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Highlights

€ Sequential-implicit Newton’s method developed for multiphysics problems.
€ Improves sequential-implicit methods from a linear to a quadratic convergence rate.
€ Effective variable splitting and coupling condition is required for Sequential-implicit Newton’s method.
€ Improvement in convergence rate is shown for geomechanics and geothermal porous-media problems.
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Abstract

E�cient simulation of multiphysics problems is a challenging task. This is often due to the multiscale

nature of the physics and nonlinear coupling between the di�erent processes. One approach to this

problem is to solve the entire multiphysics problem simultaneously in a fully coupled manner. However,

due to the strong coupling and multiphysics interactions, it is di�cult to design and analyze fully

coupled solvers, which often entail the construction and solution of global fully coupled Jacobian

systems. Another approach is the sequential-implicit method, whereby the full multiphysics problem

is split into di�erent subproblems. Each subproblem is constructed and solved separately; then the

solutions of the subproblems are stitched together in a speci�c sequence. Isolation of each subproblem

allows for the design of specialized solvers that tackle the complexity of the particular subproblem

e�ciently. The sequential-implicit approach o�ers wide �exibility and extensibility. However, these

advantages are often o�set by slow convergence rates when there is strong coupling between the

subproblems. This slow convergence rate of the overall coupled system is directly linked to the use

of a �xed-point outer-loop iteration in sequential-implicit methods. We present a Sequential Implicit

Newton (SIN) approach, whereby the sequence of implicit subproblems is wrapped with an outer

full Newton scheme. We demonstrate that the SIN formulation improves the overall convergence

rate from linear to quadratic. The SIN method uses the same sequential-implicit scheme as the

�xed-point method, but after each sequential iteration a Newton update is computed. Wrapping a

Newton loop around the traditional sequential-implicit scheme leads to signi�cant improvements in the

convergence rate. The SIN method allows for the ability to split a multiphysics problem into individual

subproblems while taking advantage of the quadratic convergence rate of the Newton method. We

demonstrate the e�ectiveness of SIN using two di�erent multiphysics porous-media problems: �ow-

thermal in geothermal reservoir simulation and �ow-mechanics in geomechanics reservoir simulation.

Just as with the �xed-point iteration version of the sequential-implicit method, SIN bene�ts from

careful design of the constraints used to stitch the sequence of the subproblems. Our numerical
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experiments show that the SIN approach improves the overall convergence rate for all the nonlinear

multiphysics problems considered. For speci�c cases where there is strong nonlinear coupling between

the subproblems, we see up to two orders of magnitude decrease in the number of sequential iterations

when using SIN compared with the �xed-iteration scheme.

Keywords: sequential-implicit, Newton�s method, MSPIN, geothermal, geomechanics, reservoir

simulation, multiphysics

1. Introduction

In the simulation of multiphase �ow in porous media, one generally needs to solve very large

systems of nonlinear equations arising from spatial and time discretization of the conservation equations

of mass, energy, and momentum. These multiphysics problems yield systems of equations that are

nonlinear and coupled. The length and time scales associated with the di�erent transport phenomena5

may be quite di�erent, and the interactions between the di�erent physical e�ects usually lead to

complex nonlinear dynamics. The nonlinear nature of the problem and the strong coupling between

the di�erent equations and the constitutive relations pose serious challenges to the nonlinear solver.

Newton-based solvers often lose the quadratic convergence and even diverge due to a poor choice of

the initial guess [1]. In practice, the system of equations is often dealt with using specialized solvers10

that resolve the complexities of the di�erent physical processes separately. If the physical processes lie

in di�erent regions in space, then �xed-point methods of the domain decomposition type [2, 3, 4] are

often su�cient to isolate the nonlinearities, yielding convergent and e�cient solvers. These domain

decomposition methods can also be used as a preconditioner to Newton�s method; prominent examples

of this approach are the additive Schwarz preconditioned inexact Newton (ASPIN) method [5] and its15

two-level variants [6, 7]. A survey on composing scalable nonlinear algebraic solvers can be found in

[8].

If the nonlinear dynamics are separated instead in the phase-�eld, i.e., when di�erent variables

follow di�erent dynamics, then one can use sequential-implicit methods - a class of �xed-point methods

whereby one alternately solves for some of the variables while �xing the remaining ones. Such a20

sequential-implicit strategy was proposed for isothermal multiphase �ow and transport problems in

which a multiscale �nite-volume formulation was used [9]. In this approach, each iteration entails

solving a sequence of implicit subproblems. In their sequential-implicit �xed-point (SIFP) method,

Jenny et al. [9] solved (1) the near-elliptic �ow problem and (2) the highly nonlinear hyperbolic

transport problems, and they iterated until convergence is achieved. A great deal of work has been25

invested to improve the overall convergence rate of the SIFP scheme. The e�orts have focused on

modifying the coupling strategies between the subproblems [10, 11, 12, 13, 14].
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In this investigation, we were interested in improving the e�ciency of sequential-implicit �xed-point

(SIFP) methods by wrapping them inside a full Newton scheme. The focus here is on geomechanics

and geothermal porous-media problems, but the approach is of general applicability.30

SIFP methods have proven to be attractive for solving �ow-mechanics problems, where a fully

coupled approach was shown to su�er from signi�cant linear solver scalability issues [15, 16, 17, 18]. A

sequential strategy reduces the complexities and requirements on the linear solver; thus making them

easily scalable in comparison to a fully coupled approach. Sequential coupling of �ow and mechanics

can also be bene�cial when the two problems have di�erent computational domain sizes (geomechanics35

domain is often much larger than �ow), di�erent spatial discretization schemes (�nite volume for �ow

and �nite element for mechanics) or di�erent simulators for �ow and mechanics (e.g. TOUGH2 [19] for

�ow/thermal and ABAQUS for mechanics [20]). To improve on these sequential methods, the coupling

between the �ow and mechanics problem has been extensively investigated. It was shown that the

