), we have
(B.3)

Lo sl0) = |

|vg |

2m) "2 ay—py [T°
LG N Heq, (v2)Heg, (v2) exp (—T> dvg} - Oy 1 Ocrs B -

OZQ! 0
Now it is obvious that (4.10) holds if

1 +oo

He,,(x)He,, (x) exp(—2%/2) dz.

Some simple cases can be directly worked out as

(B.5)
1 +oo ) B
S5(0,0) = —\/%/0 exp(—z</2)dx = 1/2,

+oo
S(0,n) = \/%_ﬂ ; He,(x) exp(—x?/2) dx = \/%_ﬂHen_l(O), n#0,
+oo
S(m,0) = ﬁ ; He,, (z)exp(—2?/2)dx = ﬁHﬁm_l(O), m # 0.

This agrees with the first three cases of (4.11). For m # 0 and n # 0, we use the
differential relation of Hermite polynomials and get

(B.6)

S(m,n) = — !

V2mm)!
1

V2mm/!

= ﬁHem,l(O)Hen(O) +n/m-S(m—1,n—1).

/ Hen(x) d[He 1 (x) exp(—2/2)]
z€[0,+00)

[Heml(O)Hen 0)+n O+OO He,—1(v)Hep—1(z) exp(—2?/2) dz

This is the last case in (4.11).
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Appendix C. Expansion of the half-Maxwellian. This appendix is devoted
to the detailed calculation of p, defined in (4.23). Due to (4.26), only (4.24) and
(4.25) need to be evaluated. We first consider J,(z) with s > 1. By applying the
recursion relation of Hermite polynomials, we get

(C.1)

1 a1 [T 1 Voy — z|?
Js(z) = !9 2 . VW exp <—% lyHes—1(y) — (s — 1) Hes—2(y)] dy
0

s!
T
= —g 5_2(33) + ;Js_l(fl})

A e | Voy — z|? 0 x
+ ?6‘ 2 / exp <—%> <0—Wy — o_W\/E) Hes_1(y) dy.

—0o0 27T9W

For the underlined term, we use integration by parts and the differential relation of
Hermite polynomials, and we get

(C.2)
Ju(x) = —g o)+ ()

6‘W 1 so1 +oo 1 \/g — 2
2 <—% H@S,Q(y) dy

S G=r L Ve Y
(0" = 0)Js—2(z) + 2Js—1(2)] -

® | =

When s =0 or s = —1, the integral (4.27) can be directly worked out as (4.30) since
Heo(y) =1 and He_1(y) = 0.

The calculation of (4.25) is almost the same as (4.24). The only difference is that
a boundary term will appear when integrating by parts. So the result becomes
(C.3)

Js(z) = ! oV — 9)J8,2(x)+xjs,1(x)} _L 0 e He,_1(0)exp <— x—2)

) > ]-7
s stV 27 20w ) °
with initial conditions (4.31). Define

(C.4) Hy( )_l ﬂg‘*;l]{ (0) oz
' =0V on 1B EP | Togw ) -

Then (4.28) and (4.32) are natural. For s > 1, the recursion relation of Hs can be
deduced as

(C.5)
0 1 GW s—3 3:2
Hy(x) = PSRl Poe1 5077 [0+ Heys(0) = (s — 2) Hey3(0)] exp <_29_W>
s—2
- —8(87_1)9[{5_2(33).
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