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ASSUMPTIONS BEHIND INTERCODER RELIABILITY INDICES 

Abstract  

Intercoder reliability is the most often used quantitative indicator of measurement 

quality in content studies.  Researchers in psychology, sociology, education, medicine, 

marketing and other disciplines also use reliability to evaluate the quality of diagnosis, tests 

and other assessments. Many indices of reliability have been recommended for general use.  

This article analyzes 22, which are organized into 18 chance-adjusted and four non-adjusted 

indices.  The chance-adjusted indices are further organized into three groups, including nine 

category-based indices, eight distribution-based indices, and one that is double based, on 

category and distribution.   

The main purpose of this work is to examine the assumptions behind each index.  

Most of the assumptions are unexamined in the literature, and yet these assumptions have 

implications for assessments of reliability that need to be understood, and that result in 

paradoxes and abnormalities.  This article discusses 13 paradoxes and nine abnormalities to 

illustrate the 24 assumptions.  To facilitate understanding, the analysis focuses on categorical 

scales with two coders, and further focuses on binary scales where appropriate. The 

discussion is situated mostly in analysis of communication content.  The assumptions and 

patterns that we will discover will also apply to studies, evaluations and diagnoses in other 

disciplines with more coders, raters, diagnosticians, or judges using binary or multi-category 

scales.  

We will argue that a new index is needed.  Before the new index can be established, 

we need guidelines for using the existing indices.  This article will recommend such 

guidelines. 
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ASSUMPTIONS BEHIND INTERCODER RELIABILITY INDICES 

 Content has always been a central concern of communication research.  Wilbur 

Schramm (1973), whom Tankard (1988) called “the father of communication studies,” 

authored Men, Messages, and Media: a Look at Human Communication, where “message” 

meant content.  Harold Lasswell (1948), whom Schramm considered one of the “four 

founding fathers of the field” (Glander, 2000, Ch. 3), defined the discipline as studying “who 

says what, through which channels, to whom, and with which effect,” where “what” is 

content.  With the explosion of “netted” information from increasingly diversified sources, 

the need for content research has been rising sharply (Neuendorf, 2002).   

Modern content analysis, a term no more than 70 years old according to Krippendorff 

(2004a), focuses on “what is the content,” as supposed to what should be. With this empirical 

emphasis, validity and reliability have emerged as two methodological pillars. Validity 

addresses whether an instrument measures what it purports to measure.  Reliability addresses 

whether the instrument produces consistent results when it is applied repeatedly, i.e. test-

retest reliability, or by different people, i.e., intercoder reliability.  While a reliable measure is 

not necessarily valid, an unreliable measure cannot be valid.   

Validity is more difficult to measure numerically.  Hence reliability, especially the 

less costly intercoder reliability, has been the most popular quantitative indicator of 

measurement quality in content studies.  Researchers in education, psychology, sociology, 

medicine, marketing and other social science disciplines also use reliability to evaluate the 

quality of diagnoses, tests and other assessments.   

The main purpose of this article is to examine assumptions behind 22 indices of 

intercoder reliability, most of which are unexamined in the literature.  We will report 24 such 

assumptions, most of which are rarely met in typical research, meaning that the indices have 

been often used beyond the boundaries for their legitimate use. As a result, paradoxes and 
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abnormalities arise. We will discuss 13 paradoxes and nine abnormalities to illustrate the 

assumptions. We will argue that a new index is needed and, until such a new index is 

forthcoming, guidelines are needed for using the existing indices.   

Our analysis will focus on categorical scales with two coders, and further focus on 

binary scales where appropriate.  The discussion will be mostly situated in analyzing 

communication content.  But the assumptions, patterns and recommendations that we will 

discuss also apply to studies, evaluations or diagnoses in other disciplines with more coders, 

raters, diagnosticians, or judges using two or more categories.  

The calculations and derivations presented in this article were done by the first author 

initially by hand and then verified by MS Excel programming.  All formulae, calculations, 

interpretations, and proofs were then independently replicated or verified by the third author 

under the supervision of the second author. Guangchao Charles Feng, a doctoral candidate at 

Hong Kong Baptist University, conducted a final round of verifications using R programming 

(2011, v 2.14).  Large portions of this manuscript, especially those related to π, κ and α, were 

previously presented in two conference papers (Zhao 2011a, 2011b). 

 

I. An Overview of the Intercoder Reliability Concept 

 

I.1. Reliability and Related Concepts 

Krippendorff (2004b) and Lombard, Snyder-Duch, and Bracken (2002) see agreement 

as the indicator of reliability, and consider association a separate concept. Tinsley and Weiss 

(1975, 2000) use correlation as the indicator of reliability and consider agreement as separate.  

Neuendorf (2002) considers agreement and covariation as two indicators of reliability. 

We follow Krippendorff and Lombard et al to use agreement as the indicator of 

intercoder or test-retest reliability, and we define agreement as proximity between measures. 
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On a categorical scale, if both coders choose the same category for the same case, that is an 

agreement.  If they choose different categories, that is a disagreement.  On a numerical scale, 

the closer the scores are to each other, the higher the agreement.  Correlation refers to the 

covariation between measures on numerical scales.  For instance, on a 0-10 scale, if Coder 2 

chooses 0 whenever Coder 1 chooses 9, and chooses 1 whenever Coder 1 chooses 10, there is 

a very high correlation but a very low agreement.  

Association refers to covariation between measures on categorical scales.  It is 

typically used when the concept of “inter-variable agreement” is not appropriate, helpful, or 

sufficient, while agreement is typically used when the concept of “inter-variable association” 

is not appropriate, helpful, or sufficient.  Suppose, of 200 respondents, all 100 whites are 

urban, and all 100 non-whites are rural. We say the association between ethnicity and 

residence is at the highest possible, while it does not help as much to talk about agreement.  

Suppose the data of 200 cases come from a content analysis, in which Coder 1 reports seeing 

an urban resident whenever Coder 2 does so, and reports seeing a rural resident whenever 

Coder 2 does so.  This signifies complete agreement.  Here it is not as informative to talk 

about association.  Suppose the opposite happens, all 100 whites are rural, while all 100 non-

whites are urban. The association is equally high.  But if the same data are from the two 

coders, they would indicate that Coder 1 reports seeing urban residents whenever Coder 2 

reports seeing rural residents, and reports seeing rural residents whenever Coder 2 reports 

seeing urban residents.  That would be a complete disagreement.  

 Association and agreement also differ when distributions are even, e.g., when each 

ethnic group is half urban and half rural, or when two coders agree with each other half the 

time.  Here association is at the lowest possible, while agreement is 50%, half-way between 

the lowest and the highest possible.  Further, when there is no variation within a variable, e.g., 

when all respondents are of one ethnicity, or they all live in one locale, association is 
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undefined. Association is covariation, which is impossible when there is no variation.  If the 

same data come from two coders, which means one or both coders chooses only one category, 

agreement should and can still be calculated.  If both coders agree that all respondents are 

urban, there is one hundred percent agreement. Later we will show that three popular indices 

of reliability, i.e., π, κ and α, become un-calculable, hence undefined, when coders agree all 

cases fall into one category.  We will argue that should not have happened if the indices were 

to measure general agreement.  

[INSERT TABLE 1 Reliability and Related Concepts HERE] 

Table 1 summarizes the relationship between the key concepts.  This article will focus 

on agreement/reliability indices for categorical scales, and further focus on binary scales 

where appropriate. We will not deal with association measures such as χ2, or correlational 

measures such as Pearson’s r or r2.   

 

I.2. Reliability vs. Reliabilities 

Popping (1988) identified no less than 39 reliability indices, although some of them 

are association measures or correlational measures, and some are the same indices under 

different names.  This article will review 22 indices of intercoder reliability.  Many of the 22 

are mathematically equivalent, giving us 11 unique indices.  

It is assumed that the various indices are indicators of the same concept of intercoder 

reliability. Yet the indices produce different—often drastically different—results for the same 

underlying agreements. As reliability means agreement (Riffe, Lacy, & Fico, 1998), these 

indices of reliability do not appear reliable themselves. 

Under the premise of “various indicators for one reliability,” methodologists debate 

which indicator is the best, whether to use this, that, or several of them in a study, and how to 

fix or cope when some indices, especially Cohen’s κ, behave paradoxically (e.g., Brennan & 
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Prediger, 1981; Krippendorff, 2004b; Lombard et al., 2002; Zwick, 1988).  This review takes 

a different approach.  As the indices produce different results, we suspect there may be 

multiple reliability concepts, each having one indicator. No more than one index can be the 

general indicator, while others are for special conditions.  Like mediation researchers (e.g. 

Hayes, 2009; Zhao, Lynch & Chen, 2010) who examined the dominant approach to reveal its 

hidden premises, this article analyzes each index of intercoder reliability to uncover its 

assumptions, which defines the boundaries for its legitimate use, and may explain the 

paradoxes and abnormalities that arise when it is used beyond the boundaries.  

 

II. A Typology of 22 Indices 

 The 22 indices we will review fall into two groups.  The first group, called non-

adjusted indices, includes percent agreement (ao, pre 1901), Holsti’s CR (1969), Osgood’s 

coefficient (1959) and Rogot and Goldberg’s A1. The first three are mathematically 

equivalent to each other. The four indices assume that all coding behavior is honest, observed 

agreements contain no random chance coding, hence there is no need to adjust for chance.  

The second group are known as chance-adjusted indices.  These 18 indices assume that 

coders deliberately maximize random chance coding, and limit honest coding to occasions 

dictated by chance, so the resulted chance agreement must be estimated and removed. 

[INSERT TABLE 2 A Typology of 22 Intercoder Reliability IndicesHERE] 

 The chance-adjusted group includes three subgroups.  The first subgroup of nine 

indices estimates chance agreement as a function of category in a measurement scale.  The 

second subgroup of eight indices estimates chance agreement as a function of observed 

distribution. Here “distribution” refers to the pattern by which cases fall into categories.  