�xed-stress and undrained split are unconditionally stable and that the �xed stress scheme converges40

faster than the undrained split [21, 22, 23, 24]. However, the performance of the �xed stress method

is strongly dependent on the coupling strength between the �ow and mechanics problems [21]. If the

coupling strength is too high, this could result in a slow convergence rate consequently requiring too

many sequential iterations to converge to the solution of the coupled problem. This slow convergence

limits the capability of these SIFP methods.45

The sequential-implicit method was also investigated for the �ow and thermal problem in geother-

mal reservoir simulation. Inspired by the di�erent splitting strategies for �ow and mechanics, the

authors of [25] investigated enforcing di�erent constraints when solving the �ow and thermal equa-

tions. They found that a naive split based on �xing the enthalpy when solving the �ow equation and

�xing the pressure when solving the thermal equation converged for single-phase cells, but diverged50

for two-phase cells. As a result, they developed a hybrid method where a �xed pressure was used

for single-phase cells and �xed density for two-phase cells. Although this proved to be the best out

of the sequential schemes examined, it still su�ered from a large number of outer loop iterations for

strongly coupled �ow and thermal problems. Similar to Moncorg·e et al. [10], to improve the outer loop

convergence, Wong et al. [26] enriched the �ow equations based on the phase state and the Courant-55

Friedrichs-Lewy (CFL) number of the cells. This improved the convergence of the outer loop for

the sequential formulation; however, these additional equations increased the cost of each sequential

iteration.

We observe that the main bottleneck in SIFP methods lies in the outer �xed-point loop, which

typically converges linearly (i.e., the error decreases to zero like a geometric sequence). To obtain su-60

perlinear convergence, one way is to apply Anderson acceleration [27], which is essentially a nonlinear

analogue of GMRES [28]; the Anderson iteration is also related to multisecant quasi-Newton methods
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[29] and is convergent when the underlying �xed-point map is a contraction [30]. Such an acceleration

has been applied successfully for �xed-stress splitting schemes for nonlinear poromechanics of unsatu-

rated materials [31]. Another approach is to use the �xed-point map as a preconditioner to Newton�s65

method, which is the idea behind the multiplicative Schwarz preconditioned inexact Newton (MSPIN)

algorithm proposed in [32]. MSPIN uses a partitioning of the primary variables by �eld type, and it

solves for the groups of variables successively in a nonlinear multiplicative Schwarz scheme. This map-

ping is then used to precondition Newton�s method with an approximate Jacobian, similar to ASPIN.

MSPIN has been shown to be e�ective for high Reynolds number Navier-Stokes problems; however, as70

already observed in [32]: �the determination of the partition of the physical variables can be the most

interesting part of implementation, because the best choice is generally problem-speci�c.� Our own

observations indicate that, in addition to the choice of variable sets, the coupling conditions between

these sets are equally important to the e�ciency of method, just like for SIFP methods.

Thus, our contribution in this work was to improve on the MSPIN approach by identifying an75

e�ective variable splitting and coupling conditions for the �ow-mechanics and �ow-thermal problems.

Our new method, called the Sequential Implicit Newton (SIN) method, is constructed by using SIFP as

a preconditioner to Newton�s method. One key di�erence of this method from MSPIN is the coupling

conditions, which we implement by augmenting the sequential subproblems with physically motivated

constraints. A second key di�erence is that we use an exact Jacobian to compute the Newton update80

rather than an inexact Jacobian as in MSPIN. A similar approach was used for the restricted additive

Schwarz preconditioned exact Newton method (RASPEN) [33], but here our Newton loop is wrapped

around a multiplicative Schwarz scheme. We show that matrix-vector multiplication involving the

exact Jacobian can be performed by reusing matrix factorizations performed at earlier steps of the

algorithm. Thus, our method enjoys both the local quadratic convergence of an exact Newton, but at85

a relatively low computational cost. This leads to a signi�cant improvement over the unaccelerated

SIFP methods, which we con�rm using challenging numerical experiments.

The paper is organized as follows. In Section 2, we describe the sequential-implicit Newton method

in detail for an abstract nonlinear system. In particular, we explain how the Jacobian matrix-vector

product, which is required for calculating the Newton update using GMRES, can be calculated using90

matrix factorizations that have already been computed when solving the sequence of subproblems.

In Section 3, we present the coupled �ow-mechanics problem, and we show how to implement the

SIN method for the partitioning of variables and coupling schemes widely used in the porous-media

community. We then show numerical results illustrating the improvements obtained using SIN over

the SIFP method. We do the same in Section 4, but for the �ow-thermal problem. Conclusions are95

given in Section 5.
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2. Sequential-implicit Newton�s Method

In this section, we show the derivation of the sequential-implicit Newton�s method for a general

multiphysics problem. Assume that the multiphysics problem is given by a set of residual equations

R(x) = 0 that can be split into R(x) = (R1(x), R2(x)), where R1 and R2 are nonlinear functions

that represent di�erent physical processes. Moreover, the unknowns themselves can be split into

x = (x1, x2), with the two groups of unknowns potentially following di�erent dynamics. The fully

coupled (FC) method is then simply Newton�s method applied to the entire multiphysics problem with

each Newton update is obtained by solving the linear system:
�

�J11 J12

J21 J22

�

�

�

��x
k
1

�xk
2

�

� = �

�

�R1(xk)

R2(xk)

�

� , (1)

for (�xk
1 , �xk

2), where Jij =
�Ri
�xj

are the partial derivatives of the ith subproblem residual equation with

respect to the jth subproblem primary variable set. The next iterate xk+1 is then de�ned by:

xk+1
i = xk

i + �xk
i , i = 1, 2.

Although the focus of this study was to compare the sequential-implicit Newton method with the

�xed-point iteration, it is useful to compare with the fully coupled method to understand the nonlinear

behavior of the underlying coupled nonlinear problem.100

2.1. Sequential-implicit Fixed Point Method

The sequential-implicit �xed point (SIFP) method involves partitioning the overall problem into

multiple subproblems that are solved sequentially. In the case of a multiphysics problem, each of these

subproblems will often correspond to a speci�c physical problem. Here we consider a splitting strategy

that involves two di�erent subproblems and an auxiliary constraint applied to each of the solution105

steps. The sequential-implicit scheme begins with an initial guess x0 = (x0
1, x0

2) for the entire problem.

