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Prospect and Markowitz Stochastic Dominance

Abstract

Levy and Wiener (1998), Levy and Levy (2002, 2004) develop the Prospect and Markowitz

stochastic dominance theory with S-shaped and reverse S-shaped utility functions for

investors. In this paper, we extend their work on Prospect Stochastic Dominance theory

(PSD) and Markowitz Stochastic Dominance theory (MSD) to the first three orders and

link the corresponding S-shaped and reverse S-shaped utility functions to the first three

orders. We also provide experiments to illustrate each case of the MSD and PSD to

the first three orders and demonstrate that the higher order MSD and PSD cannot be

replaced by the lower order MSD and PSD. Furthermore, we formulate the following PSD

and MSD properties: hierarchy exists in both PSD and MSD relationships; arbitrage

opportunities exist in the first orders of both PSD and MSD; and for any two prospects

under certain conditions, their third order MSD preference will be ‘the opposite of’ or ‘the

same as’ their counterpart third order PSD preference. By extending the work of Levy

and Wiener and Levy and Levy, we provide investors with more tools to identify the first

and third order PSD and MSD prospects and thus they could make wiser choices on their

investment decision.

Keywords: Prospect stochastic dominance, Markowitz stochastic dominance, risk

seeking, risk averse, S-shaped utility function, reverse S-shaped utility function

JEL Classification: D81, C91



1 Introduction

According to the von Neuman and Morgenstern (1944) expected utility theory, the func-

tions for risk averters and risk seekers are concave and convex respectively, and both are

increasing functions. Comparing the utility functions and the stochastic dominance (SD)

theory has generated great interest among academics. Linking the SD theory to the se-

lection rules for risk averters under different restrictions on the utility functions include

Quirk and Saposnik (1962), Fishburn (1964), Hanoch and Levy (1969), Whitmore (1970),

Hammond (1974) and Tesfatsion (1976). Linking the SD theory to the selection rules for

risk seekers include Hammond (1974), Meyer (1977), Stoyan (1983), Levy and Wiener

(1998), Wong and Li (1999) and Anderson (2004).

Examining the relative attractiveness of various forms of investments, Friedman and

Savage (1948) claim that the strictly concave functions may not be able to explain the

behavior why investors buy insurance or lottery tickets. Markowitz (1952), the first to

address Friedman and Savage’s concern, proposes a utility function which has convex

and concave regions in both the positive and the negative domains1 while Gneezy, et

al. (2006) suggest that there are choice situations in which decision makers discount

lotteries for uncertainty in a manner that cannot be accommodated by standard models

of risky choice. To support Markowitz’s proposed utility function, Williams (1966) reports

data where a translation of outcomes produces a dramatic shift from risk aversion to risk

seeking while Fishburn and Kochenberger (1979) document the prevalence of risk seeking

in choices between negative prospects. Kahneman and Tversky (1979) and Tversky and

Kahneman (1992) claim that the (value) utility function2 is concave for gains and convex

for losses, yielding an S-shaped function. They also develop a formal theory of loss aversion

1Ng (1965) and Machina (1982) also provide other explanations to Friedman and Savage’s paradox.
2Kahneman and Tversky (1979) and Tversky and Kahneman (1992) call it value function. For sim-

plicity, we call it utility function. There will be more discussion in Section 2.
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called prospect theory in which investors can maximize the expectation of the S-shaped

utility function. It is one of the most popular decision-making theories about risk-taking

and has gained much attention from economists and professionals in the financial sector.

Thereafter, a stream of papers building economic or financial models on the prospect

theory has been written, for example, Shefrin and Statman (1993), Benartzi and Thaler

(1995), Levy and Wiener (1998), Levy and Levy (2002, 2004) and Wang and Fischbeck

(2004). There have also been many empirical and experimental attempts to test the

prospect theory, for example, the equity premium puzzle by Benartzi and Thaler (1995)

and the buying strategies of hog farmers by Pennings and Smidts (2003). Most of these

studies support the prospect theory. The prospect theory has also been widely applied in

Economics and Finance, see for example, Myagkov and Plott (1997), and Levy and Levy

(2004).

Noticing the presence of risk seeking in preferences among positive as well as negative

prospects, Markowitz (1952) also proposes another type of utility functions different from

the pure S-shaped utility functions used in the prospect theory. He suggests a utility

which is first concave, then convex, then concave, and finally convex to explain Friedman

and Savage’s question about why investors buy insurance and buy lotteries tickets. Using

sequential gambles technique, Thaler and Johnson (1990) obtain experimental evidence

to show that prior outcomes affect subsequent behavior in a way that is contrary to the

static version of the prospect theory. In particular, subjects are more risk seeking following

gains and more risk averse following losses. This implies that in a dynamic context, a

reverse S-shaped utility function may be more descriptive of actual behavior. Levy and

Wiener (1998) further develop the theory for the reverse S-shaped utility functions for

investors. Levy and Levy (2002) are the first to extend the work of Markowitz (1952),

Kahneman and Tversky (1979), Tversky and Kahneman (1992), Thaler and Johnson

(1990) and Levy and Wiener (1998). They develop a new criterion called Markowitz
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Stochastic Dominance (MSD) to determine the dominance of one investment alternative

over another for all reverse S-shaped functions, and another criterion called Prospect

Stochastic Dominance (PSD) to determine the dominance of one investment alternative

over another for all prospect theory S-shaped utility functions.

Working along similar lines as Whitmore (1970) who extends the second order SD

developed by Quirk and Saposnik (1962) and others to the third order SD for risk averters,

in this paper, we first extend the work of Levy and Levy to take the PSD and MSD to

the first three orders SD and link the corresponding S-shaped and reverse S-shaped utility

functions to the first three orders.

Another contribution of Levy and Levy to the literature is to prove the second order

PSD and MSD satisfy the expected utility paradigm which is an important issue in the

literature. Arrow (1971) first points out that an individual with unbounded utility must

violate either the completeness or the continuity axiom of the expected utility theory

while Machina (1982) suggests that the expected utility analysis is too theoretical and

may not be empirically valid. Swalm (1966), Kahneman and Tversky (1979), Kahneman

et al. (1990), and Barberis, Huang, and Santos (2001) also mount a critique of expected

utility theory. Rabin (2000) also points out that the expected utility cannot explain

loss aversion which accounts for the modest-scale risk aversion for both large and small

stakes typically observed in empirical studies. To circumvent this problem, Kahneman and

Tversky (1979) suggest employing the certainty equivalent approach to study the negative

and the positive domains separately. Nonetheless, the PSD and MSD developed in Levy

and Wiener (1998) and Levy and Levy (2002, 2004) bypass the above problems. Moreover,

they show that both MSD and PSD satisfy the expected utility paradigm. Following Levy

and Levy, another contribution of this article is to examine the compatibility of both the

extended MSD and PSD with the expected utility theory and proves that both MSD and

PSD of any order are consistent with the expected utility theory.
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In addition, we provide experiments to illustrate each case of the MSD and PSD to

the first three orders and demonstrate that the higher order MSD and PSD cannot be

replaced by the lower order MSD and PSD. We also develop some other properties for the

extended MSD and PSD as follows: hierarchy exists in both PSD and MSD; arbitrage

opportunities exist for the first orders of both PSD and MSD; and for any two prospects

under certain conditions, their third order MSD preference will be ‘the opposite of’ or ‘the

same as’ their third order counterpart PSD preference. In terms of empirical analysis, our

approach is superior to Levy and Levy’s as the definitions of the extended PSD and MSD

developed in our paper enable investors to identify the MSD and PSD prospects to the

first three orders. With more information, investors can make wiser decisions with their

investments. For example, when an investor has identified the first order PSD and MSD

prospects, the arbitrage opportunities are revealed. In addition, by identifying the third

order PSD and MSD prospects, an investor can make wiser choices about these prospects.