Distribution can be extremely even, e.g., 50% of the advertisements coded have endorsers 

and 50% do not, or extremely uneven, e.g. 100% have endorsers and 0% do not, or anywhere 
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between the two extremes. In reliability literature, this important concept has also been 

referred to as “frequency” (Gwet, 2008), “base rate” (Grove et al., 1981; Kraemer, 1979; 

Spitznagel & Helzer, 1985), or “prevalence” (Gwet, 2010; Shrout, Spitzer, & Fleiss 1987; 

Spitznagel & Helzer, 1985). We will follow Cohen (1960), Perreault and Leigh (1989), and 

Gwet (2010) to call it distribution. The third subgroup has just one index, which uses both 

category and distribution as the main factors.  Table 2 summarizes this typology.   

 Six indices, namely ρ, Ir, and four non-adjusted indices range from 0 to 1. The 

maximum of λr is also 1, but it can get far below -1, according to one interpretation. The 

other 15 indices all range from -1 to 1. All 22 indices consider 1 as indicating maximum 

reliability, 0 as indicating no reliability, and a below-zero score as a random variation from 0. 

An important question is where the threshold for acceptable reliability is. This article will 

focus on estimation of reliability, and leave the threshold issue to future research.  

 

III. Non-Adjusted Indices 

Our search found four indices that are not adjusted for chance agreement, including 

percent agreement, two equivalents, and Rogot and Goldberg’s A1. 

 

III.1. Percent Agreement and Two Equivalents 

The most intuitive indicator of reliability is percent agreement, i.e., the number of 

cases coders agree (A) divided by the total number of targets analyzed (N). Krippendorff 

(2004b) and Neuendorf (2002) denote this as ao,:  

 
𝒂𝒐 =

𝑨

𝑵
 

 

( 
1 

1 
 

) 

Scott (1955, p. 322) observed that ao was “commonly used.”  Perhaps because it was 

so common and intuitive, its early users or critics like Benini (1901) did not mention who 
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invented it. As Osgood (1959) and Holsti (1969) advocated essentially the same index, many 

researchers referred to it as Holsti’s CR while a few called it Osgood’s coefficient 

(Krippendorff, 2004b). Bennett et al. (1954) pointed out that ao contains chance agreements 

from random guessing, and hence inflates reliability.  Experts on reliability (e.g., Lombard et 

al., 2002; Tinsley & Weiss, 1975) often concurred, revealing an important assumption: 

Basic Assumption 1

 

: Zero chance agreement. 

Percent agreement (ao) assumes no chance agreement in any situation, no matter how 

difficult the task is, or how tired, bored or unprepared the coders are.  This assumption leads 

to an important paradox: 

Paradox 1 : Random guessing can be reliable.   

Suppose two coders watch television programs to see if they contain subliminal 

advertisements, which are flashed quickly to avoid conscious perception. Although the coders 

try to be accurate, the task is so difficult that their coding amounts to nothing but random 

guessing.  Probability theory expects an ao=50%, which is the midpoint between 0% for no 

reliability and 100% for perfect reliability. 

 Because percent agreement fails to take into account chance agreements, it is often 

considered “the most primitive” (Cohen, 1960, p. 38) and “flawed” (Hayes & Krippendorff, 

2007, P. 80) indicator of reliability, leading to decades-long efforts to “account for” and 

“remove” chance agreements (Krippendorff, 1980, pp. 133-134; Riffe et al., 1998, pp. 129-

130). 

Critics of ao argued that “flipping a … coin” or “throwing dice” would have produced 

some “chance agreements” (Goodman and Kruskal, 1954, p. 757; Krippendorff, 2004a, p. 

114, 226; 2004b, p. 413). A coin only has two sides and a die always has six.  Drawing 

marbles may be a closer analogy, because colors and marbles per color can vary like 

categories and cases per category can vary in typical content studies (Zhao, 2011a & 2011b).  

http://en.wikipedia.org/wiki/Perception


ASSUMPTIONS BEHIND INTERCODER RELIABILITY INDICES  12 

Communication Yearbook 36 

Hereafter we will use “marble” to refer to any physical or virtual element of equal probability, 

“urn” to refer to a real or conceptual collection of the elements, and “drawing” to refer to a 

behavioral or mental process of randomly selecting from the elements.  Defined as such, 

marbles, urns, and drawing turn out to be a set of useful analytical tools.  They help to expose 

assumptions and explain paradoxes and abnormalities that otherwise would be more difficult 

to uncover or understand. 

The no-chance-agreement assumption does not necessarily make percent agreement a 

bad index, but perhaps a special-purpose index.  Some authors argued that, for easy cases or 

“textbook” cases, all agreements could be from a well-developed protocol (Grove et al, 1981, 

p. 411; Riffe, Lacy, & Fico, 2005, p.151). In such situations, no chance agreement should be 

expected; hence percent agreement would be an accurate index.  Percent agreement cannot be 

a general-purpose index because all cases are not easy, and all protocols are not well 

developed. 

 

III.2. Rogot & Goldberg’s A1 

Rogot and Goldberg (1966) noted that, when calculating percent agreement on a 

binary scale, each positive agreement, e.g., two diagnosticians agree a patient has an 

abnormality, is given an equal weight as a negative agreement, e.g., diagnosticians agree 

there is no abnormality.  Because abnormality is far less frequent than normality, negative 

agreements as a group are given more weights than positive agreements. To give the two 

groups equal weights, Rogot and Goldberg (1966) proposed A1: 

 𝑨𝟏 =
𝟏

𝟒
(

𝒂

𝒂 + 𝒃
+

𝒂

𝒂 + 𝒄
+

𝒅

𝒄 + 𝒅
+

𝒅

𝒃 + 𝒅
) 

 

( 

 

2 
 

) 

 

Here a and d are respectively positive and negative agreements, and b and c are two 

types of disagreements, all in percentages.  A1=ao when a=d and b=c, that is, when two types 
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of agreements are evenly distributed and the two types of disagreements are also evenly 

distributed. When a≠d, that is, when agreements are unevenly distributed, A1 decreases from 

ao, and more uneven distributions bring larger decreases.  When b≠c, that is, when 

disagreements are unevenly distributed, A1 increases from ao, and more uneven distributions 

bring larger increases.  Because the decreases and the increases are at the equal rate, the 

average of A1 should be close to the average of ao when each is averaged across many studies 

and data. As A1 is just a reweighted ao, they share the same assumption and paradox as 

discussed above.  In general A1 is not an improvement over percent agreement. Especially, it 

still does not take into account chance agreement.  

 

IV. An Overview of Chance-Adjusted Indices 

To “account for” and “remove” chance agreement (ac) from percent agreement (ao), 

Equation 3 was introduced to calculate reliability index (ri). The equation was implied in 

Guttman (1946) and Bennett et al (1954) and made explicit by Scott (1955): 

 𝒓𝒊 =
𝒂𝒐−𝒂𝒄

𝟏 − 𝒂𝒄
 

 

( 

 

3 
 

) 

 The subtraction in the numerator appears intuitive. Chance agreement (ac) needs to be 

removed from the observed agreement (ao). The subtraction deflates the otherwise inflated 

index.  The subtraction in the denominator, however, is not as intuitive.  Reliability index (ri) 

is a percentage, of which the denominator serves as the reference.  The full length of the 

reference is 1 for 100%.  The subtraction shrinks the reference, making ri look larger.   

 There is a behavioral assumption behind the shrinking.  To understand the assumption, 

we may analyze Equation 4, which was implied in Guttman’s ρ (1946), Bennett et al.’s S 

(1954), Scott’s π (1955) and Cohen’s κ (1960), and made explicit by Cohen (1968, p. 215): 
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 𝟏 = 𝒂𝒄 + 𝒅𝒄 ( 4 ) 

With ac representing chance agreement (%) and dc representing chance disagreement 

(%), Equation 4 says chance coding constitutes 100% of all coding.  Some may argue that “1” 

here represents “all chance coding.” That is true. But all major reliability indices from 

Guttman’s ρ (1946) to Gwet’s AC1 (2008) all state or imply ao+do=1, where ao is observed 

agreement and do is observed disagreement, hence ao+do =ac+dc, which means “all coding 

equals all chance coding,” or “all coding is chance.” 

But chance coding allows and includes honest coding in a two-stage process, 

according to Equations 3 & 4.  In the first stage, coders code all cases completely randomly 

by drawing marbles.  If they draw a certain pattern, e.g., the same color, they report findings 

according to a pre-determined color-category matching scheme. For example, if the marbles 

are white they would say that an advertisement has an endorser while if the marbles are black 

they would say there is no endorser, without looking at the advertisement under coding.  If 

and only if the coders draw another pattern, e.g. different colors, they would go to the second 

stage, during which they would code honestly. Hence honest coding (h) equals chance 

disagreement (dc):  

 𝒅𝒄 = 𝒉 ( 
 

5 ) 

Here honest coding (h) is defined as percent of cases that coders code by actually 

examining the objects and categorizing objectively following the instructions during training.  

Chance coding thus precedes, permits, confines and constrains honest coding. Since honest 

coding is limited within chance disagreement, it is the chance disagreement, but not all 

coding, that should be the baseline for percentage calculation.  This is why the denominator 

in Equation 3 should be shrunk from 1 to1-ac= dc=h.   
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Replacing ao with1-do and replacing ac with 1-dc in Equation 3, we obtain an 

alternative expression of ri (Krippendorff, 1980, p.138; 2004a, p. 417):  

 𝒓𝒊 = 𝟏 −
𝒅𝒐

𝒅𝒄
 

 

( 

 

6 
 

) 

Most of the chance-adjusted indices share Equations 3 through 6 as they are.  Benini’s 

β (1901) and Perreault and Leigh’s Ir (1989) modify the two equations, which we will discuss 

later.  