Here x1 and x2 correspond to the variable set for the two di�erent subproblems. To solve for the next

time step, the following sequential process is used:

1. Solve �
�

�
R1(x�

1, x
�
2) = 0,

b(x�
1, x

�
2) = b(xk

1 , x
k
2),

(2)

for (x�
1, x�

2), using e.g. Newton�s method.

2. Solve �
�

�
R2(x��

1 , x��
2 ) = 0,

c(x��
1 , x��

2 ) = c(x�
1, x

�
2),

(3)

for (x��
1 , x��

2 ), using e.g. Newton�s method.110
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3. Update solution:

xk+1
1 = x��

1 , xk+1
2 = x��

2 .

4. Repeat steps 1-3 until convergence is reached:

				R1(xk+1
1 , xk+1

2 )
				
� � �1 and

				R2(xk+1
1 , xk+1

2 )
				
� � �2 (4)

A �ow chart of the method is shown on the left panel of Figure 1. This algorithm is the current

approach used in sequential-implicit porous-media simulations [21, 23, 22, 34, 14, 25, 35, 36]. Use

of carefully chosen constraints b(x1, x2) and c(x1, x2) can enhance the convergence of the method.

In domain decomposition methods, where the equations and unknowns are split across subdomain

boundaries, the choice b(x1, x2) = x2, c(x1, x2) = x1 corresponds to a block Gauss-Seidel method, also115

known as a classical alternating Schwarz method with Dirichlet transmission conditions and minimal

overlap [37]. Alternatively, if the constraints are chosen to match discrete Robin traces (i.e., a linear

combination of function values and �uxes), then one obtains an optimized Schwarz method, which may

converge a lot more quickly than block Gauss-Seidel [38, 39]. Note that although (2) and (3) formally

have the same dimensions as the fully coupled problem, the constraints b(x1, x2) and c(x1, x2) are120

generally chosen to be very simple (cf. b(x1, x2) = x2, c(x1, x2) = x1 for the block Gauss-Seidel case),

so the subproblems in practice have much smaller e�ective sizes and are much cheaper to solve than

the fully coupled problem. For multiphysics problems, such constraints are often required to ensure

convergence and stability [21, 22, 23, 25]. Through those studies, it was shown that a naive splitting of

the subproblems and simply �xing the primary variables was insu�cient for convergence and stability125

for these sequential schemes.

2.2. Sequential-implicit Newton method

The key idea for accelerating the SIFP method is to note that at convergence, the �xed point of

the SIFP method satis�es the equation:

xk+1 = (x��
1 (xk), x��

2 (xk)) = (G1(xk), G2(xk)) = G(xk), (5)

where G1(xk) and G2(xk) are the mappings de�ned by steps 1 and 2 in the SIFP method to obtain

x��
1 and x��

2 based on the input (xk
1 , xk

2). Thus, if we de�ne the new function:

F(x) = x�G(x), (6)

then the �xed point of the SIFP method must be a solution of F(x) = 0. The Sequential-implicit

Newton (SIN) method consists of solving this equation using Newton�s method.
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xk = (xk
1 , xk

2)

Step 1

Solve R1(x�
1, x�

2) = 0

b(x�
1, x�

2) � b(xk
1 , xk

2) = 0

Step 2

Solve R2(x��
1 , x��

2 ) = 0

c(x��
1 , x��

2 ) � c(x�
1, x�

2) = 0

Update

xk+1 = (x��
1 , x��

2 )

(a) Sequential-implicit �xed-point (SIFP)

xk = (xk
1 , xk

2)

Step 1

Solve R1(x�
1, x�

2) = 0

b(x�
1, x�

2) � b(xk
1 , xk

2) = 0

Step 2

Solve R2(x��
1 , x��

2 ) = 0

c(x��
1 , x��

2 ) � c(x�
1, x�

2) = 0

Compute

F(xk) = xk �

�

�x
��
1 (xk)

x��
2 (xk)

�

�

�F(xk)
�xk �xk = �F(xk)

Update

xk+1 = xk + �xk

(b) Sequential-implicit Newton (SIN)

Figure 1: Flowchart of sequential scheme using a �xed-point iteration update (Left) and a Newton update (Right)

A �owchart of this algorithm is presented in the right panel of Figure 1. The key di�erence with

SIFP is how the solution is updated after all the subproblems are solved. SIFP takes the subproblem

solutions (x��
1 , x��

2 ) = (G1(xk), G2(xk)) as the new iterate, but SIN performs a Newton update by

linearizing the �xed-point function F at xk. The added complexity for SIN is that the Jacobian for

the nonlinear function F is required. However, rather than computing an explicit representation of
�F(x)
�x , we exploit the fact that the Jacobian �F(x)

�x is only required when we solve the system of linear

equations
�F(xk)

�x
�xk = �F(xk). (7)

Hence, if we have a routine for calculating the matrix-vector product involving the Jacobian



�F(xk)
�x

�
,130

then we can use a Krylov solver such as GMRES [28] to solve the linear equations, thus avoiding

explicit calculation and storage of the Jacobian.

We will now explain how the Jacobian matrix-vector product for the SIN update can be computed.

For notational convenience, we rewrite x�
1 and x�

2 calculated in Step 1 of SIFP as functions of the input

arguments x = (x1, x2), i.e., we de�ne:

x�
1 = H1(x), x�

2 = H2(x).
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Then, H1 and H2 satisfy:

R1(H1(x), H2(x)) = 0 (8)

and also the constraint:

b(H1(x), H2(x)) = b(�1x,�2x), (9)

where �1 and �2 are projections that restrict the solution vector to its �rst and second block com-

ponents, respectively (i.e., �1x = x1 and �2x = x2). Now, Step 2 of the algorithm can be written

as:

R2(G1(x), G2(x)) = 0, (10)

c(G1(x), G2(x)) = c(H1(x), H2(x)). (11)

We want to solve the equation F(x) = x�G(x) = 0 using Newton�s method, which involves repeatedly

solving linear systems described in Equation (7). Solving this linear system using GMRES requires

us to derive an expression for
��F
�x


v, where v is an arbitrary vector. This can be done using implicit

di�erentiation. Di�erentiating equations (8), (9) with respect to x leads to:

�R1

�x1
(H1(x), H2(x))

�H1

�x
+

�R1

�x2
(H1(x), H2(x))

�H2

�x
= 0, (12)

�b
�x1

(H1(x), H2(x))
�H1

�x
+

�b
�x2

(H1(x), H2(x))
�H2

�x
=

�b
�x1

(�1x,�2x)�1 +
�b
�x2

(�1x,�2x)�2. (13)

Multiplying Equations (12) and (13) from the right by an arbitrary vector v and noting that �ix = xi,

�iv = vi for i = 1, 2, we can rewrite the result as a linear system of the form:
�

�
�R1
�x1

(H1(x), H2(x)) �R1
�x2

(H1(x), H2(x))
�b
�x1

(H1(x), H2(x)) �b
�x2

(H1(x), H2(x))

�

�

�

�
�H1
�x v
�H2
�x v

�

� =

�

� 0
�b
�x1

(x1, x2)v1 + �b
�x2

(x1, x2)v2

�

� . (14)

Thus, (�H1
�x v, �H2

�x v) can be computed by solving the linear system (14). Note that the matrix on the

left-hand side is simply the Jacobian of the nonlinear subproblem in Step 1 of SIFP, evaluated at

the solution (H1(x), H2(x)) = (x�
1, x�

2). If Newton�s method is used to solve the subproblem, the LU

factors of this Jacobian would have already been computed. Thus, they can be reused to solve (14).

Also note that the derivatives of the constraints �b
�xj

appear on both sides of the equation, but they

are evaluated using di�erent arguments (at the solution (x�
1, x�

2) on the left, and at the inputs (x1, x2)

on the right). Similarly, we can apply implicit di�erentiation to Equations (10), (11) to obtain:
�

�
�R2
�x1

(G1(x), G2(x)) �R2
�x2

(G1(x), G2(x))
�c
�x1

(G1(x), G2(x)) �c
�x2

(G1(x), G2(x))

�

�

�

�
�G1
�x v
�G2
�x v

�

� =

�

� 0
�c
�x1

(x�
1, x�

2)
�H1
�x v + �c

�x2
(x�

1, x�
2)

�H2
�x v

�

� , (15)

where the right hand side contains the previously calculated terms �H1
�x v and �H2

�x v. Again, the left-

hand side matrix is simply the Jacobian of the nonlinear subproblem in Step 2, evaluated at the

8



solution (x��
1 , x��

2 ), so reusing the LU factors is possible. Finally, we can compute the matrix-vector

product for an arbitrary vector v via the formula:

�F
�x

v = v �

�

�
�G1
�x v
�G2
�x v

�

� , (16)

where �G1
�x v and �G2

�x v are calculated by solving (15).

We summarize the full SIN algorithm below. For k = 0, 1, 2, . . ., proceed as follows:135

1. Solve

R1(x�
1, x

�
2) = 0, b(x�

1, x
�
2) = b(xk

1 , x
k
2)

for (x�
1, x�

2). At convergence, store the most recent Jacobian matrix

�

�
�R1
�x1

�R1
�x2

�b
�x1

�b
�x2

�

� , evaluated at

(x�
1, x�

2), and its LU factors for use in Step 4.

2. Solve

R2(x��
1 , x��

2 ) = 0, c(x��
1 , x��

2 ) = c(x�
1, x

�
2)

for (x��
1 , x��

2 ). At convergence, store the most recent Jacobian matrix

�

�
�R2
�x1

�R2
�x2

�c
�x1

�c
�x2

�

� , evaluated

at (x��
1 , x��

2 ), and its LU factors for use in Step 4.

3. Compute the residual

rk := F(xk) =

�

�x
k
1 � x��

1

xk
2 � x��

2

�

� . (17)

4. Solve
�F
�x

�xk = �rk (18)

for �xk using a Krylov solver such as GMRES. To multiply �F
�x by an arbitrary vector v, �rst140

solve (14) for (�H1
�x v, �H2

�x v), then solve (15) for (�G1
�x v, �G2

�x v), and �nally compute �F
�x v via (16).

5. Update the solution by setting

xk+1 = xk +�xk.

6. Repeat Steps 1�5 until convergence.

2.3. Computational cost of SIFP vs SIN

We now show a theoretical comparison of the cost of the SIFP and SIN methods, based on their local

convergence properties and the computational cost of each step. We �rst de�ne a number of parameters

needed for estimating the run time. In Steps 1 and 2, which are common for both methods, suppose we

solve the nonlinear sequential subproblems using Newton�s method. This requires a number of inner

9



Newton iterations per nonlinear solve, which we denote by KNewton. Typically, this number should

be somewhere between 3 and 10, but it can be higher for di�cult problems. Because the sequential

subproblems are similar for the two methods, we will use the same KNewton for both. Within each

Newton iteration, we need to calculate the LU factors of the Jacobian matrix. Then, we need to

perform forward and backward substitutions to solve the associated systems. Let Tfact and Tsub be the

corresponding run times (where typically Tfact is between one and two orders of magnitude larger than

Tsub, see for instance [40, 41]). In addition, Step 4 of SIN requires the solution of a linear system by

GMRES, where each GMRES iteration requires solving (but not factoring) a linear system containing

the Jacobian of the sequential subproblems. Assuming that KGMRES such iterations are needed, we

deduce that the total run times for SIFP and SIN are given by:

TSIFP = KSIFPKNewton(Tfact + Tsub), (19)

TSIN = KSIN(KNewton(Tfact + Tsub) +KGMRESTsub), (20)

where KSIFP and KSIN are the number of outer SIFP and SIN iterations required for convergence.

We now compare the various quantities above. First, we compare KSIFP and KSIN. Observe that

the SIFP method is a �xed-point method of the type xk+1 = G(xk). If the method is locally convergent

near the �xed point flx = G(flx), then it is well known [42] that the asymptotic convergence rate, which

is de�ned as:

� := lim sup
k��

�xk � flx�,

is given by the spectral radius of the Jacobian matrix of G evaluated at the �xed point. In other words,

we have:

� = max
j

|�j |,

where the �j are the eigenvalues of G� := �G
�x (flx). Thus, unless all the eigenvalues of the Jacobian145

are zero (i.e., the matrix is nilpotent), we can only expect the SIFP method to converge linearly in a

neighborhood of the �xed point. In contrast, SIN is a Newton method applied to the nonlinear equation

F(x) = 0. Since the exact Jacobian is used to calculate the Newton update at every iteration, we

expect the method to converge quadratically close to the solution. Thus, we expect KSIFP � KSIN.

