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Multivariate Causality Tests with Simulation and
Application

Abstract This paper extends the test established by Hiemstra and Jones (1994) to

develop a nonlinear causality test in a multivariate setting. A Monte Carlo simulation

is conducted to demonstrate the superiority of our proposed multivariate test over its

bivariate counterpart. In addition, we illustrate the applicability of our proposed test to

analyze the relationships among different Chinese stock market indices.

Keywords: linear Granger causality, nonlinear Granger causality, U -statistics, simu-

lation, stock markets.

JEL Classification: C01, C12, G10

1 Introduction

It is an important issue to detect the causal relation among several time series, see,

for example, Qiao, et al (2008, 2009) and Chiang, et al (2009). To examine whether

past information of one series could contribute to the prediction of another series, linear

Granger causality test (Granger, 1969) is developed to examine whether lag terms of one

variable significantly explain another variable in a vector autoregressive regression model.

However, the linear Granger causality test does not perform well in detecting nonlinear

causal relationships. To circumvent the limitation, Baek and Brock (1992) develop a

bivariate nonlinear Granger causality test to examine the remaining nonlinear predictive

power of a residual series of a variable on the residual of another variable obtained from a

linear model. Hiemstra and Jones (1994) have further modified the test. In this paper, we

first discuss the linear causality test in the multivariate setting and thereafter extend the

theory by developing a nonlinear causality test in the multivariate setting. In addition, we

conduct simulation to demonstrate the superiority of our proposed multivariate test over

its bivariate counterpart in the performance of both size and power. At last, we illustrate

the applicability of our proposed test to analyze the relationships among different Chinese

stock market indices.
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2 Multivariate Linear Granger Causality Test

We first review the linear Granger causality test in the multivariate setting.

2.1 Vector Autoregressive Regression

To test the linear causality relationship between two vectors of stationary time series,

xt = (x1,t, · · · , xn1,t)
′ and yt = (y1,t, · · · , yn2,t)

′, where there are n1 +n2 = n series in total,

one could construct the following vector autoregressive regression (VAR) model:


xt

yt


 =


Ax[n1×1]

Ay[n2×1]


 +


Axx(L)[n1×n1] Axy(L)[n1×n2]

Ayx(L)[n2×n1] Ayy(L)[n2×n2]





xt−1

yt−1


 +


ex, t

ey, t


 , (1)

where Ax[n1×1] and Ay[n2×1] are two vectors of intercept terms, Axx(L)[n1×n1], Axy(L)[n1×n2],

Ayx(L)[n2×n1], and Ayy(L)[n2×n2] are matrices of lag polynomials, ex, t and ey, t are the

corresponding error terms.

To test the linear causality relationship between xt and yt is equivalent to testing the

following null hypotheses: H1
0 : Axy(L) = 0 and H2

0 : Ayx(L) = 0. There are four different

situations for the causality relationships between xt and yt in (1): (a) rejecting H1
0 but

not rejecting H2
0 implies a unidirectional causality from yt to xt, (b) rejecting H2

0 but not

rejecting H1
0 implies a unidirectional causality from xt to yt, (c) rejecting both H1

0 and

H2
0 implies existence of feedback relations, and (d) not rejecting both H1

0 and H2
0 implies

that xt and yt are not rejected to be independent.

To test H1
0 and/or H2

0 , one may first obtain the residual covariance matrix Σ from

the full model in (1) without imposing any restriction on the parameters, and compute

the residual covariance matrix Σ0 for the restricted model in (1) with the restriction on

the parameters imposed by the null hypothesis, H1
0 and/or H2

0 . Thereafter, one could

use the F -test or the likelihood ratio statistic (T − c)
(

log|Σ0| − log|Σ| )
(Sims, 1980) to

test for H1
0 and/or H2

0 where T is the number of usable observations, c is the number of

parameters estimated in the unrestricted system.
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2.2 ECM-VAR model

If the time series are conintegrated, one should impose the error-correction mechanism

(ECM) on the VAR to test for Granger causality between the variables of interest. In

particular, when testing the causality relationship between two vectors of non-stationary

time series, we let Xt = (X1,t, · · · , Xn1,t)
′ and Yt = (Y1,t, · · · , Yn2,t)

′, and let xit = ∆Xit

and yit = ∆Yit be the corresponding stationary differencing series such that there are

n1 + n2 = n series in total. If Xt and Yt are cointegrated, then, instead of using the VAR

in (1), one should adopt the following ECM-VAR model:


xt

yt


 =


Ax[n1×1]

Ay[n2×1]


 +


Axx(L)[n1×n1] Axy(L)[n1×n2]

Ayx(L)[n2×n1] Ayy(L)[n2×n2]





xt−1

yt−1




+


αx[n1×1]

αy[n2×1]


 · ecmt−1 +


ex, t

ey, t


 , (2)

where ecmt−1 is lag one of the error correction term, αx[n1×1] and αy[n2×1] are the coefficient

vectors for the error correction term ecmt−1. Thereafter, one could test the null hypothesis

H0 : Axy(L) = 0 and/or H0 : Ayx(L) = 0 to identify strict causality relation using the LR

test as discussed in Section 2.1.