The marble drawing scenario was implicit in Guttman’s ρ (1946), Bennett et al’s S 

(1954), Scott’s π (1955) and all other chance-adjusted indices that followed.  Goodman and 

Kruskal (1954) discussed flipping a coin, and Krippendorff (1980) discussed throwing dice, 

making the scenario explicit.  Zhao (2011a, b) rephrased it as drawing marble to allow more 

accurate analysis of various indices. This Guttman-Goodman Scenario has been widely 

accepted because it was told as hypothetical stories. Few believe that coders regularly 

maximize chance coding in actual research. Yet few realize that, by applying Equations 3 

through 6, which are key components of S and all other chance-adjusted indices, we are 

treating maximum randomness as real occurrences.  Riffe, Lacy, & Fico (2005, p.151) did 

realize this, pointing out “that agreement can take place by chance does not mean it 

does…All agreements could easily be the result of a well-developed protocol.” Grove and 

colleagues (1981, p. 411) had the same view: “chance agreement means the agreement would 

be observed if two raters assigned diagnoses to cases at random. Now this is not what 

diagnosticians do.  They assign the easy cases, or ‘textbook’ cases, to diagnoses with little or 

no error, they may guess or diagnose randomly on the others.” 

If we accept this Grove-Riffe Scenario, we may argue that Equations 3 and 6 are 

inappropriate, as they are based on a behavior that should never happen and probably never 

did.  Even if deliberate and systematic random coding does happen, the data should be 

thrown out and no reliability should be calculated. Deliberate random coding would be a type 
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of cheating.  A simpler cheating would be that two coders always agree with each other, 

without looking at any cases, throwing any dice or drawing any marbles. They would have 

gotten 100% agreement. The fabricated agreements cannot and need not be removed from the 

data. The data should be thrown away, not analyzed.  

So we need to lay bare the assumptions behind Equations 3~6, which are shared by all 

chance-adjusted indices reviewed in this article: 

Basic Assumption 2 : Maximum random. 

By removing chance agreement using Equation 3 or 6, these reliability indices assume 

that deliberate and systematic chance coding is not hypothetical, but real — no empirical 

research should “remove” or “correct for” anything that’s not real.   

Basic Assumption 3

 

: Limited honesty. 

By estimating reliability using Equation 3 or 6, theses indices assume that honest 

coding is confined to a portion of the cases defined and confined by random chance.  

    
Assumption 4

 

: Specified random. 

There is an infinite number of ways to be random.  Coders may flip a fair coin, throw 

a biased die, or draw marbles of various numbers of various colors without replacement.  

Each method produces a different estimate of chance agreements.  Because maximum 

randomness is hypothetical, there is no empirical justification to pick one method over 

another.  Each index picks one way, analogous to a man picking a favorite tie from a large 

selection.  Scott’s π assumes drawing from a shared urn with replacement. Cohen’s κ assumes 

drawing from separate urns with replacement. Krippendorff’s α assumes drawing from a 

shared urn without replacement.  And so on.  Each index treats its way as the only way of 

being random.  

This assumption is not as fundamental as the previous ones.  We will not attach the 

word “basic” to such assumptions so as to draw more attention to the more important ones.  
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These assumptions entail that the chance-adjusted indices operate under a Guttman-

Goodman Scenario, yet each index has been recommended for typical coding, which follows 

a Grove-Riffe Scenario.  The mismatch between the assumption and the reality creates 

paradoxes: 

Paradox 2 : Nothing but chance. 

Equation 4, which says 1=ac+dc, represents a critical assumption in all chance-

adjusted reliability indices reviewed in this article: chance coding, which includes chance 

agreements (ac) and chance disagreements (dc), covers 100% of the cases coded.  

We found this paradoxical because we believed, under the Grove-Riffe Scenario, 

coders code objectively at least sometimes, before and beyond random chance. Assumptions 

2 & 3, under the Guttman-Goodman Scenario, stipulate that coders maximize random coding, 

and code honestly only when marbles’ colors mismatch.  “Nothing but chance in the first 

stage” is an operating boundary for these indices, beyond which paradoxes arise.  If coder 

behavior follows the Grove-Riffe rather than Guttman-Goodman Scenario, Equation 4 is 

incorrect, and therefore these indices are all incorrect.  

Paradox 3 : Apples compared with oranges. 

In Equation 3, the numerator represents “honest agreements,” while the denominator 

represents “chance disagreements.”  The division compares the numerator as a part with the 

denominator as the whole to produce a percentage figure. But why compare honest 

agreements with chance disagreements? Are we comparing apples with oranges?  Why not 

compare some apples with all apples, e.g. honest agreements with all coding? We found this 

paradoxical because we did not realize chance disagreement is honest coding under 

Assumptions 2 & 3 — coders code honestly when and only when marbles disagree. 

Under the Grove-Riffe Scenairo, all coding can be honest, not just those confined to 

chance disagreement (Riffe et al., 2005).  We should replace maximum-randomness and 

limited-honesty assumptions with variable-randomness and complete-honesty assumptions.  
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Paradox 4 : Humans are subgroup of men.   

When we mathematically divide men by humans, we are asking “what percent of 

humans are men?” assuming men are a subgroup of humans.  When we divide do by dc 

(Equation 6), we are asking “what percent of chance disagreements is observed 

disagreements?” assuming observed disagreements are a subgroup of chance disagreements. 

But should not chance disagreements and honest disagreements be two subgroups of 

observed disagreements? If so, we should divide chance disagreements by observed 

disagreements, not vice versa.  Dividing do by dc is analogous to saying “humans are a 

subgroup of men.” 

 

 Equations 3~6 imply ao-ac+do=dc, which implies that honest agreements (ao-ac) and 

observed disagreements (do) are two subgroups of chance disagreements (dc), which is 

analogous to saying that “pandas and humans are two subgroups of men.” 

This appears paradoxical because we thought, under a Grove-Riffe Scenario, chance 

disagreement is a subgroup of observed disagreement. Nevertheless, under the Guttman-

Goodman Scenario and especially Assumption 2, coders disagree (observed disagreement) 

when and only when marbles disagree (chance disagreement).  Therefore observed 

disagreement should be a subgroup of chance disagreement. 

Unfortunately, the major chance-adjusted indices all share Equations 3, 4, and 6 under 

the Guttman-Goodman Scenario, which we will call maximum-randomness equations.  No 

index has been built under the Grove-Riffe Scenario. 

 

V. Category-Based Indices 

Accurately estimating chance agreement may be as important as properly removing it 

(Equations 3, 4, and 6).  How to estimate chance agreement is where major indices differ.  

Paradox 5 : Pandas are a subgroup of men. 
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Guttman (1946), a pioneer in social psychology and social science methodology, calculated 

chance agreement (ac) as the inverse of the number of categories (K) available to the coders: 

 𝒂𝒄 =
𝟏

𝑲
 

(              7 ) 

 Equation 7 assumes maximum randomness just as Equations 3 and 6 do. But this is a 

particular type of randomness: drawing randomly from marbles equally distributed among K 

colors, which correspond to K categories, each coder has 1/K probability of choosing one 

particular category; two coders have (1/K)*(1/K) probability of agreeing on the category.  

Multiplying this product by K categories, we see a probability of (1/K)* (1/K)*K=1/K that the 

two coders would agree by chance.  This equation and the rationale are the foundation of the 

category-based indices discussed below. 

 

V.1. Bennett et al’s S and Six Equivalents 

Bennett et al (1954) recommended a reliability index, S: 

 𝑺 =
𝑲

𝑲 − 𝟏
  (𝒂𝒐 −

𝟏

𝑲
)  ( 8 ) 

 Equation 8 can be derived by inserting the right side of Equation 7 into Equation 3.  In 

other words, S implies directly Equations 1, 3, and 7, and indirectly Equations 4 through 6.  

So, S assumes maximum randomness not only when chance agreement is removed 

(Equations 3 and 6), but also when chance agreement is calculated (Equations 7 and 8). 

 By removing chance agreement, S aims to avoid Assumption 1 and Paradox 1.  

Nevertheless, by using Equations 3 and 6 to execute the removal, S adopts maximum-

randomness and limited-honesty assumptions.  Adding Equations 7 and 8, S assumes the 

following Bennett Scenario for two coders: 

1. The coders place K sets of marbles into an urn, where K equals the number of 

coding categories.  Each set has an equal number of marbles and has its own color.  
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The coders agree on which color represents which category.  Again, in this article 

“marble” refers to any physical or virtual element of equal probability, and “urn” 

refers to any real or conceptual collection of the elements. 

2. They take a target to be coded.  Here target is anything under coding, such as an 

advertisement, a news story, a patient, etc. 

3. One coder draws a marble randomly from the urn, notes the marble’s color, and 

puts it back. The other coder does the same. 

4. If both draw the same color, each reports that the target belongs to the 

corresponding category according to the predetermined color-category pairings, 

without looking at the target. Only if they draw different colors would they code 

objectively, at which point they may honestly agree or disagree, and report 

accordingly.  

5. The coders repeat Step 2 and the subsequent steps, and end the coding session 

when they have thus “coded” all targets. 

 Note that the Bennett Scenario is a special case of the broader Guttman-Goodman 

Scenario discussed earlier. The Guttman Scenario reveals several additional assumptions of S: 

Basic Assumption 5

 

: Categories equal marble colors. 

There is an infinite number of ways to be random.  The coders could use any number 

of urns, any number of marbles, any number of marble colors, and choose any distribution 

pattern of the colors; they could draw with or without replacement; and they could decide on 

different color-category matching.  Each of these parameters may affect chance agreement. 

To estimate the chance agreement, S made several assumptions, one of which is that coders 

set the number of marble colors equal to the number of categories in the coding scheme.  

Assumption 6

 

: Equal number per color. 