In practice, our numerical experiments show that KSIN is usually less than 5, which is comparable to150

(or even slightly lower than) KNewton.

Next, we given an estimate of KGMRES. To do so, we need to consider the properties of the Jacobian

matrix �F
�x (flx) close to the �xed point. Recall that for a general nonsingular linear system Au = b,

GMRES �nds in k iterations the solution uk that minimizes the 2-norm of the residual rk = b�Auk.

Equivalently, for a given initial residual r0 = b � Au0, GMRES chooses the best polynomial p(z) of

degree k or lower, such that pk(0) = 1 and rk = pk(A)r0 is minimized [43]. Thus, for any other degree

10



k polynomial qk with qk(0) = 1, we necessarily have:

�rk�2 = �pk(A)r0�2 � �qk(A)r0�2 � �qk(A)�2�r0�2.

This property allows us to estimate the convergence rate of GMRES by guessing a polynomial qk(z),

knowing that the true residual must be smaller. In the case of SIN, when xk is close to flx, we have:

�F
�x

(xk) �
�F
�x

(flx) = I �G�.

Thus, by choosing qk(z) = (1� z)k, we see that qk(0) = 1 and qk(I �G�) = (G�)k. Thus, we have:

�rk�2 � �qk(I �G�)r0�2 = �(G�)kr0�2 � �(G�)k�2�r0|2 � C�k�r0�2.

Thus, GMRES converges at an asymptotic rate that is at least as good as �, so we have KGMRES �

KSIFP. The di�erence is usually quite signi�cant: when I �G� is symmetric positive de�nite and for

a relative tolerance of �, we have

KGMRES � (log |�|)
�
�(I �G�), KSIFP � (log |�|)�(I �G�),

where �(•) denotes the two-norm condition number of the matrix, see [43]. So for even moderate

condition numbers, e.g., �(I �G�) � 20, KGMRES will only be a fraction of KSIFP. The situation for

non-symmetric matrices is more complicated, but our numerical experiments show that KGMRES is

indeed much smaller than KSIFP, see Sections 3 and 4.155

Referring back to Equations (19) and (20), we see that the run time of SIN is lower than that of

SIFP if:

KSINKGMRESTsub � (KSIFP �KSIN)KNewton(Tfact + Tsub). (21)

Using the fact that Tfact � Tsub, KSIN � KNewton and thatKGMRES � KSIFP�KSIN (sinceKGMRES �

KSIFP and KSIN is usually less than 5�10), we see that (21) holds in the vast majority of cases, meaning

that we expect SIN to require less computational cost than SIFP in most cases. Our numerical

experiments shown in the next sections con�rmed that this is indeed the case for the two problem

classes that we consider.160

3. Flow-Mechanics Problem

3.1. Governing Equations

In this section, we consider the interaction between the �ow of a single component, namely water,

and the mechanics of the rock that surrounds it. Assuming constant temperature, the water component

can only exist in a single-phase (liquid water). The �ow equation takes the form:

�
�t

(��w)��. (�wvw)�QM = 0 (22)

where:
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� � is the porosity of the rock;

� �w is the mass density of the liquid water;165

� vw is the velocity of the water;

� QM is the mass source/sink term.

The density �w of the liquid water is a function of pressure. To model the �ow rate of each phase,

Darcy�s law is used to describe the �ow through the porous medium:

vw = �
kkrw
µw

�(pw + �lgz) (23)

where:

� k is the rock permeability;

� pl is the pressure of phase l (here we neglect any capillary pressure e�ects, so the pressure of the170

phases are equal);

� g is the gravitational constant;

� µl is the viscosity of the phase l;

� z is the coordinate direction of gravity.

The porosity � depends on both the pressure and the deformation of the rock, which is described by

the mechanics equation below. The quasistatic momentum conservation equation for the aggregate

volume (rock skeleton and �uid) is written as:

� • � + �g = 0 (24)

where � = �s(1��)+�f� is the overall mass density, �s is the density of the rock skeleton and �f is the175

cell-averaged �uid density. The total stress tensor � consists of the both the �uid and rock-skeleton

stresses [44]:

� = C�e � bp (25)

where �e is the second-order elasticity strain tensor, C is the fourth-order tensor elasticity moduli

tensor, b = 1b is the second-order tensor of Biot coe�cients b and p is the �uid pressure.

From �small deformation� theory and assuming that the total-strain tensor is only composed of

elastic contributions (i.e., ignoring plastic and thermal e�ects):

� = �e (26)
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We can rearrange from Equation (25), (26):

� = C�� bp (27)

The total strain is de�ned as:

� =
1
2

�
�u+�Tu


(28)

The mechanical e�ect on the �ow equation is captured through the porosity�s relationship with stress

and strain. We follow Coussy [44] to capture the porosity change through the ratio of the volume of

connected porous space to the total volume:

� = �0 +
(b� �0)(1� b)

Kd
(P � P0) + b(�v � �v,0) (29)

where Kd is the local drained bulk modulus, �v = tr(�) is the volumetric total strain, �0, P0, �v,0 are180

the reference porosity, pressure, and volumetric strain. Note that the �ow equation (22) is coupled to

(24) through the porosity �, and the momentum balance equation (24) depends on (22) through the

�uid pressure p.