However, Levy and Levy’s approach only allows investors to identity the MSD and PSD

to the second order. Without the extended PSD and MSD definitions, Levy and Levy’s

investors would not have as much information as ours to make their investment decisions.

The paper is organized as follows. We begin by introducing definitions and notations

in the next section. Section 3 develops several theorems and properties for the extended

MSD and PSD. Section 4 provides illustrations for MSD and PSD to the first three orders

and demonstrates that the higher order MSD and PSD cannot be replaced by the lower

order MSD and PSD. Section 5 concludes our findings.

2 Definitions and Notations

Let R be the set of real numbers and R be the set of extended real numbers. Ω = [a, b] is

a subset of R in which a < 0 and b > 0 and they can be finite or infinite. Let B be the
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Borel σ-field of Ω and µ be a measure on (Ω,B). We first define the functions F and FD

of the measure µ on the support Ω as

F (x) = µ[a, x] and FD(x) = µ[x, b] for all x ∈ Ω . (1)

Function F is a probability distribution function and µ is a probability measure if µ(Ω) = 1.

In this paper, the definition of F is slightly different from the ‘traditional’ definition of a

distribution function. We follow the basic probability theory that for any random variable

X and for any probability measure P , there exists a unique induced probability measure

µ on (Ω,B) and a probability distribution function F such that F satisfies (1) and

µ(B) = P (X−1(B)) = P (X ∈ B) for any B ∈ B .

An integral written in the form of
∫

A
f(t) d µ(t) or

∫
A

f(t) dF (t) is a Lebesgue integral

for any integrable function f(t). If the integral has the same value for any set A which is

equal to (c, d], [c, d) or [c, d], then we use the notation
∫ d

c
f(t) d µ(t) instead. In addition,

if µ is a Borel measure with µ(c, d] = d − c for any c < d, then we write the integral as
∫ d

c
f(t) dt.

Random variables, denoted by X and Y defined on Ω are considered together with

their corresponding probability distribution functions F and G and their corresponding

probability density functions f and g respectively. The following notations will be used

throughout this paper:

µF = µX = E(X) =

∫ b

a

x d F (x), µG = µY = E(Y ) =

∫ b

a

x d G(x) ;

f(x) = FA
0 (x) = FD

0 (x), g(x) = GA
0 (x) = GD

0 (x)

HA
n (x) =

∫ x

a

HA
n−1(y) dy , HD

n (x) =

∫ b

x

HD
n−1(y) dy n = 1, 2, 3; (2)

where H = F or G. The above definitions have been commonly used in the literature,

5



see for example, Wong and Li (1999), Li and Wong (1999) and Anderson (2004). All

functions are assumed to be measurable and all random variables are assumed to satisfy:

FA
1 (a) = 0 and FD

1 (b) = 0. (3)

Condition (3) will hold for any random variable except a random variable with positive

probability at the points of negative infinity or positive infinity. For H = F or G, we

define the following functions for MSD and PSD:

Ha
1 (x) = H(x) = HA

1 (x), Hd
1 (x) = 1−H(x) = HD

1 (x);

Dear Raymond, should we define Ha
1 and Hd

1 as below? (4)

Ha
1 (x) = HA

1 (x)−HA
1 (0) for x ≥ 0

Hd
1 (x) = HD

1 (x)−HD
1 (0) for x ≤ 0

Hd
i (y) =

∫ 0

y

Hd
i−1(t)dt, y ≤ 0; and

Ha
i (x) =

∫ x

0

Ha
i−1(t)dt, x ≥ 0 for i = 2, 3 . (5)

In order to make the computation easier, we further define

HM
i (x) =





HA
i (x) x ≤ 0

HD
i (x) x > 0 ;

HP
i (x) =





Hd
i (x) x ≤ 0

Ha
i (x) x > 0 ;

(6)

where H = F and G and i = 1, 2 and 3.

We note that the definition of HA
i can be used to develop the stochastic dominance the-

ory for risk averters (see, for example, Quirk and Saposnik 1962, Fishburn 1964, Hanoch

and Levy 1969) and thus we could call this type of SD Ascending Stochastic Dominance
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(ASD) and call HA
i to be the ith order ASD integral or the ith order cumulative prob-

ability as HA
i is integrated in ascending order from the leftmost point of downside risk.

On the other hand, HD
i can be used to develop the stochastic dominance theory for risk

seekers (see, for example, Meyer 1977, Stoyan 1983, Levy and Wiener 1998, Wong and Li

1999, and Anderson 2004) and thus we could call this type of SD Descending Stochastic

Dominance (DSD) and call HD
i to be the ith order DSD integral or the ith order reversed

cumulative probability as HD
i is integrated in descending order from the rightmost point

of upside profit. Typically, risk averters prefer assets that have a smaller probability of

losing, especially in downside risk while risk seekers prefer assets that have a higher prob-

ability of gaining, especially in upside profit. To make a choice between two assets F or

G, risker averters will compare their corresponding ith order ASD integrals FA
i and GA

i

and choose F if FA
i is smaller since it has a smaller probability of losing. On the other

hand, risk seekers will compare their corresponding ith order DSD integrals FD
i and GD

i

and choose F if FD
i is bigger since it has a higher probability of gaining.

As pointed out by Markowitz (1952) and many others, investors’ behaviors can be

different in the positive and negative domains of the return. Without loss of generality, in

this paper, ‘upside profit’ refers to the positive domain of the return and ‘downside risk’

the negative domain of return. We first consider the function HM
i which is equal to HA

i

in downside risk and equal to HD
i in upside profit. By comparing the FM

i and GM
i of the

two assets F and G, we study whether we could choose an asset which shows a smaller

probability in downside risk and a bigger probability in upside profit. Once we find F

such that it has a smaller ASD integral in downside risk and a higher DSD integral in

upside profit, one may believe that F has the best of both worlds – a smaller probability

of losing in downside risk and a larger probability to gain in upside profit. On the other

hand, in this paper we also study the properties of the function HP
i which is equal to

ASD integral (Ha
i ) in upside profit and equal to the DSD integral (Hd

i ) in downside risk.

As shown in next section, our paper shows that HM
i can be used to develop the MSD
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theory while HP
i can be used to develop the PSD theory.3 We first state in the following

definitions for this purpose:

Definition 1. Given two random variables X and Y with F and G as their respective

probability distribution functions, X is at least as large as Y and F is at least as large as

G in the sense of:

a. FMSD, denoted by X ºM
1 Y or F ºM

1 G, if and only if FM
1 (−x) ≤ GM

1 (−x) and

FM
1 (x) ≥ GM

1 (x) for each x ≥ 0;

b. SMSD, denoted by X ºM
2 Y or F ºM

2 G, if and only if FM
2 (−x) ≤ GM

2 (−x) and

FM
2 (x) ≥ GM

2 (x) for each x ≥ 0;

c. TMSD, denoted by X ºM
3 Y or F ºM

3 G, if and only if FM
3 (−x) ≤ GM

3 (−x) and

FM
3 (x) ≥ GM

3 (x) for each x ≥ 0;

where FMSD, SMSD, and TMSD stand for the first, second and third order Markowitz

Stochastic Dominance (MSD) respectively.