2.3 Multivariate Nonlinear Causality Test

In this section, we will extend the nonlinear causality test for the bivariate setting devel-

oped by Hiemstra and Jones (1994) to the multivariate setting. To identify any nonlinear

Granger causality relationship from any two series, say {xt} and {yt} in the bivariate set-

ting, one has to first apply the linear model to {xt} and {yt} to identify their linear causal

relationships and obtain the corresponding residuals, {ε̂1t} and {ε̂2t}. Thereafter, one has

to apply a nonlinear Granger causality test to the residual series, {ε̂1t} and {ε̂2t}, of the two

variables being examined to identify the remaining nonlinear causal relationships between

their residuals. This is also true if one would like to identify existence of any nonlinear

Granger causality relation between two vectors of time series, say xt = (x1,t, · · · , xn1,t)
′

and yt = (y1,t, · · · , yn2,t)
′ in the multivariate setting. One has to apply the VAR model
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in (1) or the ECM-VAR model in (2) to the series to identify their linear causal relation-

ships and obtain their corresponding residuals. Thereafter, one has to apply a nonlinear

Granger causality test to the residual series. For simplicity, in this section we denote

Xt = (X1,t, · · · , Xn1,t)
′ and Yt = (Y1,t, · · · , Yn2,t)

′ to be the corresponding residuals of any

two vectors of variables being examined.

We first define the lead vector and lag vector of a time series, say Xi,t, as follows: for

Xi,t, i = 1, · · · , n1, the mxi
-length lead vector and the Lxi

-length lag vector of Xi,t are:

X
mxi
i,t ≡ (Xi,t, Xi,t+1, · · · , Xi, t+mxi−1),mxi

= 1, 2, · · · , t = 1, 2, · · · ,

X
Lxi
i, t−Lxi

≡ (Xi, t−Lxi
, Xi, t−Lxi+1, · · · , Xi, t−1), Lxi

= 1, 2, · · · , t = Lxi
+ 1, Lxi

+ 2, · · · ,

respectively. We denote Mx = (mx1 , · · · ,mxn1
), Lx = (Lx1 , · · · , Lxn1

), mx = max(mx1 , · · · ,mxn1
),

and lx = max(Lx1 , · · · , Lxn1
). The myi

-length lead vector, Y
myi
i,t , the Lyi-length lag vector,

Y
Lyi
i,t−Lyi

, of Yi, t, and My, Ly, my, and ly can be defined similarly.

Given mx, my, Lx, Ly, and e > 0 , we define the following four events:

(1)
{‖XMx

t −XMx
s ‖ < e

} ≡ {‖XMx1
i,t −X

mx1
i,s ‖ < e, for any i = 1, · · · , n1

}
;

(2)
{ ‖ XLx

t−Lx
−XLx

s−Lx
‖< e

} ≡ {‖XLxi
i,t−Lxi

−X
Lxi
i,s−Lxi

‖ < e, for any i = 1, · · · , n1

}
;

(3)
{‖Y My

t − Y
My
s ‖ < e

} ≡ {‖Y myi
i,t − Y

myi
i,s ‖ < e, for any i = 1, · · · , n2

}
; and

(4)
{ ‖ Y

Ly

t−Ly
− Y

Ly

s−Ly
‖< e

} ≡ {‖Y Lyi
i,t−Lyi

− Y
Lyi
i,s−Lyi

‖ < e, for any i = 1, · · · , n2

}
,

where ‖ · ‖ denotes the maximum norm which is defined as ‖X − Y ‖ = max
(|x1 −

y1|, |x2 − y2|, · · · , |xn − yn|
)

for any two vectors X =
(
x1, · · · , xn

)
and Y =

(
y1, · · · , yn

)
.

The vector series {Yt} is said not to strictly Granger cause another vector series {Xt} if

Pr
(‖XMx

t −XMx
s ‖ < e

∣∣ ‖ XLx
t−Lx

−XLx
s−Lx

‖< e, ‖ Y
Ly

t−Ly
− Y

Ly

s−Ly
‖< e,

)

= Pr
(‖XMx

t −XMx
s ‖ < e,

∣∣ ‖ XLx
t−Lx

−XLx
s−Lx

‖< e
)

,

where Pr(· | · ) denotes conditional probability.
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The test statistic for testing non-existence of nonlinear Granger causality can be ob-

tained as follows:

√
n

(
C1

(
Mx + Lx, Ly, e, n

)

C2

(
Lx, Ly, e, n

) − C3

(
Mx + Lx, e, n

)