3.2. Fully Coupled Formulation

For the fully coupled solution, we discretize the �ow equations (22) fully implicitly in time (back-

ward Euler) and using the �nite-volume method in space [45], and the momentum balance equation

(24) using P 1 �nite elements in space [46]. Choosing the pressure and displacement as primary vari-

ables and eliminating all other quantities using Equations (23), (25)�(29), we arrive at the discrete

algebraic problem at time step n+ 1, which takes the form
�
�

�

�RF (pn+1,un+1) := RF (pn+1, 	(pn+1,un+1)) = 0,

Ru(pn+1,un+1) = 0,
(30)

where185

� pn+1 � RNc is the vector of pressures at each of the Nc cell centers at time tn+1;

� un+1 � RNDNv is the displacement vector at each of the Nv vertices in the ND dimensions;

� RF : RNc ×RNc 	 RNc is the residual form of the mass conservation equation (22) as a function

of the mean stress 	;

� 	 : RNc × RNDNV 	 RNc is a function that computes the cell center mean stress based on the190

pressure and the displacement �eld;

� Ru : RNc × RNDNv 	 RNDNv is the residual form of the momentum balance for the mechanics

equations (24).
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The fully coupled algorithm consists of applying Newton�s method to the system (30) using the

solution of the previous time step (pn,un) as the initial guess. More precisely, the iterative process is195

as follows:

1. Solve for pk+1
n+1,u

k+1
n+1 using:

�

�
� �RF
�p

� �RF
�u

�Ru
�p

�Ru
�u

�

�
k

n+1

�

��pk

�uk

�

� = �

�

�
�RF (pkn+1, 	(pkn+1,uk

n+1))

Ru(pkn+1,uk
n+1)

�

� (31)

where �pk = pk+1
n+1 � pkn+1, �uk = uk+1

n+1 �uk
n+1, and the Jacobian matrices � �RF

�p , � �RF
�u , �Ru

�p , �Ru
�u

are all evaluated at (pkn+1,uk
n+1).

2. Step 1 is repeated until convergence:
			
			 �RF (pk+1

n+1, 	(p
k+1
n+1,u

k+1
n+1))

			
			
�

� �p and
				Ru(pk+1

n+1,u
k+1
n+1)

				
� � �u. (32)

3.3. Fixed Stress Sequential-implicit Formulation

In this section, we demonstrate the e�ectiveness of the SIN method for the �xed-stress formulation200

for �ow and mechanics. Here, we combine the �nite-volume method [45] to discretize the �ow equation

(Equation 22) and the �nite-element method for the momentum balance (Equation 24) [46]. We follow

the same framework for the sequential-implicit method as described in [36] for isothermal �ow and

mechanics problems. We make use of the geomechanics implementation in the AD-GPRS simulation

framework [47, 48].205

We use the solution of the previous timestep as the initial guess x0
n+1 = (p0n+1,u0) = (pn,un) = xn.

Where p0 � RNc is the pressure at the cell centers and u0 � RNDNv is the displacement vector at each

of the Nv vertices in the ND dimensions. For simplicity, we will now drop the subscript n+ 1 and all

following terms represent the solution at the n+ 1 timestep.

The �xed-stress sequential iterative process is as follows:210

1. Compute 	k = 	(pk,uk)

2. Solve for p� where RF (p�, 	k) = 0, where convergence is de�ned as:
				RF (p�, 	k)

				
� � �p

3. Solve for u� where Ru(p�,u�) = 0 where convergence is de�ned as: ||Ru(p�,u�)||� � �u

4. Update xk+1 by �xed-point iteration or Newton�s method

5. Repeat steps 1-4 until converged:
				RF (pk+1, 	(pk+1,uk+1))

				
� � �p and

				Ru(pk+1,uk+1)
				
� � �u (33)

3.4. Sequential-implicit �xed-point Fixed Stress Algorithm215

The update for the SIFP �xed-stress algorithm simply uses the solutions from the �ow and me-

chanics residual equations as the update:

xk+1 = (p�,u�) (34)
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3.5. Sequential-implicit Newton Fixed-Stress Algorithm

To obtain the SIN update, the below nonlinear system is solved using Newton�s method:

F(pk,uk) =

�

� pk � p�(pk,uk)

uk � u�(pk,uk)

�

� (35)

To solve this nonlinear system using Newton�s method we need to compute the matrix-vector product

for the Jacobian �F
�x and an arbitrary vector v = (p,u), p � RNc , u � RNDNv , v � RNc × RNDNv :

�F
�x

v =

�

�p� w1

u� w2

�

� (36)

The steps to compute to obtain the update �xk given a xk = (pk,uk) are as follows:

1. Compute 	k = 	(pk,uk) � RNc

2. Solve for p�, from RF (p�, 	k) = 0, at convergence (
				RF (p�, 	(p�,uk))

				
� � �F ) store:

� J11 = �RF
�p

			
��=0

(p�, 	k) � RNc×Nc or store the LU factors for multiplying J�1
11 , that was220

used to solve RF (p�, 	k) = 0.

� J12 = �RF
��

		
�p=0 (p

�, 	k) � RNc×Nc

� J� = ��
�x (p

�, 	k) � RNc×(Nc+NDNv)

3. Solve for u�, from Ru(p�,u�) = 0, at convergence (||Ru(p�,u�)||� � �u) store:

� J21 = �Ru
�p

			
�u=0

(p�,u�) � RNDNv×Nc225

� J22 = �Ru
�u

		
�p=0 (p

�,u�) � RNDNv×NDNv or store the LU factors for multiplying J�1
22 , that

was used to solve Ru(p�,u�)

4. Solve the system of equations:
�F
�x

�xk = �F (37)

using GMRES and the matrix-vector product de�ned as:

�F
�x

v =

�

�p� w1

u� w2

�

� (38)

where:

� w1 = �(J11)�1(J12J�v) � RNc

� w2 = �(J22)�1J21w1 � RNDNv Here if steps 2 and 3 are solved with a direct solver, we can230

utilize the same LU factors for the multiplication of J�1
11 and J�1

22

5. Update �

�pk+1

uk+1

�

� = �xk +

�

�pk

uk

�

� (39)

6. Repeat steps 1-5 until:
				RF (pk+1, 	(pk+1,uk+1))

				 � �F and
				Ru(pk+1,uk+1)

				 � �u (40)
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3.6. Mandel�s Problem

We considered Mandel�s consolidation problem [49, 17]. Mandel�s problem is a two-dimensional

problem with a homogeneous and isotropic poroelastic rock �xed with two impermeable, rigid and

frictionless plates on the top and bottom boundaries. The grid has 20 cells in the x and z directions.235

Table 1: Rock and �uid properties used for Mandel�s problem.