If, in addition, there exists an x in [a, b] such that FM
i (x) < GM

i (x) with x < 0 or

FM
i (x) > GM

i (x) with x > 0 for i = 1, 2 and 3, we say that X is larger than Y and F

is larger than G in the sense of SFMSD, SSMSD, and STMSD, denoted by X ÂM
1 Y or

F ÂM
1 G,X ÂM

2 Y or F ÂM
2 G, and X ÂM

3 Y or F ÂM
3 G respectively, where SFMSD,

SSMSD, and STMSD stand for strictly first, second and third order Markowitz Stochastic

Dominance respectively.

Definition 2. Given two random variables X and Y with F and G as their respective

probability distribution functions, X is at least as large as Y and F is at least as large as

G in the sense of:

3Thus, we call the function HM
i the ith order MSD integral and call the function HP

i the ith order
PSD integral.
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a. FPSD, denoted by X ºP
1 Y or F ºP

1 G, if and only if F P
1 (−x) ≥ GP

1 (−x) and

F P
1 (x) ≤ GP

1 (x) for each x ≥ 0;

b. SPSD, denoted by X ºP
2 Y or F ºP

2 G, if, and only if, F P
2 (−x) ≥ GP

2 (−x) and

F P
2 (x) ≤ GP

2 (x) for each x ≥ 0;

c. TPSD, denoted by X ºP
3 Y or F ºP

3 G, if and only if F P
3 (−x) ≥ GP

3 (−x) and

F P
3 (x) ≤ GP

3 (x) for each x ≥ 0;

where FPSD, SPSD, and TPSD stand for the first, second and third order Prospect

Stochastic Dominance (PSD) respectively.

If, in addition, there exists an x in [a, b] such that F P
i (x) > GP

i (x) with x < 0 or

F P
i (x) < GP

i (x) with x > 0 for i = 1, 2 and 3, we say that X is larger than Y and F

is larger than G in the sense of SFPSD, SSPSD, and STPSD, denoted by X ÂP
1 Y or

F ÂP
1 G,X ÂP

2 Y or F ÂP
2 G, and X ÂP

3 Y or F ÂP
3 G respectively, where SFPSD,

SSPSD, and STPSD stand for strictly first, second and third order Prospect Stochastic

Dominance respectively.

Levy and Levy (2002) define the MSD and PSD functions as:

HM(x) =





∫ x

a
H(t) dt x < 0

∫ b

x
H(t) dt x > 0

HP (x) =





∫ 0

x
H(t) dt x < 0

∫ x

0
H(t) dt x > 0

(7)

where H = F and G. MSD and PSD are expressed in the following definition:

Definition 3.

a. F ºMSD G if FM(x) ≤ GM(x) for all x; and

b. F ºPSD G if F P (x) ≤ GP (x) for all x.

9



One can easily show that F ºMSD G if and only if F ºM
2 G and F ºPSD G if and only if

F ºP
2 G. Hence, the MSD and PSD defined in Levy and Levy are the same as the second

order MSD and PSD defined in our paper. We note that Levy and Wiener (1998) and

Levy and Levy (2004) define PSD as F ºPSD G if and only if

0 ≤
∫ x2

x1

[G(z)− F (z)] dz for all x1 ≤ 0 ≤ x2

with at least one strict inequality.

Definition 4. n = 1, 2, 3, UA
n , USA

n , UD
n and USD

n are the sets of the utility functions u

such that:

UA
n (USA

n ) = {u : (−1)i+1u(i) ≥ (>) 0 , i = 1, · · · , n} ;

UD
n (USD

n ) = {u : u(i) ≥ (>) 0 , i = 1, · · · , n} ;

US
n (USS

n ) = {u : u+ ∈ UA
n (USA

n ) and u− ∈ UD
n (USD

n ) , i = 1, · · · , n} ;

UR
n (USR

n ) = {u : u+ ∈ UD
n (USD

n ) and u− ∈ UA
n (USA

n ) , i = 1, · · · , n} .

where u(i) is the ith derivative of the utility function u, u+ = u restricted for x ≥ 0 and

u− = u restricted for x ≤ 0.

Note that the theory can be easily extended to satisfy utilities defined in Definition

4 to be non-differentiable. In this paper, we will skip the discussion of non-differentiable

utilities. It is noted that investors in UA
n is risk averse while investors in UD

n is risk seeking.

Investors in UR
n with reversed S-shaped utility functions are risk seeking for gains but risk

aversion for losses while investors in US
n with S-shaped utility functions are risk averse

for gains but risk seeking for losses. Refer to Figure 1 for the shape of utility functions

in UA
2 , UD

2 , UR
2 and US

2 and refer to Figure 2 for the shape of the first derivatives of the

utility functions in UA
3 , UD

3 , UR
3 and US

3 respectively.
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An individual choosing between F and G in accordance with a consistent set of pref-

erences will satisfy the Von Neumann-Morgenstern (1944) consistency properties. Ac-

cordingly, F is (strictly) preferred to G, or equivalently, X is (strictly) preferred to Y

if

∆Eu ≡ u(F )− u(G) ≡ u(X)− u(Y ) ≥ 0(> 0), (8)

where u(F ) ≡ u(X) ≡ ∫ b

a
u(x)dF (x) and u(G) ≡ u(Y ) ≡ ∫ b

a
u(x)dG(x).

There is an ongoing debate in the literature regarding the shape of the utility functions.

The utility functions UA
2 and USA

2 advocated in the literature depict the concavity of the

utility function, which is equivalent to risk aversion, according to the notion of decreasing

marginal utility. The prevalence of risk aversion is the best known generalization regarding

risky choices and was popular among the early decision theorists of the twentieth century

(Pratt 1964, Arrow 1971).

Noticing the presence of risk seeking in preferences among positive as well as negative

prospects, Markowitz (1952) proposes a utility function which has convex and concave

regions in both the positive and the negative domains. The regions are first concave,

then convex, then concave, and finally convex. This utility function could be used to

explain the purchasing of both insurance and lotteries observed by Friedman and Savage

(1948). The portion of this utility function that has convex and concave regions in the

negative and the positive domains respectively is equivalent to US
2 defined in our paper

and forms a S-shaped utility function. Later, Kahneman and Tversky (1979) and Tversky

and Kahneman (1992) formally develop the prospect theory to link up the S-shaped utility

functions. Similarly, the portion that has concave and convex regions in the negative and

the positive domains respectively is equivalent to UR
2 defined in our paper and forms a

reverse S-shaped utility function (Thaler and Johnson 1990; Levy and Wiener 1998; Levy

and Levy 2002, 2004).

Whitmore (1970) extends the second order SD developed by Quirk and Saposnik (1962)
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and others to the third order SD and improves the linkage of SD to the utility functions for

risk averse investors up to UA
3 . In this paper, we extend PSD and MSD developed by Levy

and Levy to the first three orders and improve the linkage of PSD and MSD to the utility

functions up to US
3 and UR

3 . Details of these linkages are discussed in the next section.

One can easily show that US
1 and UR

1 are equivalent to UA
1 and UD

1 ; all of these are simply

sets of increasing utility functions. The set US
2 containing S-shaped utility functions, with

concave and convex regions in the positive and the negative domains respectively, and the

set UR
n containing reverse S-shaped utility functions, with convex and concave regions

in the positive and the negative domains respectively, have been discussed in detail in

the literature, for example, see Markowitz (1952), Thaler and Johnson (1990), Levy and

Wiener (1998) and Levy and Levy (2002, 2004). A utility in US
3 is increasing with its

marginal utility decreasing in the positive domain but increasing in the negative domain,

and is graphically convex in both the positive and negative domains. On the other hand,

a utility in UR
3 is increasing with its marginal utility increasing in the positive domain

but decreasing in the negative domain, and is graphically convex in both the positive

and negative domains. In order to draw a clearer picture for both the second and third

orders SD, we define the following Pratt-Arrow risk aversion at ω for an individual with

the utility function u:

r(ω) = −u(2)(ω)

u(1)(ω)
= −d log u(1)(ω)

dω
. (9)

where u(i) is the ith derivative of the utility function u.