C4

(
Lx, e, n

)
)

(3)

where

C1

(
Mx + Lx, Ly, e, n

) ≡ 2

n(n− 1)

∑∑
t<s

n1∏
i=1

I
(
x

mxi+Lxi
i,t−Lxi

, x
mxi+Lxi
i,s−Lx

, e
) ·

n2∏
i=1

I
(
y

Lyi
i,t−Lyi

, y
Lyi
i,s−Lyi

, e) ,

C2

(
Lx, Ly, e, n

) ≡ 2

n(n− 1)

∑∑
t<s

n1∏
i=1

I
(
x

Lxi
i,t−Lxi

, x
Lxi
i,s−Lx

, e
) ·

n2∏
i=1

I
(
y

Lyi
i,t−Lyi

, y
Lyi
i,s−Ly

, e
)
,

C3

(
Mx + Lx, e, n

) ≡ 2

n(n− 1)

∑∑
t<s

n1∏
i=1

I
(
x

mxi+Lxi
i,t−Lx

, x
mxi+Lxi
i,s−Lxi

, e
)
,

C4

(
Lx, e, n

) ≡ 2

n(n− 1)

∑∑
t<s

n1∏
i=1

I
(
x

Lxi
i,t−Lxi

, x
Lxi
i,s−Lxi

, e
)
,

I(x, y, e) =





0, if ‖x− y‖ > e

1, if ‖x− y‖ ≤ e
, and

t, s = max
(
Lx, Ly

)
+ 1, · · · , T −mx + 1, n = T + 1−mx −max

(
Lx, Ly

)
.

In this paper, we develop the following theorem:

Theorem 2.1. To test the null hypothesis, H0, that {Y1,t, · · · , Yn2,t} does not strictly

Granger cause {X1,t, · · · , Xn1,t}, under the assumptions that the time series {X1,t, · · · , Xn1,t}
and {Y1,t, · · · , Yn2,t} are strictly stationary, weakly dependent, and satisfy the mixing con-

ditions stated in Denker and Keller (1983), if the null hypothesis, H0, is true, the test

statistic defined in (3) is distributed as N
(
0, σ2(Mx, Lx, Ly, e)

)
. When the test statistic

in (3) is too far away from zero, we reject the null hypothesis. A consistent estimator of

σ2(Mx, Lx, Ly, e) is σ̂2(Mx, Lx, Ly, e) = ∇̂f(θ)
T · Σ̂ · ∇̂f(θ) in which each component Σi,j

(i, j = 1, · · · , 4), of the covariance matrix Σ is given by:

Σi,j = 4 ·
∑

k≥1

ωkE(Ai,t · Aj,t+k−1) ,
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ωk =





1 if k = 1

2, otherwise
,

A1,t = h11

(
xMx+Lx

t−Lx
, y

Ly

t−Ly
, e

)
− C1(Mx + Lx, Ly, e) ,

A2,t = h12

(
xLx

t−Lx
, y

Ly

t−Ly
, e

)
− C2(Lx, Ly, e) ,

A3,t = h13

(
xMx+Lx

t−Lx
, e

)− C3(Mx + Lx, e) , and

A4,t = h14

(
xLx

t−Lx
, e

)− C4(Lx, e) ,

where h1i(zt), i = 1, · · · , 4, is the conditional expectation of hi(zt, zs) given the value of

zt as follows:

h11

(
xMx+Lx

t−Lx
, y

Ly

t−Ly
, e

)
= E

(
h1

∣∣ xMx+Lx
t−Lx

, y
Ly

t−Ly

)
,

h12

(
xLx

t−Lx
, y

Ly

t−Ly
, e

)
= E

(
h2

∣∣ xLx
t−Lx

, y
Ly

t−Ly

)
,

h13

(
xMx+Lx

t−Lx
, e

)
= E

(
h3

∣∣ xMx+Lx
t−Lx

)
, and h14

(
xLx

t−Lx
, e

)
= E

(
h4

∣∣ xLx
t−Lx

)
.

A consistent estimator of Σi,j elements is given by:

Σ̂i,j = 4 ·
K(n)∑

k=1

ωk(n)

[
1

2(n− k + 1)

∑
t

(
Âi,t(n) · Âj,t−k+1(n) + Âi,t−k+1(n) · Âj,t(n)

)]
,

K(n) = [n1/4] , ωk(n) =





1 if k = 1

2(1− [(k − 1)/K(n)]) otherwise
,

in which Âi,t is defined in the appendix for i = 1, 2, 3, 4 and a consistent estimator of

∇f(θ) is:

∇̂f(θ) =

[
1

θ̂2

, − θ̂1

θ̂2
2

, − 1

θ̂4

,
θ̂3

θ̂2
4

]T

=

[
1

C2

(
Lx, Ly, e, n

) , −C1

(
m + Lx, Ly, e, n

)

C2
2

(
Lx, Ly, e, n

) , − 1

C4

(
Lx, e, n

) ,
C3

(
Mx + Lx, e, n

)

C2
4

(
Lx, e, n

)
]T

.