Coders put in the urn an equal number of marbles per color.  
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Assumption 7

 

: Drawing with replacement.   

While maximizing random coding, coders draw marbles with replacement.  All other 

chance-adjusted indices assume the same, except Krippendorff’s α (1970, 1980), which 

assumes drawing without replacement. 

Assumption 8

 

: Color mismatch equals honesty.   

Coders code honestly when marbles’ colors mismatch.  Most of the chance-adjusted 

indices assume the same, except Gwet’s AC1 (2008) and Goodman and Kruskal’s λr (1954), 

which we will discuss later. 

Basic Assumption 9

 

: Categories reduce chance agreements.   

Equation 7 assumes that category is the only parameter affecting chance agreement.  

Nothing else, including the distribution pattern of the cases coded, affects chance agreement. 

More categories mean less chance agreement.  Two categories imply 50% chance agreement, 

while 10 categories imply 10% chance agreement.  As categories approach infinity, chance 

agreement approaches 0%.  Accordingly, we say the indices sharing Equation 7 are category 

based.  

Bennett et al. (1954) compared S with ao and ac. They appeared to be aware that their 

chance agreements (Equation 7) were only hypothetical, so they used S only as convenient 

references complementing other information, including ao, ac, and K.  Between the lines of 

Bennett et al (1954), we do not sense that S is the only or better indicator of reliability, but 

instead one more piece of information added to the overall picture.  This nuanced 

understanding is not often seen in the writings of some later authors of various indices of 

intercoder reliability.  

 Since 1954, S has been independently reinvented at least six times.  Some of the 

reinventions have minor variations or more restricted applications.  They are usually based on 

different reasoning and always bear different labels: Guilford’s G (Guilford, 1961; Holley 

and Guilford, 1964), Maxwell’s RE (1977), Jason and Vegelius’ C (1979), Brennan and 
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Prediger’s kn (1981), Byrt, Bishop, and Carlin’s PABAK (1993) and Potter and Levine-

Donnerstein’s redefined Pi (1999). 

 

V.2. Guttman’s ρ 

About eight years before Bennett et al. (1954), Guttman (1946) proposed the same 

Equation 8 and implied the same Equation 7. But Guttman calculates ao in a unique way: 

 𝒂𝒐 =
𝟏

𝟐
(

𝑵𝒍𝟏

𝑵
+

𝑵𝒍𝟐

𝑵
) 

 

( 
 

9 
 

) 

Nl1 and Nl2 are, respectively, the mode frequency reported by each coder.  Suppose on 

a binary scale Coder 1 reports 85 cases in Category 1 and 15 cases in Category 2, while 

Coder 2 reports 55 cases in Category 1 and 45 cases in Category 2, Nl1=85 and Nl2=55.  When 

the right sides of Equations 7 and 9 replace respectively ac and ao in Equation 3, Ri is 

Guttman’s ρ. By contrast, all other indices reviewed in this article use Equation 1 to calculate 

ao. Except for the calculation of ao, ρ is identical to S. So ρ shares all assumptions of S that 

have been discussed, and one paradox that will be discussed below.  

Guttman’s overriding concern appears to be keeping reliability scores between 0 and 

1.  Equation 9 achieves that objective, making Guttman’s ρ one of the few chance-adjusted 

indices that never fall below zero.  A side effect is that Guttman’s ao only crudely 

approximates percent agreement, leading to the following assumption: 

Assumption 10 : Percent agreement needs to be approximated but not calculated. 

Mode is not percent agreement.  But the two are correlated.  Generally, when 

distributions are skewed at the same direction, e.g., both coders report 90% positive, the more 

skewed is the distribution, the closer Guttman’s ao is toward percent agreement; when 

distributions are skewed at the opposite directions, the more skewed is the distribution, the 

farther away Guttman’s ao is from percent agreement.  At one extreme, if both coders report 

that 100% cases fall into the same category, percent agreement and Guttman’s ao are both 1. 
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At the other extreme, when one coder reports 100% positive and another 100% negative, 

percent agreement is 0% while Guttman’s ao is 1.  If both coders report 50 & 50% 

distributions, Guttman’s ao is 0.5 while percent agreement can be anywhere between 0 and 

100%.  As distributions are far more likely to skew at the same direction than opposite 

directions in actual coding, Guttman’s ao may be seen as a crude approximation of percent 

agreement. 

But it is so crude that we hesitate to call Guttman’s ao an estimation of agreement.  

This may look more detrimental today as we now define reliability in terms of agreement.  So 

we are not surprised that ρ has rarely been used. Bennett et al (1954) copied Equation 7 

entirely from Guttman (1946) without mentioning ρ, and introduced S by changing only one 

thing, the calculation of ao. Scott (1955) cited S but not ρ while developing π. And we know 

it was π that served as an inspiration for Cohen’s κ (1960) and Krippendorff’s α (1970).  

We also would not recommend ρ, as ρ has all the defects but not all the benefits of S. 

Guttman (1946) was however the first we know to introduce Equation 7, which implies 

Equations 3~6 that contain the basic concepts and premises for reliability calculation in the 

past six decades.  Today, when researchers calculate chance-adjusted reliability, few calculate 

ρ, yet almost all use Equations 3~6, thereby adopt the assumptions behind. 

 

V.3. Perreault and Leigh’s Ir  

 Hayes and Krippendorff (2007, p. 80) and Krippendorff (2004b, p. 417) considered 

Perreault and Leigh’s Ir (1989) a simple modification of S.  The modification was to take the 

square root of S when S is zero or above, otherwise define reliability as zero: 

 𝑰𝒓 = √𝑺     (𝑺 ≥ 𝟎) ( 10 ) 

 
𝐼𝑟 = 0    (𝑆 < 0) 

 

( 10 ) 
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 At two key spots, Ir=1 when S=1, and Ir=0 when S=0.  Everywhere else, Ir is larger 

than S, with the largest difference at S=-1 and Ir=0, and the largest above-zero difference at 

S=0.5 and Ir≈0.71. So Ir is an elevated version of S, implying an interesting assumption: 

Assumption 11 : Reliability index needs to be elevated across scale. 

 Perreault and Leigh’s Ir (1989) assumes that a reliability index needs to be elevated 

numerically across the scale, after adjusting for chance using Equation 3 or 6. The only other 

index that makes the same assumption is Benini’s β. Taking the square root of a 0~1 variable 

produces little change in the pattern of its behavior other than elevating it numerically.  

Consequently, Ir adopts all assumptions and paradoxes of S, one of which we discuss below.  

 

V.4.  A Paradox Shared by Nine Category-Based Indices  

Users treat ρ, Ir, S and its six equivalents as general indicators for typical studies.  As 

typical studies do not follow Assumptions 2~9, paradoxes arise.  The shared equations (3~6) 

lead to shared Paradoxes 6~7, while Equation 7 leads to another classic paradox: 

Paradox 6 : Empty Categories Increase Reliability.   

Scott (1955) observed “given a two-category sex dimension and a Po (our ao) of 60 

per cent, the S …would be 0.20.  But a whimsical researcher might add two more categories, 

‘hermaphrodite’ and ‘indeterminate,’ thereby increasing S to 0.47, though the two additional 

categories are not used at all.” The same paradox can be replicated for Guttman’s ρ with 

identical numbers (ao=.6, ρ=.2 increased to ρ=.47), assuming each coder reports 60% for one 

gender and 40% for another. The same paradox also shows for Perreault and Leigh’s Ir, if we 

take the square roots of 0.2 and 0.47, which would approximate 0.45 and 0.69 respectively. 

Now that we know the assumptions behind S, ρ and Ir, there are two ways to interpret 

Paradox 6: 

1) The coding followed a Guttman Scenario in accordance to Assumptions 2~9. 

Assumption 5, which equates categories with marble colors, requires the coding in 
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Paradox 6 be separated into two sessions. In the first session the coders draw from 

two colors, while in the second they draw from four colors.  With four colors, 

there are more chances of color mismatch, therefore more chances of honest 

coding, therefore higher reliability.  There is no paradox if coders indeed coded 

this way. 

2) The coding followed a Grove-Riffe Scenario in accordance with the variable-

random and complete-honesty assumptions.  Coders did not use any urns or 

marbles. Assumptions 2~9 have been violated; therefore S, ρ, or Ir should not have 

been calculated.  Paradox 6 is not a real paradox.  It is only the symptom of 

special-purpose indices applied beyond their boundaries. 

 Scott’s (1955, pp.321-322) interpretation was: “The index (S) is based on the 

assumption that all categories in the dimension have equal probability of use 1/K by both 

coders.  This is an unwarranted assumption for most behavioral and attitudinal research.  

Even though k categories may be available to the observers, the phenomena being coded are 

likely to be distributed unevenly, and in many cases will cluster heavily in only two or three 

of them … S would appear to be an unsatisfactory measure of coding reliability.”  

 Scott was right to reject one assumption of S that “categories … have equal 

probability of use” which is implied in the categories-equal-colors and equal-number-per-

color assumptions.  Scott however accepted, possibly unknowingly, the more detrimental 

assumptions of S, namely maximum-randomness and limited-honesty.  Consequently, while 

Scott’s π eliminates one symptom of S, it causes other symptoms that are arguably more 

problematic, which we will discuss below. 

 

VI. Distribution-Based Indices 
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 The eight indices reviewed in this section all assume that distribution is the most 

important factor affecting chance agreement.  They differ with each other in other details.  

 

VI.1. Scott’s π and Two Equivalents, Revised Κ and BAK  

Of the chance-adjusted intercoder reliability indices, Scott’s π is second only to 

Cohen’s κ (1960) in popularity.  In Communication and Mass Media Complete (CMMC), 

citations for “Scott’s Pi” rose from 11 in 1994 to 61 in 2009, totaling 597 for the period. It 

has been also recommended later under two different names, Siegel and Castellan’s Revised 

Κ (1988) and Byrt et al’s BAK (1993).  Because they are mathematically equivalent to each 

other, our discussions and findings hereafter about π also apply to Revised Κ and BAK. 