With the definition of risk aversion, one can easily show the relationship between risk

aversion and the sets of utility functions defined in Definition 4. For example, if u ∈ US
2 ,

then its risk aversion will be positive in the positive domain and negative in the negative

domain. Similarly, if u ∈ UR
2 , then its risk aversion will be negative in the position

domain and positive in the negative domain. In addition, if the risk aversion is positively

decreasing in the positive domain and negatively decreasing in the negative domain, then
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the utility function belongs to u ∈ US
3 . On the other hand, if the risk aversion is negatively

decreasing in the positive domain but positively decreasing in the negative domain, then

the utility function belongs to u ∈ UR
3 . Investors with utility u is well-known to have

Decreasing Absolute Risk Aversion (DARA) behavior if u(1) > 0, u(2) < 0 and u(3) > 0,

see for example, Falk and Levy (1989). We can say that investors with utility functions

u ∈ US
3 have DARA behavior in the positive domain and investors with utility functions

u ∈ UR
3 have DARA behavior in the negative domain.

Let us turn to the empirical evidence on the S-shaped or reverse S-shaped utility

functions. It is well-known that under the expected utility theory, convexity of utility is

equivalent to risk seeking while concavity is equivalent to risk aversion. Empirical mea-

surements generally corroborate with the concavity in the utility for gains, for example,

see Fishburn and Kochenberger (1979) and Fennema and van Assen (1999). However, the

behavior of gamblers reveals convexity for gains (Friedman and Savage 1948; Markowitz

1952). For the utility for losses, some studies find convexity while some find concavity.

For example, Fishburn and Kochenberger (1979) and Pennings and Smidts (2003) find

convex utility for losses for the majority of cases and concave utility for losses for a sizable

minority of subjects. Despite the studies of Currim and Sarin (1989) and Myagkov and

Plott (1997), no conclusive evidence in favor of convex utility for losses is provided, which

would have supported the reverse S-shaped utility functions. On the other hand, Wu and

Gonzalez (1996) propose to use preference ‘ladders’ to test for concavity and convexity

of the weighting function. They validate the findings of an S-shaped weighting function,

concave up to p < .40, and convex beyond that probability. Nevertheless, using sequential

gambles technique, Thaler and Johnson (1990) obtain experimental evidence to show that

prior outcomes affect subsequent behavior in a way that subjects are more risk seeking

following gains and more risk averse following losses. This supports the reverse S-shaped

utility function behavior.
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Finally, we note that in the prospect theory developed by Kahneman and Tversky

(1979) and Tversky and Kahneman (1992), the S-shaped utility function is called the

value function as it is attuned to the evaluation of changes or differences of wealth rather

than the evaluation of absolute magnitudes. In this paper, we simply call it utility function

as we do not restrict its applications to total wealth or the changes or differences of wealth.

We also note that Levy and Wiener (1998) define Up and Levy and Levy (2002) define

VKT as the class of all prospect theory value S-shaped functions with an inflection point

at x = 0 where the subscripts KT denote Kahneman and Tversky. This is the same as our

US
2 . They also define VM as the class of all Markowitz utility functions which are reverse S-

shaped, with an inflection point at x = 0, where the subscript M denotes Markowitz. This

is the same as our UR
2 . In addition, prospect theory assumes loss aversion which reflects

the observed behavior that agents are more sensitive to losses than to gains, resulting

in the value functions for losses are usually restricted to be steeper than their shapes for

gains.4 In another words, the investors are downside risk averse and could be measured by

loss aversion.5 In Definition 4, we do not include this restriction in the definition of US
2 .

However, US
2 is a more general class of S-shaped utility functions containing all the value

functions with this restriction and hence the theory of loss aversion and value function

satisfy the theory developed in this paper.

3 Theory

In this section we develop the basic theorems and some basic properties for MSD and

PSD. We first introduce the basic theorem linking the MSD of the first three orders to

4see for example, Kahneman and Tversky (1979), Tversky and Kahneman (1992), Barberis, Huang
and Santos (2001) and Wakker (2003).

5see for example, Chateauneuf and Cohen (1994), Rabin (2000), Rizzo and Zeckhauser (2004) and
Kobberling and Wakker (2005).
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investors with reverse S-shaped utility functions to the first three orders:

Theorem 1. Let X and Y be random variables with probability distribution functions

F and G respectively. Suppose u is a utility function. For i = 1, 2 and 3, we have

F ºM
i (ÂM

i )G if and only if u(F ) ≥ (>)u(G) for any u in UR
i (USR

i ).

Refer to Appendix A for the proof of Theorem 1. We next introduce the theorem linking

PSD to investors with S-shaped utility functions to the first three orders:

Theorem 2. Let X and Y be random variables with probability distribution functions

F and G respectively. Suppose u is a utility function. For i = 1, 2 and 3, we have

F ºP
i (ÂP

i )G if and only if u(F ) ≥ (>)u(G) for any u in US
i (USS

i ).

See Appendix B for the proof of Theorem 2. The SD results for risk averters and risk

seekers similar to the above two theorems have been well explored. Linking the SD theory

to risk averters, there are Hadar and Russell (1971) and Bawa (1975) who prove that the

stochastic dominance results for continuous density functions are linked with continuously

differentiable utility functions; Hanoch and Levy (1969) and Tesfatsion (1976) who prove

the validity of the first and second order stochastic dominance for general distribution

functions; and Whitmore (1970) who extends their results and shows that the third order

stochastic dominance for risk averters holds true. Broadening the scope, Meyer (1977)

discusses the validity of the second order stochastic dominance for risk seekers and risk

averters while Stoyan (1983) proves that the first and second order stochastic dominance

results are applicable to risk seekers as well as risk averters. Furthermore, Levy and

Wiener (1998) and Levy and Levy (2002, 2004) develop the second order PSD and MSD

theories and link them to the second order S-shaped and reverse S-shaped utility functions.

We extend their work and link PSD and MSD of any order to the S-shaped and reverse

S-shaped utility functions as shown in the above two theorems.
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Many studies claim that the prospect theory is a critique of the expected utility theory

as the convexity of the value function is different in the positive domain from that in the

negative domain. Levy and Levy (2002) prove that both the second order MSD and PSD

satisfy the expected utility paradigm. In this paper, we extend Levy and Levy’s results

to examine the compatibility of the MSD and PSD of any order with the expected utility

theory and prove that the MSD and PSD of any order are consistent with the expected

utility paradigm as shown in the above two theorems.

Whitmore (1970) extends the second order SD to the third order SD for risk averters

and thereafter many academics demonstrate the usefulness of the third order SD, see for

example, Whitmore and Findley (1978), Shorrocks and Foster (1987), Gotoh and Hiroshi

(2000) and Ng (2000). In addition, Hammond (1974) generalizes the SD theory to the

n-order for any integer n. Both the MSD and PSD theories can be extended to any order

in similar ways. However, we focus our discussion up to the first three orders in this

paper as the first three orders SD are of most importance in theory as well as empirical

applications.

It is well-known that hierarchy exists in SD relationships for risk averters and risk

seekers: the first order SD implies the second order SD which in turn implies the third

order SD in the SD rules for risk averters as well as risk seekers (Falk and Levy 1989).

Thus, the following hierarchical relationships for MSP and PSD are obtained:

Corollary 1. For any random variables X and Y , for i = 1 and 2, we have the

following:

a. if X ºM
i (ÂM

i )Y , then X ºM
i+1 (ÂM

i+1)Y ; and

b. if X ºP
i (ÂP

i )Y , then X ºP
i+1 (ÂP

i+1)Y .