The prove is given in the appendix.
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3 Monte Carlo Simulation

In this section, we present the Monte Carlo simulation to demonstrate the superiority of

our proposed multivariate nonlinear Granger causality test over its bivariate counterpart

in the performance of both size and power when the underlying series possess multivariate

nonlinear Granger causality nature.

We have conducted simulations for a variety of time series possessing different multi-

variate nonlinear Granger causality relationships. All simulations show that our proposed

multivariate nonlinear Granger causality test performs better in both size and power. For

simplicity, we only present the results of the following equation:

Xt = β Yt−1Zt−1 + εt (4)

where {Yt} and {Zt} are i.i.d. and mutually independent random variables generated from

N(0, 1), {εt} is Gaussian white noise generated from N(0, 0.1). Under the model in (4),

the variables {Yt, Zt} nonlinear Granger cause {Xt} if β 6= 0 and there is no Granger

causality relationship if β = 0. The bivariate nonlinear Granger causality test could

detect the bivariate causality relationships well but it may not be able to examine the

causality relationships under multivariate settings including the one set in (4). Thus,

we expect that our proposed multivariate test could perform better than its bivariate

counterpart in this model setting. To justify our claim, we conduct a simulation with

1,000 Monte Carlo runs based on sample size of 50 and 100 observations for each β value.

We set lead length m = 1 and the common lag length Lx = Ly = Lz for all the cases

being examined. A common scale parameter of e = 1.5σ is used where σ = 1 denotes the

standard deviation of standardized series. In the simulation of each replication, the values

of the test statistics for different common lag lengths are compared with their asymptotic

critical values at the 0.05 nominal significance level. The percentage of rejecting the null

of β = 0 is reported in Tables 1 and 2 for sample size of 50 and 100, respectively.

Table 1 displays the simulation results of sample size 50 with the value of β varying

from −0.5 to 0.5 and the common lag length being 1, 2, and 3 for all the cases under

examination. When β = 0, that is, {Xt} is independent of both {Yt} and {Zt} implying
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that the null hypothesis is true, both bivariate and multivariate tests are conservative

when the common lag length = 1, 2. When the common lag length is equal to 3, both

tests have empirical sizes similar to the nominated significance level of 0.05. In short,

Table 1 exhibits that (a) the average of the simulated size of multivariate test is closer to

the nominated significance level of 0.05. When β is nonzero, our simulation shows that

(b) the powers of both bivariate and multivariate tests perform better when lag length =

1 and their powers reduce when lag length increases, and (c) the power of our proposed

multivariate test is much higher than that of its bivariate counterpart for any lag length

being examined in our paper. We note that (b) is reasonable because only lag one of

both Y and Z “cause” X in (4) while our findings in (a) and (c) show that our proposed

multivariate test performs better than its bivariate counterpart in both size and power.

We turn to examine both size and power when we increase the sample size to 100.

The results are displayed in Table 2. As the sample size is larger, we report results with

longer lag length scale including Lx = Ly = Lz = 1, 3, and 5.1 Comparing with sample

size = 50, the simulation results show that our observations of (a), (b), and (c) for sample

size = 50 still hold for sample size of 100, but, as expected, both size and power for both

bivariate and multivariate tests have improved and our findings are consistent to show

that our proposed multivariate test performs better than its bivariate counterpart in both

size and power when sample size = 100.

4 Illustration

Qiao, et al (2008) have examined the bivariate linear and nonlinear Granger causality

relationships between pairs of daily returns from five indices: (a) Shanghai A shares (SHA)

and Shanghai B shares (SHB) from Shanghai Stock Exchange (SHSE), (b) Shenzhen A

shares (SZA) and Shenzhen B shares (SZB) from Shenzhen Stock Exchange (SZSE), and

(c) Hong Kong H shares (H) before and after February 19, 2001, the date the Chinese

Government allowed domestic citizens to trade B shares from this date onwards2.

1We have examined other lag lengths and the results are consistent with our findings. Thus, we skip

reporting other lag lengths to save space.
2Readers may refer to Qiao, et al (2008) for detailed information on SHA, SZA, SHB, SZB, and H.
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Table 1: Size and power comparison between bivariate and multivariate nonlinear Granger

causality tests when sample size=50

Beta -0.5 -0.4 -0.3 -0.2 -0.1 -0.05 0 0.05 0.1 0.2 0.3 0.4 0.5

Lags=1

Bivariate 0.917 0.875 0.833 0.775 0.413 0.114 0.016 0.129 0.384 0.748 0.851 0.894 0.902

Multivariate 0.996 1.000 0.997 0.987 0.716 0.204 0.029 0.220 0.686 0.981 1.000 0.999 0.999