Like other major chance-adjusted indices, Scott’s π shares the same chance-removing 

procedure (Equations 3, 4, and 6) while adopting its own chance-estimating procedure.  For a 

binary scale, Scott (1955) estimates chance agreement (ac) using the average of two coders’ 

positive answers (Np) and the average of their negative answers (Nn): 

 𝒂𝒄 = (
𝑵𝒑

𝑵
) (

𝑵𝒑

𝑵
) + (

𝑵𝒏

𝑵
) (

𝑵𝒏

𝑵
) 

( 11 ) 

Here Np is from the two coders' (1 and 2) positive decisions (Np1 & Np2):  

 𝑵𝒑 =
𝑵𝒑𝟏 + 𝑵𝒑𝟐

𝟐
 

( 12 ) 

And Nn is from the coders’ negative decisions (Nn1 & Nn2): 

 𝑵𝒏 =
𝑵𝒏𝟏 +  𝑵𝒏𝟐

𝟐
 

 

 

( 
 

13 
 

) 

 When the right side of Equation 11 is inserted into Equation 3, ri is Scott’s π.  Like S, 

π assumes maximum randomness. Two coders draw with replacement from the same urn of N 

marbles, Np black and Nn white. The probability of one coder getting black is Np/N, both 
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getting black is (Np/N)* (Np/N), both getting white is (Nn/N)* (Nn/N).  The probability of their 

agreeing through marble drawing is the sum of the two products, hence Equation 11. 

Although Scott’s π accepts the categories-equal-colors assumption, it rejects the 

equal-number-per-color assumption, allowing the number of marbles for each color to vary 

between 0 and N. Hence it succeeds in excluding category (K) per se as a parameter and 

avoids the categories-increase-reliability paradox.  By sharing Equations 3, 4 and, 6, however, 

π shares maximum-randomness and limited-honesty assumptions. Further, π adopts average 

distribution as a parameter (Equation 11), hence adopts more consequential assumption: 

Basic Assumption 12 : Conspired quota.   

To calculate chance agreement under the maximum randomness assumption, we need 

to know the marble distribution.  S assumes even distribution across all colors, making 

category a parameter.  Scott’s π rejects this assumption. So what is the distribution? No one 

knows, because marble drawing is only hypothetical.  Even if marble drawing had happened, 

marble distribution can be anywhere between 0% & 100% and 100% & 0%.  Scott’s π 

assumes that average of the “observed distributions” reported by the coders is also the marble 

distribution.  That means that π mathematically equates marble distribution with observed 

target distribution. 

But there is no natural linkage between the two. Coders may draw from an urn of 40% 

& 60% marbles while coding a pile of 90% & 10% commercials.  If the research is done 

reasonably well, its observed distribution should be related to the targeted commercials but 

normally unrelated to the marbles.  

Under a Guttman-Goodman scenario, marble distribution must be set before drawing, 

which has to take place before the coding that produces the observed distributions.  There is 

only one way marble distributions could equal observed distributions regularly and 

precisely— if  someone sets a quota that is accurately executed.  While ordinary marble 

drawing contains sampling errors, Equation 11 leaves no room for error, implying that π 
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assumes a strict quota — the two coders execute the quota so faithfully that the average 

distribution they report is identical to the marble distribution in the urn.  

Equation 11 uses the average of two coders’ observed distributions, implying that the 

two coders set one quota, share one urn, and work together to deliver the quota, hence 

“conspired quota,” or “collectively strict quota.”   

To justify using observed distribution, it is often argued that the observed distribution 

is a reasonable estimate of the population distribution (Cohen, 1960, p. 40; Krippendorff, 

2004b, p. 418; Scott, 1955, p. 324).  This reasoning mixed two populations, target population 

under study, such as news and ads, and marble population in the urn, from which coders 

hypothetically draw.  Observed distribution can be a reasonable estimate of target distribution, 

but normally not a legitimate estimate of marble distribution.     

Equation 11 needs a marble distribution, and employs observed distribution as a 

surrogate.  The equation does not need the distribution of the target population.  The sample-

population linkage does not justify Equation 11 or π, while a conspired quota does. This 

implies another assumption behind Scott’s π, which was later also adopted by κ, α, and AC1: 

Assumption 13 : Trinity distribution.   

This is a group of three assumptions.  1) Observed sample distribution equals target 

population distribution;  2) observed sample distribution equals marble distribution; hence 3) 

observed sample distribution equals marble distribution.  The first assumption is consistent 

with probability theory assuming a probability sample. The latter two are inventions implied 

in π, which cannot be justified by probability theory or empirical evidences.     

Gwet (2010, p. 40) commented: “Scott’s π is … very sensitive to trait prevalence.” 

This is because distribution (prevalence) is a main factor in π, even though the index is 

supposed to measure agreement but not prevalence.  We will discuss later that distribution 

also affects Gwet’s AC1, although inversely.   
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By sharing maximum-randomness equations (3, 4, and 6), π also shares the 

underlying assumptions of maximum-randomness and limited-honesty (2 & 3).  By adopting 

Equation 11, π also shares replacement-drawing and mismatch-equals-honesty assumptions 

(7 & 8), and three additional assumptions below: 

Assumption 14 : Constrained task 

A study is not to investigate how many targets are in what category, which has been 

pre-decided by the quotas, but to place targets into appropriate categories under the quotas. 

Assumption 15 : Predetermined distribution. 

Executing a quota implies that distribution is determined before coding. Therefore the 

observed distribution must remain unchanged within a study when the coders improve their 

work, as their “work” is not to assess distribution between categories.  

 

[INSERT TABLE 3 Scott’s Chance Agreement (ac) as a Function of Two 

Distributions* HERE] 

 

Assumption 16 : Quota & distribution affect chance agreements. 

agreement. 
Chance agreement ac is a function of marble distributions, which is predetermined by 

the quotas.  This assumption is implied in the maximum-randomness and conspired-quota 

assumptions. If all marbles in the urn are of one color, the coders have no chance to code 

honestly; they have to agree all the time, by chance. If the marbles are 50% black and 50% 

white, the coders have a 50% chance of agreeing randomly and 50% chance coding honestly. 

As quota determines both observed distribution and chance agreement, the latter two 

also correlate with each other. Table 3 displays Scott’s chance agreement as a function of 

observed distributions. According to Equations 3 and 6, chance agreement ac is a bar that 

percent agreement must pass to produce a positive index, and pass by margins to produce a 

good-looking index.  Higher ac means a higher bar and lower looking reliability.  An 

important pattern is that the more skewed is the observed distribution, the higher the bar, the 

lower the π. 
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[INSERT TABLE 4 Assumptions of 22 Intercoder Reliability Indices HERE] 

These assumptions, as summarized in Table 4, portray the following Scott Scenario 

for a binary scale, which is another case of the broader Guttman-Goodman Scenario: 

1.  Two coders set a quota for the black and white marbles, and fill the urn 

accordingly. They also agree on which color represents positive and which 

negative.  We will assume black-positive & white-negative pairings hereafter. 

2. They take a target to be coded.   

3. One coder draws a marble randomly from the urn, notes the marble’s color, and 

puts it back. The other coder does the same.  

4. If both draw black, each reports positive; if both draw white, each reports negative; 

in either case they do not look at the target being coded. Only if one draws a black 

and the other draws a white would they code objectively, at which point they may 

honestly agree or disagree, and report accordingly. 

5. The two coders calculate the average of positive cases and the average of negative 

cases they have reported.  If one average reaches the quota, they stop drawing, 

report the remaining targets according to the quota, then end the coding session. If 

neither average reaches the quota, they repeat Step 2 and the subsequent steps.  

The Scott Assumptions (2~4,7,8,12~16), as illustrated in the Scott Scenario, constitute 

the boundaries beyond which Scott’s π should normally not be used. Scott’s π, however, has 

been used as a general indicator of reliability for typical coding. As typical coding is closer to 

a Grove-Riffe Scenario than a Scott Scenario, paradoxes and abnormalities arise, which we 

will discuss after analyzing two closely related indices, κ and α.  

 

VI.2. Cohen’s κ and an Equivalent, A2 
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Cohen’s κ (1960) has been the most often used chance-adjusted index of reliability.  

In Social Sciences Citation Index (SSCI), Cohen (1960) was cited 203 times in 1994 and 306 

times in 2010, totaling 3,624 during the period.  Rogot and Goldberg (1966) proposed A2, 

which Fleiss (1975) pointed out is equivalent to κ. So all our discussion about κ also applies 

to A2. 

Cohen (1960, pp. 40-41) disagreed with Scott’s estimation of chance agreement, ac 

arguing: “(Scott) assumes…the distribution … is … equal for the judges … (which) may be 

questioned,” because (p. 38) “the judges operate independently.” So he replaced two coders’ 

average positive (Np) and negative answers (Nn) in Equation 11 with each coder’s (1 and 2) 

individual positive (Np1 & Np2) and negative (Nn1 & Nn2) answers: 

 𝒂𝒄 = (
𝑵𝒑𝟏

𝑵
) (

𝑵𝒑𝟐

𝑵
) + (

𝑵𝒏𝟏

𝑵
) (

𝑵𝒏𝟐

𝑵
) 

 

( 
 

14 
 

) 

 When the right side of Equation 14 is inserted into Equation 3, ri is Cohen’s κ. Cohen 

(1960) agreed with Scott (1955) on one important point: “the distribution of proportions over 

the categories for the population is known.” Here, like Scott (1955), Cohen (1960) 

conceptually mixed the target population with the marble population, treating the two as one.  