The proof of Corollary 1 is straightforward. The results of this corollary suggest that

practitioners report the MSD and PSD results to the lowest order in empirical analyses.
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Levy and Levy (2002) show that it is possible for MSD to be ‘the opposite’ of PSD in

their second orders and that F dominates G in SPSD, but G dominates F in SMSD. In

the following corollary, we extend their result to include MSD and PSD to the second and

third orders:

Corollary 2. For any random variables X and Y , if F and G have the same mean

which is finite, then we have

a.

F ºM
2 (ÂM

2 )G if and only if G ºP
2 (ÂP

2 )F ; and (10)

b. if, in addition, either F ºM
2 (ÂM

2 )G or G ºP
2 (ÂP

2 )F holds, we have

F ºM
3 (ÂM

3 )G and G ºP
3 (ÂP

3 )F . (11)

The proof of (10) follows the paper by Levy and Levy, while (11) follows Corollary 1.

However, there are cases when distributions F and G have the same mean and do not

satisfy (10) yet satisfying (11) as shown in the following example:

Example 1: Consider the distribution functions

F (t) =





0 −1 ≤ t ≤ −7/8,

1/6 −7/8 ≤ t ≤ −3/4,

2(t + 1)/3 −3/4 ≤ t ≤ −1/2,

1/3 −1/2 ≤ t ≤ −1/4,

1/2 −1/4 ≤ t ≤ 0,

1−G(−t) 0 ≤ t ≤ 1,

and G(t) =





2(t + 1)/3 −1 ≤ t ≤ −3/4,

1/6 −3/4 ≤ t ≤ −5/8,

1/3 −5/8 ≤ t ≤ −1/2,

1/2 + t/3 −1/2 ≤ t ≤ 0,

1− F (−t) 0 ≤ t ≤ 1.

In this example, one can easily show that there is no SMSD and no SPSD dominance but
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F ºM
3 G and G ºP

3 F .6 The above corollary provides the conditions in which F is ‘the

opposite’ of G and the above example shows that there exist pairs of distributions which

are ‘opposites’ in the third order but not in the second order. On the other hand, we

find that under some regularities, F becomes ‘the same’ as G in the sense of TMSD and

TPSD as shown in the corollary below:

Corollary 3. If F and G satisfy

FA
2 (0) = GA

2 (0), FA
3 (0) = GA

3 (0), F a
2 (b) = Ga

2(b), and F a
3 (b) = Ga

3(b), (12)

then

F ºM
3 (ÂM

3 )G if and only if F ºP
3 (ÂP

3 )G .

The proof of Corollary 3 is straightforward.7 One should note that the assumptions in

(12) are very restrictive. In fact, if some of the assumptions are not satisfied, there exists

F and G such that G ºP
3 F but neither F ºM

3 G nor G ºM
3 F holds, as shown in the

following example:

Example 2: Consider

F (t) =





4(t + 1)/5 −1 ≤ t ≤ −3/4,

2t/5 + 1/2 −3/4 ≤ t ≤ −1/4,

(4t + 3)/5 −1/4 ≤ t ≤ 0,

1−G(−t) 0 ≤ t ≤ 1,

and G(t) =





0 −1 ≤ t ≤ −3/4,

2/5 −3/4 ≤ t ≤ 0,

1− F (−t) 0 ≤ t ≤ 1.

In this example, one can easily show that we do not have F ºM
3 G or G ºM

3 F but we

6The working is available on request.
7The proof is available on request.
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have G ºP
3 F .8 The above corollary and example show that under some regularities, F is

‘the same’ as G in the sense of TMSD and TPSD. One may wonder whether this ‘same

direction property’ could appear in FMSD vs FPSD and SMSD vs SPSD. In the following

corollary, we show that this is possible.

Corollary 4.

If the random variable X = p + qY and if p + qx ≥ (>)x for all x ∈ [a, b], then we

have X ºM
i (ÂM

i )Y and X ºP
i (ÂP

i )Y for i = 1, 2 and 3.

The proof of the above corollary is trivial. One may first modify the proofs from

Theorem 4 of Hadar and Russel (1971), Theorem 1’ of Tesfatsion (1976) or Theorem 8(a)

in Li and Wong (1999) to obtain the proof of Corollary 4 for i = 1. Thereafter, apply the

hierarchical property in Corollary 1 to obtain the proof of Corollary 4 for i = 2 and 3.

As shown by Levy and Levy (2002), MSD is generally not ‘the opposite’ of PSD. In

other words, if F dominates G in PSD, it does not necessarily mean that G dominates

F in MSD. This is easy to see because having a higher mean is a necessary condition for

dominance by both rules. Therefore, if F dominates G in the sense of PSD, and F has

a higher mean than G, G cannot possibly dominate F in the sense of MSD. The above

corollary goes one step further and shows that they could be ‘the same’ in the sense of

MSD and PSD. In addition, we derive the following corollary to show the relationship

between the first order MSD and PSD.

Corollary 5. For any random variables X and Y , we have:

X ºM
1 (ÂM

1 )Y if and only if X ºP
1 (ÂP

1 )Y .

The proof of Corollary 5 is straightforward.9 In addition, one can easily show that X

8The working is available on request.
9The proof is available on request.
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stochastically dominates Y in the sense of FMSD or FPSD if and only if X stochastically

dominates Y in the sense of the first order SD (FSD). Incorporating this into the Arbitrage

versus SD theorem in Jarrow (1986) will yield the following corollary:

Corollary 6. If the market is complete, then for any random variables X and Y ,

X ÂM
1 Y or if X ÂP

1 Y if and only if there is an arbitrage opportunity between X and Y

such that one will increase one’s wealth as well as one’s utility if one shifts the investments

from Y to X.

Jarrow (1986) defines a ‘complete’ market as ‘an economy where all contingent claims

on the primary assets trade.’ The Arbitrage versus SD theorem in Jarrow (1986) says

that if the market is complete, then X stochastically dominates Y in the sense of FSD if

and only if there is an arbitrage opportunity between X and Y . As X ºM
1 Y is equivalent

to X ºP
1 Y (see Corollary 5), both are equivalent to X stochastically dominates Y in

the sense of FSD. Corollary 6 holds when the Arbitrage versus SD theorem in Jarrow is

applied.

The safety-first rule is first introduced by Roy (1952) for decision making under un-

certainty. It stipulates choosing an alternative that provides a target mean return while

minimizing the probability of the return falling below some threshold of disaster. Bawa

(1978) takes the idea and examines the relationships between the SD and generalized

safety-first rules for arbitrage distributions. Jarrow (1986) first studies the relationship

between SD and arbitrage pricing and discovers the existence of the arbitrage opportuni-

ties in the SD rules. In this paper, we extend Jarrow’s work on arbitrage pricing to both

MSD and PSD.

Using the results in Theorems 1 and 2, we can call a person a first-order-MSD (FMSD)

investor if his/her utility function u belongs to UR
1 , and a first-order-PSD (FPSD) investor

if his/her utility function U belongs to US
1 . A second-order-MSD (SMSD) risk investor, a
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second-order-PSD (SPSD) risk investor, a third-order-MSD (TMSD) risk investor and a

third-order-PSD (TPSD) risk investor can be defined in the same way. From Definition

4 and the definition of risk aversion defined in (9), one can tell that the risk aversion of

a SPSD investor is positive in the positive domain and negative in the negative domain

and a SMSD investor’s risk aversion is negative in the positive domain and positive in the

negative domain. If one’s risk aversion is positive and decreasing in the positive domain

and negative and decreasing in the negative domain, then one is a TPSD investor; but

the reverse is not true. Similarly, if one’s risk aversion is negative and decreasing in the

positive domain and positive and decreasing in the negative domain, then one is a TMSD

investor. We summarize these results in the following corollary:

Corollary 7. For an investor with an increasing utility function u and risk aversion

r,

a. s/he is a SPSD investor if and only if her/his risk aversion r is positive in the

positive domain and negative in the negative domain;

b. s/he is a SMSD investor if and only if her/his risk aversion r is negative in the

positive domain and positive in the negative domain;

c. if her/his risk aversion r is always decreasing and is positive in the positive domain

and negative in the negative domain, then s/he is a TPSD investor; and

d. if her/his risk aversion r is always decreasing and is negative in the positive domain

and positive in the negative domain, then s/he is a TMSD investor.