Lags=2

Bivariate 0.645 0.655 0.624 0.516 0.240 0.100 0.034 0.126 0.255 0.509 0.598 0.647 0.644

Multivariate 0.983 0.979 0.956 0.870 0.427 0.144 0.032 0.165 0.468 0.881 0.956 0.979 0.982

Lags=3

Bivariate 0.465 0.452 0.444 0.333 0.178 0.072 0.049 0.073 0.162 0.355 0.422 0.460 0.433

Multivariate 0.864 0.850 0.796 0.676 0.293 0.115 0.045 0.106 0.310 0.655 0.789 0.842 0.853

Bivariate 0.676 0.661 0.634 0.541 0.277 0.095 0.033 0.109 0.267 0.537 0.624 0.667 0.660

Multivariate 0.948 0.943 0.916 0.844 0.479 0.154 0.035 0.164 0.488 0.839 0.915 0.940 0.945

Note: The last two rows display the average values for the case of “Bivariate” and “Multivariate”,

respectively, for the corresponding value of β.

Table 2: Size and power comparison between bivariate and multivariate nonlinear Granger

causality tests when sample size=100

Beta -0.5 -0.4 -0.3 -0.2 -0.1 -0.05 0 0.05 0.1 0.2 0.3 0.4 0.5

Lags=1

Bivariate 1.000 1.000 0.996 0.989 0.781 0.266 0.029 0.271 0.807 0.994 0.999 0.997 0.999

Multivariate 1.000 1.000 1.000 1.000 0.971 0.448 0.037 0.452 0.977 1.000 1.000 1.000 1.000

Lags=3

Bivariate 0.872 0.842 0.823 0.740 0.394 0.122 0.046 0.107 0.406 0.700 0.812 0.836 0.846

Multivariate 1.000 0.999 0.993 0.973 0.636 0.145 0.048 0.169 0.604 0.963 0.990 0.997 1.000

Lags=5

Bivariate 0.561 0.554 0.508 0.453 0.189 0.075 0.048 0.072 0.210 0.412 0.525 0.577 0.532

Multivariate 0.865 0.823 0.776 0.676 0.256 0.105 0.049 0.104 0.264 0.645 0.788 0.842 0.870

Bivariate 0.811 0.799 0.776 0.727 0.455 0.154 0.041 0.150 0.474 0.702 0.779 0.803 0.792

Multivariate 0.955 0.941 0.923 0.883 0.621 0.233 0.045 0.242 0.615 0.869 0.926 0.946 0.957

Note: The last two rows display the average values for the case of “Bivariate” and “Multivariate”,

respectively, for the corresponding value of β.
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As they only apply the bivariate Granger causality test to study the issue, their results

may not be able to capture any multivariate causality relationship among these indices.

To bridge the gap, in this paper we first apply the traditional multivariate linear Granger

causality test and thereafter apply our proposed multivariate nonlinear causality test

to examine the existence of multivariate linear and nonlinear causality relationships in

any of the following three groups for the segmented Chinese stock markets before and

after February 19, 2001: (a) A-share (including SHA and SZA) and B-share (including

SHB and SZB), (b) Shanghai stock market (including SHA and SHB) and Shenzhen

stock market(including SZA and SZB), and (c) domestic stock market (A-share) and

foreigner-invested stock market (including B-share and H-share). The studying period

is from October 6, 1992 to December 31, 2007 and all data are taken from DataStream

International. For easy comparison, we follow Qiao, et al (2008) to use February 19, 2001

as the cut-off point 3 so that the first sub-period is from October 6, 1992 to February 16,

2001 and the second sub-period is from February 19, 2001 to December 31, 2007.

We first adopt the VAR model in (1) or the ECM-VAR model in (2) to examine whether

there is any multivariate linear Granger causality relationship among the indices in any

of the groups mentioned above. We find that, in the first subperiod, there is only strong

unidirectional linear causality from Shenzhen stock market to Shanghai stock market.

On the other hand, in the second sub-period, we find that (a) there is unidirectional

linear causality from B-share to A-share, and (b) there are strong feedback causality

relationships between Shanghai stock market and Shenzhen stock market, and between

domestic stock market and foreigner-invested stock market4.

After checking the multivariate linear causalities, we apply our new proposed multi-

variate nonlinear Granger causality test to the error terms from the estimated VAR or

ECM-VAR models to investigate whether there is any remaining undetected multivariate

nonlinear relationship among the indices. We set the common lead length m = 1 and

the common lag length to be 1 to 10. A common scale parameter of e = 1.5σ is used,

3We choose February 19, 2001 as the cut-off point because as of that date, the Chinese government

adopted a new policy that removed the restrictions on trading B shares by domestic citizens.
4The detailed results of the multivariate linear causality test are available upon request.
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where σ = 1 denotes the standard deviation of standardized series. The values of the

standardized test statistic of (3) are reported in Table 3. Under the null hypothesis of no

multivariate nonlinear Granger causality, the test statistic is asymptotically distributed as

N(0, 1). Therefore, very large or small values of the test statistic lead to the rejection of

null hypothesis, or equivalently, indicate the existence of multivariate nonlinear causality.