He injected into κ the observed distribution as if it was the marble distribution, but justified 

the injection in terms of the target distribution. In other words, κ shares the trinity distribution 

assumption, making distribution a major parameter like π does.  Consequently, κ adopts a 

quota assumption similar to π’s, and behaves quite similarly to π. By adopting maximum-

randomness equations (3, 4, and 6), κ also shares maximum-randomness and limited-honesty 

assumptions with S and π. The only difference among them is how to estimate chance 

agreement ac, and the only difference between π and κ is how to set and execute the quota. 

While π assumes that two coders set one quota, and work together to execute it, κ assumes 

differently:   
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Basic Assumption 17 : Individual quotas. 

Cohen’s κ uses observed individual distributions, implying that each coder sets his 

own quota, places marbles accordingly into his own urn, and works individually to assure that 

the distribution he reports meets his own quota, hence “individual quotas.”  

Cohen (1960, Table 1) adapted “agreement matrix of proportions” from the χ2 

procedure to justify and explain κ. While χ2 multiplies margins of an association matrix to 

calculate the probabilities expected under the no-association hypothesis, Cohen’s κ (1960, p. 

38) multiplies margins of an agreement matrix to calculate ac.   

There is, however, a crucial difference between the two matrices, as we alluded to in 

Section I.  The variables of an association matrix, such as race and locale, may be 

independent of each other, while the variables of an agreement matrix are coders’ 

observations of the same targets, and hence normally cannot be independent of each other. By 

multiplying the distributions of race and locale, χ2 assumes that each is independent. Likewise, 

by multiplying individual distributions of the coder observations, κ assumes that each is 

independent.  If each is independent, they cannot come from objective observations of the 

same targets. We have to find another source to justify the presumed independence, which we 

found in two independently predetermined quotas.  This analysis does not apply to π, α or 

AC1, each of which uses average rather than individual distributions, hence assumes a 

conspired rather than individual quota. 

Table 5 for Cohen’s ac is to be compared with Table 3 for Scott’s ac.  The comparison 

reveals that Cohen’s ac is usually lower and never higher than Scott’s ac, which means that κ 

is usually higher and never lower than π.  The most striking difference occurs when the two 

observed distributions are skewed in the opposite directions, where Cohen’s ac approaches 

0%, while Scott’s ac approaches 50%. 

[INSERT TABLE 5 Cohen’s Chance Agreement (ac) as a Function of Two Distributions* 

HERE] 
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Feinstein and Cicchetti (1990, p. 548) observed “The reasoning (of κ) makes the 

assumption that each observer has a relatively fixed probability of making positive or 

negative responses. The assumption does not seem appropriate, however for most clinical 

observers. If unbiased, the observers will usually respond to whatever is presented in each 

particular instance of challenge.” “Fixed probability” is quota. Feinstein and Cicchetti (1990) 

recognized κ’s individual quota assumption more than 20 years ago without naming it so. As 

discussed earlier it is a strict quota, not “relative.”    

The Cohen Assumptions (2~4, 7, 8, 14~17), which are also summarized in Table 4, 

portray the following Cohen Scenario, which is another special case of the Guttman-

Goodman Scenario:  

1. Each coder sets a quota for the black and white marbles, and fills his or her urn 

accordingly.  

2. They take a target to be coded.   

3. One coder draws a marble randomly from his urn, notes the marble's color, and 

puts it back. The other coder does the same from her urn.  

4. If both draw black, each reports positive; if both draw white, each reports negative; 

in either case they do not look at the target being coded. Only if one draws a black 

and another draws a white would they code objectively, at which point they may 

honestly agree or disagree, and report accordingly. 

5. Each coder calculates the positive and negative cases that he or she has reported.  

If either reaches the quota, he or she stops drawing, reports the remaining targets 

according to the quota, then ends the coding.  If neither reaches the quota, he or 

she repeats Step 2 and the subsequent steps. 

If a study conforms to the Cohen Scenario and Cohen Assumptions, κ would be an 

appropriate index of intercoder reliability, otherwise κ would be inappropriate.  When κ is 
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applied in violation of the Scenario and the assumptions, paradoxes arise, which κ shares with 

π and Krippendorff’s α.  We will discuss these paradoxes after analyzing α. 

 

VI.3. Krippendorff’s α 

 Krippendorff’s α (1970, 1980) may not be as often cited as Scott’s π or Cohen’s κ.  

But it is among the most often recommended (Hayes & Krippendorff, 2007; Krippendorff, 

2004b). Like Scott (1955) and Cohen (1960), Krippendorff (1980) also adopted Equations 3, 

4, and 6.  But Krippendorff believed that Cohen made a mistake by using individual 

distributions, and Scott made a mistake by assuming marble drawing with replacement, 

which fails to correct for sample size (cf. Krippendorff, 2004b).  So Krippendorff’s 

estimation for chance agreement retains Scott’s average distributions but assumes no 

replacement:   

 𝒂𝒄 = (
𝟐𝑵𝒑

𝟐𝑵
) (

𝟐𝑵𝒑 − 𝟏

𝟐𝑵 − 𝟏
) + (

𝟐𝑵𝒏

𝟐𝑵
) (

𝟐𝑵𝒏 − 𝟏

𝟐𝑵 − 𝟏
) 

 

( 
 

15 
 

) 

In Equation 11, Scott gave the first and second drawing the same probability, 

assuming replacement.  In Equation 15, Krippendorff subtracted one for the second drawing, 

assuming no replacement. With two coders, this is the only mathematical difference between 

α and π, which has important consequences.  When the sample gets larger, the relative impact 

of subtracting one gets smaller, Krippendorff’s ac approaches Scott’s ac, and α approaches π. 

This can be seen by comparing Table 6 with Table 3. When the sample is smaller than 50, 

however, Krippendorff’s ac can be noticeably smaller than Scott’s. Table 7 shows 

Krippendorff’s ac as a function of target sample. 

[INSERT TABLE 6 Krippendorff’s Chance Agreement (ac) as a Function of Two 

Distributions (N=100)* AND  

TABLE 7 Krippendorff's Chance Agreement Rate (ac) as a Function of Coded Targets (N) 

and Average Distribution (Np/N) HERE] 

 

When the right side of Equation 15 is inserted into Equation 3, ri is Krippendorff’s α. 
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By adopting the maximum-randomness equations (3, 4, and 6), Krippendorff’s α adopts the 

maximum-randomness and limited-honesty assumptions (2 & 3) and other related 

assumptions summarized in Table 4. By retaining average distribution (Equation 15), α also 

adopts Scott’s assumptions of conspired quota (12) and trinity distributions (13).  To reject 

the replacement assumption (7), however, α adds several unique assumptions. 

Basic Assumption 18 : Drawing without replacement.   

 
All other chance-adjusted indices assume drawing with replacement. Krippendorff’s  

α (1970, 1980) is the only one that assumes no replacement, which implies other unique 

assumptions explained below.  

Assumption 19 : Trinity size.   

 
When drawing without replacement, the size of the marble population, Nm, becomes 

important.  Assuming half black and half white, if two coders draw from an urn containing 

only two marbles (Nm=2), the probability of getting the same color is zero; if Nm rises to four, 

the probability rises to nearly 0.167; if Nm rises further, the probability rises further; if Nm 

approaches infinity, the probability approaches 0.5.  We need Nm to calculate Krippendorff’s 

ac and α.  But Nm is usually not known. Under a Grove-Riffe Scenario, coders don’t draw 

marbles to determine which cases to be coded randomly or honestly.  Even if they do, Nm 

could be anything above zero. Krippendorff's α assumes each coder puts one marble in the 

urn for each target; so, with two coders, Nm is twice the target sample, N: 

 

 

Krippendorff’s α also assumes all marbles in the urn are drawn, so marble population 

equals marble sample. Therefore a trinity-size assumption: marble sample and marble 

population equal each other, and each doubles the target sample.  

Krippendorff (1970, 1980, 2004a) argues that the non-replacement assumption 

“corrects for” sample sizes. But which sample -- target or marble?  Krippendorff’s non-

 𝑵𝒎 = 𝟐𝑵 ( 16 ) 
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replacement argument would make sense if he means targets, that is, coders do not put every 

news story or advertisement back for recoding. Krippendorff’s calculation in Equation 15 

would make sense if he means marbles, that is, if coders indeed draw marbles without 

replacement, the subtraction by one would be necessary.  But normally the argument does not 

justify the calculation because normally the targets and marbles are not linked. Coders may 

code targets with no replacement while drawing marbles with replacement; under a Grove-

Riffe Scenario, coders code targets without first drawing marbles. To justify the calculation, 

α needs a special link between marble size and target size.  Trinity-size assumption provides 

that link, by requiring that coders set the number of marbles according to the size of the target 

sample.  

Also, mathematically Equation 15 needs marble population, not target sample that the 

equation actually uses, or marble (die) sample that Krippendorff could be referring to.  The 

trinity-size assumption also closes this gap, by making the three essentially one.  

The trinity-distribution assumption (13) also links marbles to targets.  But the trinity-

distribution assumption is shared by α, π, κ, and AC1, while the trinity-size assumption is 

unique to α.  AC1, π or κ makes no assumption about the size of a population or sample, of 

marbles or targets, as their replacement assumption makes size irrelevant.  

Assumption 20 : Predetermined target size.   

Krippendorff’s α assumes that the sizes of marble population, marble sample, and 

target sample are decided before a study and remain unchanged within the study. To test and 

improve their protocol, content researchers sometimes expand target samples in the middle of 

a study.  For example, a researcher may test her protocol on a sample of 20 targets, calculate 

reliability, and then apply the protocol to 80 additional targets and calculate the reliability for 

the 100 targets combined.  Krippendorff’s α assumes such adjustment of sample size can 

never happen within a study. Instead, α assumes the coders treat the 20 cases and the 100 

cases as two separate studies, meaning (a) the coders draw from 40 marbles to code the 20 
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cases, and (b) the coders draw from 200 marbles to code the 100 cases, including re-coding 

the 20 cases already coded.  When α is applied to situations where coders expand their 

sample without drawing marbles, abnormalities arise, which we will show below. 