The proof of Corollary 7 is straightforward.10 Corollary 7 states the relationships between

different types of investors and their risk aversions. We note that the converse of (c) and

(d) are not true.

10The proof is available on request.
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4 Illustration

In this section we illustrate each case of MSD and PSD to the first three orders by using

examples from Levy and Levy (2002) and modifying them. We first use Task III of

Experiment 3 in Levy and Levy (2002) which is a replication of the tasks in Kahneman

and Tversky (1979). In the experiment, $10,000 is invested in either stock F or Stock G

with the following dollar gain one month later and with probabilities f and g respectively,

as shown in Table 1.

We use the MSD and PSD integrals HM
i and HP

i for H = F and G and i = 1, 2 and

3 as defined in (6). To make the comparison easier, we define their differentials

GFM
i = GM

i − FM
i and GF P

i = GP
i − F P

i (13)

for i = 1, 2 and 3 and present the results of the MSD and PSD integrals with their

differentials for the first three orders in Tables 2 and 3.

In this example, Levy and Levy conclude that F ºMSD G but G ºPSD F while our

results show that F ºM
i G and G ºP

i F for i = 2 and 3. From Corollary 1, we know that

hierarchy exists in both MSD and PSD such that F ºM
2 G implies F ºM

3 G while G ºP
2 F

implies G ºP
3 F . Hence, one only has to report the lowest SD order. Our findings shows

that F ºM
2 G and G ºP

2 F , same as the findings in Levy and Levy. Our approach has

no advantage over Levy and Levy’s in this example. However, Levy and Levy’s approach

can only detect the second order MSD and PSD while our approach, by incorporating

the extended PSD and MSD, enables investors to compare MSD and PSD to any order.

In order to show the superiority of our approach, we modify the above experiment by

adjusting the probabilities f and g for investments F and G respectively. Reported in

Tables 4–6 are all other orders of both MSD and PSD. For simplicity, we only report the

differentials GFM
i and GF P

i and skip reporting their integrals. For easy comparison, we
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also report the MSD and PSD computation based on Levy and Levy’s formula:

GFM = GM − FM and GF P = GP − F P . (14)

Note that Levy and Levy define F ºMSD G if GFM(x) ≥ 0 for all x and F ºPSD G if

GF P (x) ≥ 0 for all x with some strict inequality.

In Table 4, if one adopts Levy and Levy’s approach, one will conclude that F ºMSD G

and F ºPSD G. However, if one applies our approach, one will conclude that F ºM
1 G and

F ºP
1 G, which is different from the conclusion drawn from Levy and Levy’s approach.

From Corollary 1, we know that hierarchy exists in both MSD and PSD such that F ºM
1 G

implies F ºM
2 G while G ºP

1 F implies G ºP
2 F . Hence, one only has to report the

lowest SD order. However, reporting the first order MSD and PSD obtained by using our

approach should be more appropriate.

In Table 5, if one uses Levy and Levy’s approach, one will conclude that neither

F ºMSD G nor F ºMSD G, instead G ºPSD F . However, if one applies our approach,

one will conclude that G ºP
2 F but F ºM

3 G, which is different from the conclusion

drawn from Levy and Levy’s approach. Similarly, in Table 6, if one uses Levy and Levy’s

approach, one will conclude that neither F ºPSD G nor F ºPSD G, instead G ºMSD F .

However, if one applies our approach, one will conclude that F ºM
2 G but G ºP

3 F ,

which is different from the conclusion drawn from Levy and Levy’s approach. Thus, our

approach reveals more information on both MSD and PSD.

The results from our illustrations are more informative for investors than Levy and

Levy’s because we identify the MSD and PSD prospects for the first three orders while

Levy and Levy only identify MSD and PSD for the second order, which may not truly

present the MSD and PSD nature of these prospects. As our approach can provide

investors with more information about investments opportunities, our approach could
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enable investors to make wiser decisions on investments. For example, in Table 4, using

Levy and Levy’s approach, SMSD and SPSD (also TMSD and TPSD) investors will choose

to invest on F rather than G and will increase their expected utilities but not their wealth

when shifting their investments from G to F . For FMSD and FPSD investors, they will

not be able to obtain any useful information at all. However, if investors adopt our

approach, it will be a completely different story. FMSD, SMSD, TMSD, FPSD, SPSD

and TPSD investors will choose to invest on F rather than G and all of them will increase

their expected utilities as well as their wealth when shifting their investments from G to

F . What’s more, our approach enables investors to identify that there is an arbitrage

opportunity between F and G and one could long F and short G and making good profit.

Furthermore, Levy and Levy’s approach will not be able to reveal any TMSD or TPSD

prospect, while ours will enable investors to identify them, which in turn provides useful

information for the TMSD and TPSD investors. If the approach by Levy and Levy is

applied, one will conclude neither MSD nor PSD. For the TMSD and TPSD investors,

they will not know about the relationships between these prospects and will miss these

investment opportunities. For example, referring to Table 5, TMSD investors will not be

able to decide which prospect to invest if they apply Levy and Levy’s approach. However,

if they apply our approach, they will invest in F rather than G and if they have invested

in G, our approach will tell them that they will increase their expected utilities if they

shift their investments from G to F . Similar conclusion can be made by TPSD investors

about the investment choices presented in Table 6. We note that SD for both risk averters

and risk seekers can be extended to any order. Our approach can also be easily extended

to any order. Hence if investors need to identify any prospect of MSP or PSD of an order

higher than three, they could easily extend our theory to meet their needs.
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5 Concluding Remarks

In this paper, we extend the MSD and PSD theory by first defining the MSD and PSD of

the first three orders and link them to the corresponding S-shaped and reverse S-shaped

utility functions to the first three orders. We then provide experiments to illustrate each

case of the MSD and PSD to the first three orders and demonstrate that the higher order

of MSD and PSD cannot be replaced by the lower order MSD and PSD. In addition,

we develop some properties for the extended MSD and PSD including the hierarchy that

exists in both PSD and MSD relationships; arbitrage opportunity that exists for the first

orders of both PSD and MSD; and for any two prospects satisfying certain conditions,

their third order of MSD preference will be ‘the opposite’ of or ‘the same’ as their third

order counterpart PSD preference.

Prospect theory is a paradigm challenging the expected utility theory. The main con-

troversy is the prospect theory’s S-shaped value function which describes preferences. This

has been discussed in our paper in detail and our conclusion is that it is consistent with

the expected utility theory. The next allegation is that the prospect theory invalidates the

expected utility theory as being “subjectively distorted probabilities” (Levy and Wiener

1998)11. This was later corrected by what is now known as Cumulative Prospect Theory,

see Starmer (2000) for the review of the subject. We suggest incorporating the Bayesian

approach (Matsumura, et al. 1990) and distribution-free statistics (see for example, Wong

and Miller 1990) into the subjective probability (see for example, Anscombe and Au-

mann 1963 and Machina and Schmeidler 1992) to estimate the subjectively distorted

probabilities. Prospect theory will satisfy the Bayesian expected utility maximization.