The results show that, in the first subperiod, (a) there is weak nonlinear causality

from B-share to A-share, and (b) there is strong bi-directional nonlinear causality between

Shenzhen and Shanghai stock markets, since the test statistics of SZ→SH are significant

at the 5% level for all lags, and the test statistics of SH→SZ are significant at the 5% level

for the first half of lags. In the second sub-period, our results infer that (c) there exists

strong feedback nonlinear causality between Shenzhen and Shanghai stock markets similar

to the results of the first subperiod, (d) there is strong unidirectional nonlinear causality

from A-share to B-share, since the test statistics of A→B are significant at the 5% level

for some lags, and (e) there exists weak nonlinear causality from domestic stock market

to foreigner-invested stock market, as there are two test statistics to be significant. Our

findings infer that there are more nonlinear causality among the indices after the Chinese

Government introduced the policy on February 19, 2001.

Appendix: Proof of Theorem 2.1

Before we prove the theorem, we first introduce the U -statistic (Kowalski and Tu, 2007)

in the following definition, which is essential in the proof.

Definition 4.1. Consider an i.i.d. sample of p× 1 column vector of response yi (1 ≤
i ≤ n). Let h

(
y1, · · · ,ym

)
be a symmetric vector-valued function with m arguments. A

one-sample, m-argument multivariate U-statistic vector with kernel vector h

is defined as:

Un =


 n

m



−1 ∑

(i1,··· ,im)∈Cn
m

h
(
yi1 , · · · ,yim

)
,

11



Table 3: Multiple Nonlinear Testing Results for China’s Stock Markets

First Sub-Period Second Sub-Period

lags B→A SZ→SH B,H→A B→A SZ→SH B,H→A

1 1.620* 4.499*** 0.617 0.358 1.434* 1.214

2 1.413* 4.882*** 0.344 0.947 3.361*** 1.019

3 0.512 4.610*** -0.591 0.376 4.085*** 0.609

4 0.546 4.179*** -0.418 -0.541 3.638*** -0.178

5 -0.187 3.971*** -0.800 -1.217 3.359*** -1.305

6 -0.704 3.523*** -1.024 -1.018 3.031*** -1.158

7 -1.663 2.953*** -1.465 -0.961 2.846*** -0.625

8 -1.858 2.863*** -1.249 -1.191 1.990** -0.879

9 -1.859 2.375*** -1.058 -1.331 2.084** -1.426

10 -2.186 1.887** -1.054 -1.283 1.733** -0.778

lags A→B SH→SZ A→B,H A→B SH→SZ A→B,H

1 -2.130 3.071*** -1.638 2.098** 2.611*** 2.309**

2 -2.423 2.983*** -1.171 2.311** 2.792*** 2.708***

3 -2.052 1.896** -1.049 2.282** 2.599*** 1.232

4 -1.901 2.381*** -1.263 1.673** 1.827** 0.224

5 -1.104 1.754** -1.428 1.115 1.474* -0.600

6 -1.201 1.505* -1.461 1.649** 1.308* -1.128

7 -1.325 1.091 -0.943 1.569* 0.907 -0.766

8 -0.961 0.793 -1.204 1.329* 0.933 -0.943

9 -1.177 0.843 -1.165 1.122 0.726 -0.774

10 -1.371 0.294 -0.636 1.222 0.913 -0.597

Note: ***, **, and * represent significance levels of 1%, 5%, and 10%, respectively. A includes

SHA and SZA, B includes SHB and SZB, SH includes SHA and SHB, and SZ includes SZA

and SZB. The first sub-period is from October 6, 1992 to February 16, 2001 while the second

sub-period is from February 19, 2001 to December 31, 2007.
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where Cn
m =

(
i1, · · · , im

)
, 1 ≤ i1 < · · · < im ≤ n, denotes the set of all distinct combina-

tions of m indices (i1, · · · , im) from the integer set 1, 2, · · · , n.

Let Θ = E
(
h(y1, · · · ,ym)

)
. We have

E
(
h
)

= E


 n

m



−1 ∑

(i1,··· ,im)∈Cn
m

h
(
yi1 , · · · ,yim

)

=


 n

m



−1 ∑

(i1,··· ,im)∈Cn
m

E
(
h(y1, · · · ,ym)

)
= Θ .