Other indices like S, π, κ and AC1, all assume replacement, so they do not assume a 

fixed Nm or N within a study. If two coders draw from an equal number of black and white 

marbles with replacement, the probability of getting the same color is 50% regardless of Nm 

or N.  

Assumption 21 

 

: Larger samples increase chance agreements. 

It is often said that α is superior to π and all other indices in part because “α … is 

corrected for small sample sizes” (Krippendorff, 2004a, p. 250). This is appealing, as we are 

accustomed to statistical indicators that reward larger samples.  For example, everything else 

being equal, statistical significance is more likely with a larger sample of respondents, and 

Cronbach’s alpha is larger with a larger sample of measures. 

Krippendorff’s “correction,” however, does the opposite. It systematically rewards 

smaller samples. As shown in Table 7, everything else being equal, a smaller sample 

produces a smaller ac, hence a higher α. This is a consequence of the trinity-size and non-

replacement assumptions (18, 19): a smaller target sample means a smaller marble population, 

which means lower ac and higher α. 

In typical studies under a Grove-Riffe Scenario, such a correction is not needed for 

marble sample or target sample, because marbles were actually not drawn to determine when 

to code randomly or honestly, and targets were not drawn for deliberate random coding. As 

the correction is not needed, α is not needed.  When α is applied in such a study, sample-size 

related paradoxes arise, which we will discuss shortly.  

Equations 3, 4, 6, and 15 constitute Krippendorff's α for binary scale with two coders.  

With multiple coders and multiple categories, Krippendorff's α takes more complex forms 
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(Hayes & Krippendorff, 2007; Krippendorff 2004a, 2004b).  While this review focuses on a 

binary scale with two coders, these boundaries also apply to more categories and more coders. 

The thirteen Krippendorff Assumptions (2~4, 8, 12~16, 18~21), again summarized in 

Table 4, portray the following Krippendorff Scenario, which is another case of the broader 

Guttman-Goodman Scenario:  

1. Two coders set a quota for the black and white marbles. They also set the number 

of marbles to be twice the target sample. They fill the urn accordingly.  

2. They take a target to be coded.    

3. One coder draws a marble randomly from the urn, notes marble’s color, and puts 

it aside without placing it back into the urn.  The other coder does the same from 

the same urn. 

4. If both draw black, each reports positive; if both draw white, each reports negative; 

in either case they do not look at the target being coded.  Only if one draws a 

black and the other draws a white would they code the target objectively, at which 

point they may honestly agree or disagree, and report accordingly. 

5. The two coders calculate the average of positive cases and the average of negative 

cases they’ve reported.  If one of the two averages reaches the predetermined 

quota, they report the remaining targets according to the quota, and end the coding 

session. If neither average reaches the quota, they repeat Step 2 and the 

subsequent steps.  

 When α is applied beyond the boundaries defined by the assumptions and illustrated 

in the Scenario, it creates abnormalities and paradoxes.  Here we discuss three that are unique 

for α: 

Paradox 7 : Punishing larger sample and replicability. 

 
Suppose two coders code 40 online news stories to see if they were commentaries in 

disguise.  With N=40, they generate 20 positive agreements, 10 negative agreements, and 10 
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disagreements.  This means a 62.5% & 37.5% distribution, ao=75%, and Krippendorff's 

α=0.4733, which may appear improvable given the relatively small N. Suppose the researcher 

expands the target sample 10 fold by coding 360 more stories.  For the 400 targets combined, 

the coders produce 200 positive agreements, 100 negative agreements, and 100 

disagreements, replicating the 62.5% & 37.5% distribution and 75% ao. The only difference 

is Krippendorff's α, which is decreased to 0.4673. It’s not a huge decrease.  But for 10 times 

as much work of the same quality and the same agreement rate, we would not have expected 

any decrease.  

This unexpected phenomenon will appear more dramatic if N is smaller.  Suppose the 

coders take four stories out of their original 40, including two positive agreements, one 

negative agreement, and one disagreement. With the same distribution and agreement rate but 

a dramatically smaller N, one would not expect any improvement in the reliability score.  

Instead, Krippendorff's α improves to 0.5333, which is a 12.68% increase for one tenth of the 

work of the same quality.  While calculating reliability on four items is not a good practice, α 

rewards it with a higher reliability score.    

When the decrease in α caused by an increased N is large enough, it could offset or 

even overcome an increase in ao, producing a “larger sample, higher agreement, but lower α.” 

Suppose the researcher expands N from 4 to 1,000, producing 501 positive agreements, 251 

negative agreements, and 248 disagreements.  This would produce a much larger N and a 

slightly improved ao (from 75.0% to 75.2%) while the distribution remains unchanged.  Yet α 

still decreases, from 0.5333 to 0.4712.  This phenomenon is limited to situations when the 

increase in ao is small relative to the larger increase in sample size, and the resulted drop in α 

is usually not large. It however adds another dimension to the paradox. 

Reliability is often understood as replicability. But in these cases α punishes 

replicability.  The same phenomena do not exist for π, κ or other major indices, none of 
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which is affected by N.  In the three examples of N=4, 40, or 400, the other indices all remain 

the same.  They report larger reliability in the example of N=1,000, because ao is higher. 

Two examples from Krippendorff (1980, pp. 133-135; 2007, pp. 2-3) can be adapted 

to illustrate the same phenomenon. Both have N=10, distribution 70% & 30%, ao=0.6 and 

α=0.09524.  If N increases to 100 while distribution and ao remain the same, one might 

expect α to improve or at least remain the same.  Instead, α drops to 0.05238. 

We found this abnormal because we assumed normal studies in which researchers 

pretest 10 cases, calculate reliability, add 90, and test reliability again, all in full honesty.  In 

this Grove-Riffe Scenario, more of the same quality deserves no punishments, and more of 

the better quality deserves rewards. Krippendorff's α, however, assumes that coders maximize 

random coding by drawing marbles without replacement.  They don’t simply “add cases.”  

They instead draw from 10 marbles each to code the 10 messages, then draw from 100 

marbles each to code the 100 messages, including redrawing to recode the 10. More coding 

means more marbles, which mean more chance agreements, which have to be punished.   

These phenomena are not isolated.  They are a part of the paradoxical pattern of 

Krippendorff's ac.  Table 7 shows that Krippendorff's ac is positively correlated with N: larger 

N leads to higher ac, at any level of distribution!  Higher ac means lower reliability.  Under a 

Grove-Riffe Scenario, larger N means more cases coded hence higher replicability, which 

Krippendorff’s α punishes systematically.  When we see a larger N, we see more honest 

coding, for which the bar should not be raised.  But when α sees a larger N, it sees more 

marbles drawn, hence more chance agreements, hence a raised bar.  

    
Paradox 8 : Purely random guessing can be somewhat reliable. 

Suppose two coders coded four television stories to see if they contain subliminal 

advertisements.  The task was so difficult that the coders end up guessing randomly. As 

probability theory would predict, each of them reported two positives, two negatives, with a 
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50% agreement rate (ao=.5, N=4), as if they had flipped four coins each. As one might expect, 

most of the reliability indicators, including Scott's π and Cohen's κ, are exactly 0.00. 

Krippendorff's α, however, stands out at 0.125.  It's a tiny sample and it is not a spectacular α.  

But why is it not zero? 

In Krippendorff’s α, only “drawing with quota and without replacement” qualifies as 

random (Assumptions 4, 12 and 18).  Random guessing or flipping coins does not qualify, 

because neither allows quota and both have replacement.  Guessing with coins generated 

more agreement than drawing with quota without replacement.  We attribute the difference to 

“another kind of randomness,” and do not believe it deserves a higher reliability score.  

Krippendorff's α attributes the difference to honest coding, and rewards it with a higher α.  

Paradox 9 : Random guessing may be more reliable than honest coding. 

Extending the above example, this α=0.125, from ao=.5, N=4, from totally random 

guessing, is better than α=0.095 from two Krippendorff examples, each having ao=0.6, N=10, 

from totally honest coding (Krippendorff, 1980, pp. 133-135; 2007, pp. 2-3).  So, according 

to α, more agreement from an objective process can be less reliable than less agreement from 

a random process. There are two reasons for this phenomenon. First, α assumes some of our 

random guessing is honest coding.  Second, Krippendorff's examples have a larger N (10) 

than our coin flipping (4), and α assumes that larger N generates more chance agreements, 

which have to be “corrected for,” meaning punished.  

Paradoxes 7~9 offer some evidences that Krippendorff’s α should not be used beyond 

the highly restrictive boundaries defined by the Krippendorff Scenario and the Krippendorff 

Assumptions.  

 

VI.4. Paradoxes and Abnormalities Shared by π, κ, α and Equivalents 

 Paradoxes are unexpected qualitative features of an index that seem to defy logic or 

intuition.  There are also unexpected numerical outcomes of an index when it is used in 
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typical research, which we will call abnormalities.  As paradoxes and abnormalities are 

closely linked, we will number them consecutively.  The purpose of the discussion is to 

further illustrate the assumptions.  

 In addition to its unique sample-size-related paradoxes, α shares paradoxes 2~5 with 

all other chance-adjusted indices.  Further, π, κ and α also share a few of their own paradoxes 

and abnormalities, which we discuss below.  

We will first discuss three abnormalities that have been better known for κ.  We will 

show that π and α suffer from the same abnormalities.  We will then discuss other 

abnormalities and paradoxes not yet in the literature.  As noted earlier, all findings about π 

also apply to Siegel and Castellan’s Revised Κ (1988) and Byrt’s et al’s BAK (1993), and 

findings about κ also apply to Rogot and Goldberg’s A2. 

Abnormality 10 : High agreement, low reliability.   