Thus, the problem that the prospect theory violates the expected utility theory could be

circumvented.

11We note that Wu et al. (2005) develop a critical test of the two prospect theories based on their
respective probability tradeoff consistency conditions.
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The advantage of the stochastic dominance approach is that we have a decision rule

which holds for all utility functions of certain class. Specifically, PSD (MSD) of any

order is a criterion which is valid for all S-shaped (reverse S-shaped) utility functions

of the corresponding order. Moreover, the SD rules for S-shaped and reverse S-shaped

utility functions can be employed with mixed prospects. We note that in our paper we

do not restrict the S-shaped utility functions to be steeper than their shapes for gains

as the restricted set in value functions defined by Kahneman and Tversky (1979) and

Tversky and Kahneman (1992). However, the class of S-shaped utility functions defined

in our paper is more general and contains all the value functions with this restriction.

Wakka (2003) claims that some examples in Levy and Levy (2002) violate this curvature

restriction on value function posited by prospect theory. In this paper, as we follow Levy

and Levy (2002)’s definition of S-shaped utility function without this curvature restriction.

Our examples could be set without this curvature restriction. However, one could easier

show that all examples with this curvature restriction will fit our theory well.

The MSD and PSD developed by Levy and Wiener (1998), Levy and Levy (2002, 2004)

and the extensions in our paper only link to the S-shaped and reverse S-shaped utility

functions. These utility functions are simplified version of the utility functions proposed

by Markowitz (1952) which have convex and concave regions in both the positive and the

negative domains. Empirical studies reveal a more complex behavior. For example, people

are mostly risk averse to prospects yielding a best outcome with a low probability but

they are mostly risk seeking to prospects yielding a worst outcome with a low probability

(Starmer 2000 and Luce 2000). Further research includes extension of the MSD and PSD

to link to this more complicated patterns of behavior.

These days, it is popular to apply SD to explain financial theories and anomalies,

for example, McNamara (1998), Post and Levy (2005), Post (2003), Kuosmanen (2004),

Fong et al. (2005) and Broll et al. (2006). Some apply the Levy and Levy approach to
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study risk averse and risk seeking behaviors. For example, Post and Levy (2005) study

risk seeking behaviors in order to explain the cross-sectional patterns of stock returns and

suggest that the reverse S-shaped utility functions can explain stock returns, with risk

aversion to losses and risk seeking for gains reflecting investors’ twin desire for downside

protection in bear markets and upside potential in bull markets. Using the second order

PSD and MSD introduced by Levy and Levy is too restrictive. We recommend that

financial analysts and investors apply the approach introduced in this paper and examine

the MSD and PSD relationships of different orders so that they can make wiser decisions

about their investments.
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Appendices

We only prove the necessary condition for both Theorems 1 and 2. The sufficient condition

can be proved by contradiction. Huang and Litzenberger (1988) and others have proved

the sufficeint condition of SD for risk averters. One could easily modify their proofs to

obtain the proof of sufficeint conditions in Theorems 1 and 2 of our paper.

Appendix A – Proof of Theorem 1:

Levy and Levy (2002) have proved the second order of Theorem 1. Suppose [a, b] is the

support with negative a and positive b, we modify and extend their proof to include the

first three orders of the MSD as follows:

∆Eu ≡ u(F )− u(G) ≡
∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x)

= [F (x)−G(x)]u(x)|ba −
∫ b

a

[F (x)−G(x)]u(1)(x) dx

=

∫ b

a

[G(x)− F (x)]u(1)(x) dx

=

∫ 0

a

[G(x)− F (x)]u(1)(x) dx +

∫ b

0

[G(x)− F (x)]u(1)(x) dx

=

∫ 0

a

[GA
1 (x)− FA

1 (x)]u(1)(x) dx +

∫ b

0

[FD
1 (x)−GD

1 (x)]u(1)(x) dx (15)

=

∫ 0

a

u(1)(x) d [GA
2 (x)− FA

2 (x)]−
∫ b

0

u(1)(x) d [FD
2 (x)−GD

2 (x)]

= [GA
2 (x)− FA

2 (x)]u(1)(x)
∣∣0
a
−

∫ 0

a

[GA
2 (x)− FA

2 (x)]u(2)(x) dx−

[FD
2 (x)−GD

2 (x)]u(1)(x)
∣∣b
0
+

∫ b

0

[FD
2 (x)−GD

2 (x)]u(2)(x) dx

= B1 +

∫ 0

a

[FA
2 (x)−GA

2 (x)]u(2)(x) dx +

∫ b

0

[FD
2 (x)−GD

2 (x)]u(2)(x) dx (16)
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= B1 +

∫ 0

a

u(2)(x) d [FA
3 (x)−GA

3 (x)]−
∫ b

0

u(2)(x) d [FD
3 (x)−GD

3 (x)]

= B1 + [FA
3 (x)−GA

3 (x)]u(2)(x)
∣∣0
a
−

∫ 0

a

[FA
3 (x)−GA

3 (x)]u(3)(x) dx−

[FD
3 (x)−GD

3 (x)]u(2)(x)
∣∣b
0
+

∫ b

0

[FD
3 (x)−GD

3 (x)]u(3)(x) dx

= B1 + B2 +

∫ 0

a

[GA
3 (x)− FA

3 (x)]u(3)(x) dx +

∫ b

0

[FD
3 (x)−GD

3 (x)]u(3)(x) dx (17)

where

B1 = [GA
2 (0)− FA

2 (0) + FD
2 (0)−GD

2 (0)]u(1)(0) and

B2 = [FA
3 (0)−GA

3 (0) + FD
3 (0)−GD

3 (0)]u(2)(0) . (18)

From (15), we have if F ºM
1 G then FD

1 (x) ≥ GD
1 (x) for x ≥ 0 and FA

1 (x) ≤ GA
1 (x) for

x ≤ 0. If u ∈ UR
1 then u(1) ≥ 0. Hence ∆Eu = u(F )− u(G) ≥ 0.

If F ºM
2 G, then FD

2 (x) ≥ GD
2 (x) for x ≥ 0 and FA

2 (x) ≤ GA
2 (x) for x ≤ 0. If in addition,

u ∈ US
2 then u(1) ≥ 0, u(2)(x) ≥ 0 for x ≥ 0 and u(2)(x) ≤ 0 for x ≤ 0. From (18), B1 ≥ 0,

and hence from (16), ∆Eu = u(F )− u(G) ≥ 0.