Now, we proceed on to prove Theorem 2.1. We denote that

C1

(
Mx + Lx, Ly, e

) ≡ Pr
(
‖ XMx+Lx

t−Lx
−XMx+Lx

s−Lx
‖< e, ‖ Y

Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)
,

C2

(
Lx, Ly, e

) ≡ Pr
(
‖ XLx

t−Lx
−XLx

s−Lx
‖< e, ‖ Y

Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)
,

C3

(
Mx + Lx, e

) ≡ Pr
(‖ XMx+Lx

t−Lx
−XMx+Lx

s−Lx
‖< e

)
, and

C4

(
Lx, e

) ≡ Pr
(‖ XLx

t−Lx
−XLx

s−Lx
‖< e

)
.

Then, we have

Pr
(
‖XMx

t −XMx
s ‖ < e

∣∣ ‖ XLx
t−Lx

−XLx
s−Lx

‖< e, ‖ Y
Ly

t−Ly
− Y

Ly

s−Ly
‖< e

)

=
C1

(
Mx + Lx, Ly, e

)

C2

(
Lx, Ly, e

) ,

P r
(‖XMx

t −XMx
s ‖ < e

∣∣ ‖ XLx
t−Lx

−XLx
s−Lx

‖< e
)

=
C3

(
Mx + Lx, e

)

C4

(
Lx, e

) ,

and the strict Granger noncausality condition can be stated as

H0 :
C1

(
Mx + Lx, Ly, e

)

C2

(
Lx, Ly, e

) − C3

(
Mx + Lx, e

)

C4

(
Lx, e

) = 0 .

Instead of analyzing i.i.d. samples, we take vector samples from strictly stationary, weakly

13



dependent series which satisfy the mixing conditions of Denker and Keller(1983) such that

zt =
(
X

Mx1+Lx1
1,t−Lx1

, · · · , X
Mx1+Lx1
n1,t−Lxn1

, Y
Ly1
1,t−Ly1

, · · · , Y
Lyn2
n2,t−Lyn2

)

t = max
(
Lx, Ly), · · · , n; n = T −mx −max

(
Lx, Ly) + 1

contains
∑n1

i=1 mx1 +
∑n1

i=1 Lxi
+

∑n2

i=1 Lyi
variables in each vector. For any given

(
Mx, Lx, Ly, e), we denote Θ =

(
θ1, θ2, θ3, θ4)

′ where θ1 ≡ C1

(
Mx + Lx, Ly, e), θ2 ≡

C2

(
Lx, Ly, e), θ3 ≡ C3

(
Mx+Lx, e), and θ4 ≡ C4

(
Lx, e). We denote Un =

(
U1n, U2n, U3n, U4n)′

where U1n ≡ C1

(
Mx + Lx, Ly, e, n), U2n ≡ C2

(
Lx, Ly, e, n), U3n ≡ C3

(
Mx + Lx, e, n), and

U4n ≡ C4

(
Lx, e, n). One could easily show that Un is a one-sample, 2-argument 4-variable

U -statistic vector with kernel vector h
(
zt, zs) =

(
h1, h2, h3, h4)

′, where

h1 ≡
n1∏
i=1

I
(
X

mxi+Lxi
i,t−Lxi

, X
mxi+Lxi
i,s−Lx

, e) ·
n2∏
i=1

I
(
Y

Lyi
i,t−Lyi

, Y
Lyi
i,s−Lyi

, e) ,

h2 ≡
n1∏
i=1

I
(
X

Lxi
i,t−Lxi

, X
Lxi
i,s−Lx

, e) ·
n2∏
i=1

I
(
Y

Lyi
i,t−Lyi

, Y
Lyi
i,s−Ly

, e) ,

h3 ≡
n1∏
i=1

I
(
X

mxi+Lxi
i,t−Lx

, X
mxi+Lxi
i,s−Lxi

, e) , h4 ≡
n1∏
i=1

I
(
X

Lxi
i,t−Lxi

, X
Lxi
i,s−Lxi

, e) ,

Un =


 n

2



−1 ∑

1≤t<s≤n

h
(
zt, zs) .

Since function I
(
x, y, e) is symmetric with respect to x and y, h

(
zt, zs) is symmetric with

two arguments zt and zs. In addition, we notice that

E
(
h1) = Pr

( ‖ XMx+Lx
t−Lx

−XMx+Lx
s−Lx

‖< e) · Pr
( ‖ Y

Ly

t−Ly
− Y

Ly

s−Ly
‖< e)

= Pr
( ‖ XMx+Lx

t−Lx
−XMx+Lx

s−Lx
‖< e, ‖ Y

Ly

t−Ly
− Y

Ly

s−Ly
‖< e) = θ1

since residual series {Xt} and {Yt} are assumed to be obtained from the VAR model are

independent with each other. Similarly, we have E
(
hi) = θi, i = 2, 3, 4.
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In the bivariate case, the sample vector is

zt =
(
Xmx+Lx

t−Lx
, Y

Ly

t−Ly

)
t = 1, · · · , n; n = T −mx −max(Lx, Ly) + 1 ,

in which it contains mx + Lx + Ly variables.