Property Value Unit

Reference porosity 37.5 %

Young�s modulus {109, 2× 108, 108} Pa

Biot�s constant 1.0 -

Poisson ratio 0.25 -

Undrained Poisson ratio 0.47 -

Permeability, 1 md

Fluid viscosity 9.81× 10�5 Pa • s

Fluid compressibility 4.4× 10�10 Pa�1

Reference �uid density 1000 kg/m3

For the SIFP method it has been shown that the coupling strength of the problem [21, 22, 23] is

related to the parameter:


 

b2M
Kdr

(41)

where b is Biot�s coe�cient, M is the Biot modulus, and Kdr is related to the bulk modulus. We can

increase the coupling strength by decreasing the Young modulus of the problem [36]. We examined

the results for three di�erent Young�s moduli, 109, 2×108, 108 Pa. A lower Young�s modulus results in240

greater coupling strength, which is expected to require more SIFP outer loop iterations to converge.

The SIN method was implemented and integrated into the Automatic-Di�erentiation General Pur-

pose Research Simulator (AD-GPRS), which is a general sequential-implicit coupling framework for

solving multiphysics problems for reservoir simulation [35]. This framework allows for the consistent

testing and development of SIN and SIFP methods. The framework employs a modular code design245

by splitting each individual physics into a set of di�erent subproblems. The main components of this

framework use a subproblem tree structure and abstract computational domains to separate and or-

ganize the variable sets for each subproblem. This allows for minimal code duplication and ensures

consistent comparisons between formulations and algorithms. In all cases, the convergence tolerance

was set to �F = �u = 10�6 and the maximum number of sequential iterations was set to 30. The250

tolerance for the SIN GMRES solution step was set to 10�8. The linear solver for multiplying by J�1
11
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and J�1
22 at all steps was SuperLU [41]. This choice was made to decouple the e�ects of nonconvergence

of the linear solver on the sequential updates.
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(a) Pressure pro�le at x = 0 m,y = 100 m (E =

1 × 109 Pa)

(b) Displacement pro�le at x = 0 m,y = 100 m

(E = 1 × 109 Pa)

(c) Pressure pro�le at x = 0 m,y = 100 m (E =

2 × 108 Pa)

(d) Displacement pro�le at x=0 m,y = 100 m

(E = 2 × 108 Pa)

(e) Pressure pro�le at x = 0 m,y = 100 m (E =

1 × 108 Pa)

(f) Displacement pro�le at x = 0 m,y = 100 m

(E = 1 × 108 Pa)

Figure 2: Plot of pressure and displacement pro�les for 20×20 grid for Mandel�s problem
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As shown in Figure 2, the fully coupled, SIFP, and SIN solutions all match the analytical solution.

Mandel�s problem is very close to a linear problem, with most of the nonlinearity coming from the255

very small compressibility of the �uid. The full nonlinear results for Mandel�s problem are shown in

Table 2. The full Newton iterations row represents the number of Newton iterations that the fully

coupled problem required for the entire simulation. The inner Newton iterations row is the number

of inner loop Newton iterations performed (these Newton iterations are cheaper than the full Newton

iterations). The sequential iterations are the number of outer loop iterations to converge to the260

solution of the full problem. The GMRES iterations is the total number of GMRES iterations to solve

Equation (36). The wasted timesteps is the number of timesteps that did not converge either due to

an unphysical update, an inner Newton loop not converging, or the maximum number of sequential

iterations was reached. The Wasted Full Newtons is the number of full Newton iterations that were

computed for those timesteps that were wasted; this is only applicable for the fully coupled method,265

since the SIFP and SIN only run the smaller inner Newtons. The wasted inner Newtons is the number

of Newton iterations computed for the timesteps that were wasted, this only applies for SIFP and SIN.

Newton/Seq per timestep is the number of full Newton iterations per time step for FC or the number

of sequential outer iterations for the SIFP and SIN methods. Our goal here, and for the remainder of

the paper, is not to compare directly the cost of FC versus SIFP/SIN, since the cost per iteration is270

di�erent for the two classes of methods. Instead, we will use the iteration numbers to understand the

convergence behaviour and e�ectiveness of a particular method for the class of problems in question.

Table 2: Nonlinear results for Mandel�s problem (Fully Coupled (FC), Sequential-implicit �xed-point (SIFP), Sequential-

implicit Newton (SIN))

E = 109 Pa E = 2× 108 Pa E = 108 Pa

FC SIFP SIN FC SIFP SIN FC SIFP SIN

Number of Timesteps 90 90 90 92 154 92 93 860 93

Full Newton Iterations 102 - - 102 - - 108 - -

Inner Newton Iterations - 766 418 - 2519 516 - 10746 549

Sequential Outer Iterations - 384 226 - 3339 291 - 29569 313

GMRES Iterations - - 1958 - - 3585 - - 4484

Wasted Timesteps 0 0 0 0 65 0 0 791 0

Wasted Full Newtons 0 - - 0 - - 0 - -

Wasted Inner Newtons - 0 0 - 2795 0 - 34046 0

Newton/Seq per timestep 1.1 4.3 2.5 1.1 21.7 3.2 1.1 34.3 3.4

Here, we see that even for an almost linear problem, the SIFP problem can struggle due to the
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strong coupling between the two subproblems. However, with the SIN method we see that it is able

to overcome this strong coupling between the two subproblems. Although the FC outperforms both275

SIN and SIFP methods; the comparison demonstrates that the SIN method is able to overcome the

di�culties faced by SIFP. As expected, as we decrease the Young�s modulus, the number of sequential

iterations for SIFP increases, and it is convergent only for a very small time step. For the SIN approach,

we see a milder trend. We observe only a slight increase in the sequential iterations with coupling

strength. As a result of the quadratic convergence of Newton�s method, it requires about 2-3 outer280

sequential iterations per timestep. We see that with SIN, we can get nearly two orders of magnitude

less sequential iterations than the SIFP method when the problem is strongly coupled (E = 108). We

see that this slow convergence problem is further intensi�ed by the number of wasted timesteps for

the nonconvergent timesteps. The nonconvergent timesteps for the SIFP method were a result of the

maximum number of outer sequential iterations (30) being reached.285
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4. Flow-Thermal Problem290

In this section, we demonstrate the e�ectiveness of the SIN method for the �ow and transport of

pure water in two-phases with thermal e�ects. We again consider the �ow equation (22) but now the

�uid can exist in two di�erent phases liquid water and steam,

�
�t

�

�
2�

l=1

�lSl

�

��.