If F ºM
3 G, then FD

3 (x) ≥ GD
3 (x) for x ≥ 0 and FA

3 (x) ≤ GA
3 (x) for x ≤ 0. If in addition,

u ∈ UR
3 then u(1) ≥ 0, u(2)(x) ≥ 0 for x ≥ 0, u(2)(x) ≤ 0 for x ≤ 0, u(2)(0) = 0 and

u(3) ≥ 0. From (18), we have B2 = 0 and hence from (17), ∆Eu = u(F )− u(G) ≥ 0.
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Appendix B – Proof of Theorem 2:

Levy and Levy (2002) have proved the second order of Theorem 2. Suppose [a, b] is the

support with negative a and positive b, we modify and extend their proof to include the

first three orders of the PSD as follows:

∆Eu ≡ u(F )− u(G) ≡
∫ b

a

u(x)dF (x)−
∫ b

a

u(x)dG(x)

=

∫ 0

a

[G(x)− F (x)]u(1)(x) dx +

∫ b

0

[G(x)− F (x)]u(1)(x) dx

=

∫ 0

a

[F d
1 (y)−Gd

1(y)]u(1)(y) dy +

∫ b

0

[Ga
1(x)− F a

1 (x)]u(1)(x) dx (19)

=

∫ 0

a

u(1)(y) d [Gd
2(y)− F d

2 (y)] +

∫ b

0

u(1)(x) d [Ga
2(x)− F a

2 (x)]

= [Gd
2(y)− F d

2 (y)]u(1)(y)
∣∣0
a
+

∫ 0

a

[F d
2 (y)−Gd

2(y)]u(2)(y) dy

+ [Ga
2(x)− F a

2 (x)]u(1)(x)
∣∣b
0
+

∫ b

0

[F a
2 (x)−Ga

2(x)]u(2)(x) dx

= B2 +

∫ 0

a

[F d
2 (y)−Gd

2(y)]u(2)(y) dy +

∫ b

0

[F a
2 (x)−Ga

2(x)]u(2)(x) dx (20)

= B2 +

∫ 0

a

u(2)(y) d [Gd
3(y)− F d

3 (y)] +

∫ b

0

u(2)(x) d [FA
3 (x)−GA

3 (x)]

= B2 + [Gd
3(y)− F d

3 (y)]u(2)(y)
∣∣0
a
+

∫ 0

a

[F d
3 (y)−Gd

3(y)]u(3)(y) dx

+ [F a
3 (x)−Ga

3(x)]u(2)(x)
∣∣b
0
+

∫ b

0

[Ga
3(x)− F a

3 (x)]u(3)(x) dx

= B2 + B3 +

∫ 0

a

[F d
3 (y)−Gd

3(y)]u(3)(y) dy +

∫ b

0

[Ga
3(x)− F a

3 (x)]u(3)(x) dx(21)
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where

B2 = u(1)(a)[F d
2 (a)−Gd

2(a)] + u(1)(b)[Ga
2(b)− F a

2 (b)]

+u(1)(0)[Gd
2(0)− F d

2 (0)] + u(1)(0)[F a
2 (0)−Ga

2(0)] and

B3 = u(2)(a)[F d
3 (a)−Gd

3(a)] + u(2)(b)[F a
3 (b)−Ga

3(b)] (22)

+u(2)(0)[Gd
3(0)− F d

3 (0)] + u(2)(0)[Ga
3(0)− F a

3 (0)]

As a ≤ 0, F d
2 (a) ≥ Gd

2(a). Similarly Ga
2(b) ≥ F a

2 (b) as b ≥ 0. Since u(1)(a), u(1)(b) are

nonnegative; Hd
2 (0) = Ha

2 (0) = 0 for H = F and G, we see that B2 ≥ 0. Also, as a ≤ 0,

F d
3 (a) ≥ Gd

3(a) and also we have u(2)(a) ≥ 0. Similarly Ga
2(b) ≥ F a

2 (b) as b ≥ 0, but we

have u(2)(b) ≤ 0. In addition, Hd
3 (0) = Ha

3 (0) = 0 for H = F and G, We see that B3 ≥ 0.

Hence, from (19), if X ºP
1 Y or F ºP

1 G, then we have ∆Eu = u(F ) − u(G) ≥ 0;

from (20), we have if X ºP
2 Y or F ºP

2 G, then ∆Eu = u(F )− u(G) ≥ 0; and from (21),

we have if X ºP
3 Y or F ºP

3 G, then ∆Eu = u(F )− u(G) ≥ 0.
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Table 1 : The Distributions for Investments F and G

Investment F Investment G

Gain Probability (f) Gain Probability (g)

-1,500 1
2

-3,000 1
4

4,500 1
2

3,000 3
4

Table 2 : The MSD Integrals and their Differentials for F and G

Gain First Order Second Order Third Order

X FM
1 GM

1 GFM
1 FM

2 GM
2 GFM

2 FM
3 GM

3 GFM
3

-3 0 0.25 0.25 0 0 0 0 0 0

-1.5 0.5 0.25 -0.25 0 0.375 0.375 0 0.28125 0.28125

0− 0.5 0.25 -0.25 0.75 0.75 0 0.5625 1.125 0.5625

0+ 0.5 0.75 0.25 2.25 2.25 0 5.0625 3.375 -1.6875

3 0.5 0.75 0.25 0.75 0 -0.75 0.5625 0 -0.5625

4.5 0.5 0 -0.5 0 0 0 0 0 0

Table 3 : The PSD Integrals and their Differentials for F and G

Gain First Order Second Order Third Order

X F P
1 GP

1 GF P
1 F P

2 GP
2 GF P

2 F P
3 GP

3 GF P
3

-3 1 1 0 2.25 2.25 0 2.8125 3.375 0.5625

-1.5 1 0.75 -0.25 0.75 1.125 0.375 0.5625 0.84375 0.28125

0− 0.5 0.75 0.25 0 0 0 0 0 0

0+ 0.5 0.25 -0.25 0 0 0 0 0 0

3 0.5 1 0.5 1.5 0.75 -0.75 2.25 1.125 -1.125

4.5 1 1 0 2.25 2.25 0 5.0625 3.375 -1.6875
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Table 4 : The MSP and PSD Differentials for F and G : Case 2

Gain probability MSD PSD Levy and Levy

X f g GFM
1 GFM

2 GFM
3 GF P

1 GF P
2 GF P

3 GFM GF P

-3 0 0.25 0.25 0 0 0 -0.45 -0.45 0 0.45

-1.5 0.2 0 0.05 0.375 0.28125 -0.25 -0.075 -0.05625 0.375 0.075

0− 0 0 0.05 0.45 0.9 -0.05 0 0 0.45 0

0+ 0 0 -0.05 -1.35 -4.785 0.05 0 0 1.35 0

3 0 0.75 -0.05 -1.2 -0.9 0.8 0.15 0.225 1.2 0.15

4.5 0.8 0 -0.8 0 0 0 1.35 1.35 0 1.35

Table 5 : The MSP and PSD Differentials for F and G : Case 3

Gain probability MSD PSD Levy and Levy

X f g GFM
1 GFM

2 GFM
3 GF P

1 GF P
2 GF P

3 GFM GF P

-3 0 0.25 0.25 0 0 0 0.075 0.73125 0 -0.075

-1.5 0.55 0 -0.3 0.375 0.28125 -0.25 0.45 0.3375 0.375 -0.45

0− 0 0 -0.3 -0.075 0.50625 0.3 0 0 -0.075 0

0+ 0 0 0.3 0.225 -1.18125 -0.3 0 0 -0.225 0

3 0 0.75 0.3 -0.675 -0.50625 0.45 -0.9 -1.35 0.675 -0.9

4.5 0.45 0 -0.45 0 0 0 -0.225 -2.19375 0 -0.225

Table 6 : The MSP and PSD Differentials for F and G : Case 4

Gain probability MSD PSD Levy and Levy

X f g GFM
1 GFM

2 GFM
3 GF P

1 GF P
2 GF P

3 GFM GF P

-3 0 0.25 0.25 0 0 0 -0.15 0.225 0 0.15

-1.5 0.4 0 -0.15 0.375 0.28125 -0.25 0.225 0.16875 0.375 -0.225

0− 0 0 -0.15 0.15 0.625 0.15 0 0 0.15 0

0+ 0 0 0.15 -0.45 -2.7 -0.15 0 0 0.45 0

3 0 0.75 0.15 -0.9 -0.625 0.6 -0.45 -0.675 0.9 -0.45

4.5 0.6 0 -0.6 0 0 0 0.45 -0.675 0 0.45
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Figure 1: Functions in UA
2 , UD

2 , US
2 and UR
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Figure 2: Derivatives of Functions in UA
3 , UD

3 , US
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