This change does not affect the asymptotic properties of the U -statistic vector used

in the test. As in the bivariate case, the central limit theorem proved by Denker and

Keller(1983) can be applied to the U -statistic vector Un; that is, under the assumption

that series {x1,t, · · · , xn1,t, y1,t, · · · , yn2,t} are strictly stationary, weakly dependent, and

satisfying one of the mixing conditions of Denker and Keller, we have:

√
n(Un −Θ)

d→ N(0, Σ), as n →∞ ,

where
d→ means convergence in distribution, and Σ is the 4× 4 covariance matrix of Un

containing {Σi,j, i, j = 1, · · · , 4}. Furthermore, by Denker and Keller (1986), the sequence

Un of the U -statistics converges to Θ in probability. Now, we present our proposed test

statistic as a function of Un such that

√
nf(Un) =

√
n

(
U1n

U2n

− U3n

U4n

)
.

Under the null hypothesis that {Yt} does not strictly Granger cause {Xt}, we have f(Θ) =

θ1/θ2−θ3/θ4 = 0. Thus, using the delta method (Serfling, 1980, pp.122-125),
√

n[f(Un)−
f(Θ)] has the same limit distribution as

√
n[∇f(Θ)T · (Un −Θ)], and hence, we have

√
n[f(Un)− f(Θ)] =

√
n

(
C1(Mx + Lx, Ly, e, n)

C2(Lx, Ly, e, n)
− C3(Mx + Lx, e, n)

C4(Lx, e, n)

)

∼ N
(
0,∇f(Θ)T · Σ · ∇f(Θ)

)
,

where ∇f(Θ) is the derivative of f evaluated at Θ such that

∇f(Θ) =

(
∂f

∂θ1

,
∂f

∂θ2

,
∂f

∂θ3

,
∂f

∂θ4

)T

=

(
1

θ2

,
−θ1

θ2
2

,
−1

θ4

,
θ3

θ2
4

)T

.
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Now, we turn to show that a consistent estimator of σ2(Mx, Lx, Ly, e) becomes

σ̂2(Mx, Lx, Ly, e) = ∇̂f(θ)
T · Σ̂ · ∇̂f(θ) .

Applying the results of Denker and Keller (1983) and Newey and West (1987), we obtain

a consistent estimator of Σi,j elements to be:

Σ̂i,j = 4 ·
K(n)∑

k=1

ωk(n)

[
1

2(n− k + 1)

∑
t

(
Âi,t(n) · Âj,t−k+1(n) + Âi,t−k+1(n) · Âj,t(n)

)]
,

K(n) = [n1/4], ωk(n) =





1 if k = 1

2(1− [(k − 1)/K(n)]) otherwise
,

Â1,t =
1

n− 1

(∑

s 6=t

n1∏
i=1

I(X
mxi+Lxi
i,t−Lxi

, X
mxi+Lxi
i,s−Lx

, e) ·
n2∏
i=1

I(Y
Lyi
i,t−Lyi

, Y
Lyi
i,s−Lyi

, e)

)

− C1(Mx + Lx, Ly, e, n) ,

Â2,t =
1

n− 1

(∑

s 6=t

n1∏
i=1

I(X
Lxi
i,t−Lxi

, X
Lxi
i,s−Lx

, e) ·
n2∏
i=1

I(Y
Lyi
i,t−Lyi

, Y
Lyi
i,s−Ly

, e)

)

− C2(Lx, Ly, e, n) ,

Â3,t =
1

n− 1

(∑

s 6=t

n1∏
i=1

I(X
mxi+Lxi
i,t−Lx

, X
mxi+Lxi
i,s−Lxi

, e)

)
− C3(m + Lx, e, n) ,

Â4,t =
1

n− 1

(∑

s 6=t

n1∏
i=1

I(X
Lxi
i,t−Lxi

, X
Lxi
i,s−Lxi

, e)

)
− C4(Lx, e, n) ,

t, s = max(Lx, Ly), · · · , n and n = T −mx −max(Lx + Ly) + 1 ,

and a consistent estimator of ∇f(θ) is:

∇̂f(θ) =
[

1/θ̂2, − θ̂1/θ̂2

2
, −1/θ̂4, θ̂3/θ̂4

2
]T

= [1/C2(Lx, Ly, e, n),−C1(m + Lx, Ly, e, n)/C2
2(Lx, Ly, e, n),

− 1/C4(Lx, e, n), C3(Mx + Lx, e, n)/C2
4(Lx, e, n)]T
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Thus, a consistent estimator of σ2(Mx, Lx, Ly, e) is:

σ̂2(Mx, Lx, Ly, e) = ∇̂f(θ)
T · Σ̂ · ∇̂f(θ)

and the assertion of the theorem follows.

¤
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