�
2�

l=1

(�lvl)

�

�QM = 0, (42)

where:

� � is the porosity of the rock;

� �l is the mass density of phase l;

� Sl is the saturation of phase l;

� vl is the velocity of the phase l;295

� QM is the mass source/sink term.

The subscript l represents the phase of the �uid. The density �l of each phase depends on the phase

state of the �uid and is a function of pressure. To model the �ow rate of each phase, Darcy�s law is

used to describe the �ow through the porous medium:

vl = �
kkrl
µl

�(pl + �lgz) (43)

where:

� k is the rock permeability;

� pl is the pressure of phase l (here we neglect any capillary pressure e�ects, so the pressure of the

phases are equal);300

� g is the gravitational constant;

� µl is the viscosity of the phase l;

� z is the coordinate direction of gravity.

In addition to these the conservation equations, the saturation constraint must be satis�ed; that is,

the sum of all the phase saturation is unity:

2�

l=1

Sl = 1 (44)
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The thermal residual equation invovles solving the energy conservation equation:

�
�t

�

(1� �) �RUR + �
2�

l=1

�lUlSl

�

��.

�
2�

l=1

(�lhlvl)

�

��. (K�T )�QE = 0 (45)

where QE is the energy source/sink term, hl is the phase enthalpy of phase l, Ul is the internal energy

of phase l, and K is the total conductivity of the �uids and rock. Unlike the isothermal case, the mass305

density �l and enthalpy hl of each phase depends on the phase state of the �uid. For single-phase

conditions, �l and hl are functions of pressure and temperature. The thermodynamic relationships of

water are taken from Faust and Mercer [50]. However, for two-phase conditions, �l and hl will depend

only on the pressure because now pressure and temperature are dependent: we have p = psat(T ),

where psat is the saturated pressure as a function of temperature. To model the �ow rate of each310

phase, Darcy�s law is used to describe the �ow through the porous medium (43).

We adapted the geothermal implementation in AD-GPRS [51, 25] for the SIN method. The SIFP

for this problem su�ers from a large number of outer iterations [25], thus making it a suitable problem

to test the e�ectiveness of SIN.

4.1. Fully Coupled Formulation315

For the fully coupled solution, we discretized the mass and energy conservation equations in space

using the two-point �ux approximation (TPFA) �nite-volume method with single-point upstream

weighted for the �ux discretization. We used a pressure-enthalpy formulation[52]. After discretization,

we obtain a discrete algebraic problem of the form:

�
�

�
RF (pn+1, hn+1) = 0,

RT (pn+1, hn+1) = 0,
(46)

where320

� pn+1, hn+1 � RNc is the vector of pressures and enthalpies at each of the Nc cell centers at time

tn+1;

� RF : RNc × RNc 	 RNc is the residual form of the mass conservation equation, as a function of

pressure and enthalpy;1

� RT : RNc × RNc 	 RNc is the residual form of the energy balance equations (45).325

At the start of each timestep, we use the solution of the previous time step (pn, hn) as the initial

guess. Thus, fully coupled iterative process for the �ow-thermal problem is:

1This is di�erent from the RF for the �ow-mechanics problem. However, as we will not talk about both problems

simultaneously, no confusion should arise, so we prefer to use the same notation for both �ow equations.
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1. Solve for pk+1
n+1, h

k+1
n+1 for:

�

�
�RF
�p

�RF
�h

�RT
�p

�RT
�h

�

�
k

n+1

�

��pk

�hk

�

� =

�

�RF (pkn+1, hk
n+1)

RT (pkn+1, hk
n+1)

�

� (47)

where

� �pk = pk+1
n+1 � pkn+1

� �hk = hk+1
n+1 � hk

n+1330

� The Jacobian matrices �RF
�p , �RF

�h , �RT
�p , �RT

�h are all evaluated at (pkn+1, hk
n+1)

2. Step 1 is repeated until convergence:

				RF (pk+1
n+1, h

k+1
n+1)

				
� � �p and

				RT (pk+1
n+1, h

k+1
n+1)

				
� � �T . (48)

4.2. Sequential Formulation

We apply the general formulation described in Section 2.1 to the �ow and thermal problem, and

we describe the solution process for solving each of the steps in terms of the speci�c primary variables

and constraints applied for the �ow and thermal problem.335

At the start of each timestep, we use the solution of the previous timestep as the initial guess

x0
n+1 = (p0n+1, h0

n+1) = (pn, hn) = xn. Where p0n+1 = p0 � RNc and h0
n+1 = h0 � RNc are the pressure

and enthalpy at the cell centers (Nc is the number of cells). For simplicity, we will now drop the

subscript n + 1 as all following terms represent the solution for the n + 1 timestep. The sequential

iterative process for the �ow-thermal problem is:340

1. Solve for p� where RF (p�, hk)=0, the constraint for his case is h� = hk, so we do not need to

compute the Jacobian for the b constraint. Convergence is de�ned as
				RF (p�, hk)

				
� � �F ;

2. Solve for p��, h�� where RT (p��, h��) = 0, while satisfying c(p�, hk) = c(p��, h��), here c is the

constraint employed. Convergence is de�ned as:

||RT (p��, h��)||� � �T and
				c(p�, h0)� c(p��, h��)

				
� � �T ;

3. Update xk+1 by �xed-point iteration or Newton�s method;

4. Repeat steps 1-3 until convergence:

				RF (pk+1, hk+1)
				
� � �F and

				RT (pk+1, hk+1)
				
� � �T . (49)

4.3. Constraints

In this study, we investigated three di�erent constraints: �xed pressure, �xed density, and a hybrid345

approach [25]. All three constraints are applied in the second step when the thermal residual is solved.

24








