 Feinstein and Cicchetti (1990) called this a paradox for Cohen’s κ (1960).  Lombard et 

al. (2002) and Krippendorff (2004b, p. 426) debated over the same phenomenon for κ and π.  

Here is a more dramatic example. Suppose two coders code 1,000 magazine advertisements 

for cigarettes in the United States, to see whether the Surgeon General's warning has been 

inserted. Suppose each coder finds 999 “yes” and one “no,” with 998 positive agreements and 

two disagreements, generating a 99.8% agreement rate.  But π, κ and α are all below zero (-

.001 or -.0005). Zero indicates a totally unreliable instrument. Given the near-perfect 

agreement, it’s difficult to understand why the instrument is that bad.  

Some authors found this paradoxical because they assumed the coders code honestly.  

The three indices, however, assume that all observed agreement (ao=99.8%) is due to chance 

because each coder draws from 999 or 998 black marbles and one or two white marbles. The 

marbles show different colors only twice, which are the only opportunities for honest coding 

(Assumption 8). The coders disagrees both times, hence the low π, κ and α.  
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Abnormality 11 : Undefined reliability.   

When two coders agree that the distribution of one category is 100% and another is 

0%, π, κ or α are undefined. 0% & 100% and 100% & 0% are the two ends of all possible 

distributions, like the two ends of a ruler that define its length and scope. If a ruler is 

completely broken at both ends, it is probably not accurate in between.  

Many found this paradoxical because we expected perfect agreement to be credited 

with a decent reliability score, and because we believed some agreements must be honest, no 

matter how skewed a distribution is.  But π, κ and α assume that a 0% & 100% target 

distribution means that all marbles are of one color, hence there is no chance for color 

mismatch or honest coding, hence π, κ or α should not be calculated. In defense of the 

undefined π and α, Krippendorff (2004b, p.425) explained,  

Such data can be obtained by broken instruments or by coders 

who fell asleep or agreed in advance of the coding effort to make their 

task easy. … appropriate indices of reliability cannot stop at measuring 

agreement but must infer the reproducibility of a population of data; 

one cannot talk about reproducibility without evidence that it could be 

otherwise. When all coders use only one category, there is no variation 

and hence no evidence of reliability. 

 

To those who assume coders intend to be honest, the explanation is still puzzling.  

Suppose 100% of the target population of magazine ads under study had the Surgeon 

General’s warning. Suppose coders agreed that 100% of the target sample had the warning. 

Suppose there was no broken instrument, no falling asleep or agreeing in advance, but only 

honest and diligent coding, as evidenced in the perfect agreements between the coders, and 

between the sample and the population. Why is this not an “evidence” that reliability is good, 

or at least calculable? 

Now that we know π, κ or α is to be used only under assumptions of strict quota, 

maximum randomness, and trinity distribution within the Guttman-Goodman Scenario, 

Krippendorff’s (2004b) explanation could be sensible, if we think of his “population” as 

“marble population.” Under strict-quota and trinity-distribution assumptions, zero variation in 
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the observed targets is evidence for zero variation in the marbles.  Coders are assumed to 

“agree in advance” to make the marbles all one color, and to code honestly only when the 

marbles mismatch. There is no chance for color mismatch, hence no chance for honest coding, 

hence no “evidence that it (the observation) could be otherwise. … hence no evidence of 

reliability.”  Krippendorff’s defense in effect provides support for our observation that π, κ 

and α assume maximum randomness, strict quota, and trinity distribution. 

Abnormality 12 : Zero change in ao causing radical drop in reliability. 

These indices are supposed to measure agreement.  Feinstein and Cicchetti (1990) 

argued that Cohen’s κ should rise and fall with agreement rate, ao. So should all other 

reliability indices. Kraemer (1979) pointed out that, with no change in ao, κ changes with 

“base rate,” which we call “distribution.”  Uneven distribution generates lower κ than even 

distribution. Grove et al. (1981) and Spitznagel and Helzer (1985) called it the “base rate 

problem” for κ.  Feinstein and Cicchetti (1990) called it a paradox for κ.  It's not as widely 

known that π and α can produce the same abnormality.   

Here is a stronger example for all three indices.  Revising Abnormality 10, suppose 

two coders initially agree on 998 “yes” and one “no,” plus one disagreement, producing 

ao=99.9%, π=.6662, and κ=.6662, α=.6663.  Suppose both coders flip an erroneous negative 

decision, resulting in 999 agreed positives and one disagreement, and increasing the average 

of the positives from 99.85% to 99.95%. While ao remains 99.9%, π, κ and α each drops 

from .666 to .0000 or -.0005, which covers two thirds of the distance between “perfectly 

reliable” and “totally unreliable.” 

This happens because the coders code honestly without quota, violating π, κ & α’s 

strict quota assumption.  Distributions changed as the coders improved their work, violating 

the predetermined-distribution assumption.  The violation of the same two assumptions also 

causes the next four abnormalities (13-16). 
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Abnormality 13 : Eliminating disagreements doesn’t improve reliability. 

Extending the example in Abnomality 12: Suppose one coder finds his only negative 

finding erroneous and flips, reducing disagreements by half, and increasing agreements to 

99.9%. One might expect π, κ and α to improve half way toward 1, to be around 0.5. Instead, 

κ and α barely move, to be 0, and π remains negative, at -.0005. Suppose the other coder also 

flips his only negative finding, improving agreement to 100%.  One might expect π, κ and α 

jump to 1.  Instead, none of the three can be calculated, repeating Abnormality 11.   

Abnormality 14 : Tiny rise in ao causing radical rise in reliability. 

With 998 agreements on “yes,” suppose one coder flips his positive decision in one of 

the two disagreements.  Now disagreements decrease to one and agreements increase to 999.  

ao improves slightly from 99.8% to 99.9%. Given what we have seen in Abnormality 13, one 

might expect the three indices to change little.  Instead, π and κ jump from -.001 to .6662, 

while α jumps from -.0005 to .6663, each covering two-thirds of the distance between “totally 

unreliable” and “perfectly reliable.” 

Abnormality 15 : Rise in ao causing radical drop in reliability.   

Suppose two coders initially had two disagreements and 998 agreements, with 997 

positive and one negative, producing an ao=99.8%, π=.499, κ=.4993, and α=.4992. Suppose 

one coder finds all his three negative decisions erroneous, and flips each, resulted in 999 

positive agreements and one disagreement.  While ao increases to 99.9%, κ and α drop 

drastically to 0, and π drops even more, to -.0005. 

 

 

Suppose we show at normal speed 60 television segments, 50 of which contain 

subliminal advertisements barely recognizable.  One coder finds the ads in all 60 segments, 

making 10 false alarms, while the other recognizes only 40, calling 10 false negatives.  The 

40 positive agreements and 20 disagreements produce a 66.667% ao and an 83.333% average 

Abnormality 16 : Honest work as bad as coin flipping.   
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distribution, which matches the target distribution.  While the instrument may seem adequate, 

especially considering the difficult task, π= -.2, κ=0 and α= -.2. 

Now suppose we ask the coders to flip coins without looking at any television 

segments. Their ao is expectedly 50%, 16.667% lower than honest coding.  Their average 

distribution is also expected to be around 50%, 33.333% lower than the target distribution.  

This, however, produces π=0, κ=0 and α=0.0083.  So, honest coding that produces more 

accuracy and more agreement is no better or even worse than dishonest coding that produces 

less accuracy and agreement, according to π, κ or α. 

This appeared puzzling because we assumed all of the 67% agreements were honest 

under a Grove-Riffe Scenario. But π and α presume the coders draw from 50 black and 10 

white marbles.  Without a single glance at the targets, they should generate 72% agreement, 

much higher than the 67% they actually report, leading to justifiable π= -.2 and α= -.2.  

Under the Cohen Scenario, κ presumes one coder draws from 40 black and 20 white 

while the other from 60 black and no white. Without a glance at the TV, they should obtain 

67% agreements, implying that they have not produced any honest agreement.  So κ should 

be zero.   

Paradox 17 : Punishing Improved Coding.   

Abnormality 15 is a case of improved coding causing a drastic drop in π, κ and α, 

from half-way reliable (0.5) to not at all reliable (0)!   Of all the symptoms of π, κ and α, this 

one may be among the most troublesome.  Abnormality 12 is another example. After the 

errors are corrected, π, κ and α drop even more drastically.    

Paradox 18 : Punishing agreement.   

The three ac not only move significantly, they also move to punish the good and 

reward the bad.  Table 3 shows that, when one coder’s distribution Np2 /N is 100%, Scott's ac 

is positively linked to the other coder’s distribution Np1/N; an increase in Np1/N brings it 

closer to Np2 /N, producing a higher agreement ao and a higher ac, which means a higher bar.  
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The same pattern exists when Np1/N =100%, Np2 /N =0%, or Np1 /N =0%. The maximum 

agreement at the lower left and upper right corners of Table 3 makes ac=100%, which is 

impossible to pass.  As agreement rate decreases from either corner along any of the four 

sides, ac decreases at an averaged half rate, until maximum disagreement at the upper left or 

lower right corner where ac=50%, which is the lowest possible bar in Scott’s π.  

Tables 6 and 7 show that Krippendorff’s ac behaves almost exactly the same as 

Scott’s ac when the sample is large enough.  Cohen's ac behaves in the same pattern, except 

the paradox is twice as dramatic: as ao decreases from either corner along any of the four 

sides of Table 5, ac decreases at the same (rather than half) rate, until it reaches maximum 

disagreement at the upper left or lower right corner where ac=0% (rather than 50%).  Again, 

higher agreement brings a higher bar, and the lower agreement brings a lower bar.   

While the paradoxical pattern is strongest in the four sides encompassing Tables 3, 5, 

and 6, it also manifests itself inside although in less dramatic rates.  The three indices are 

advertised as general indices of reliability, which is defined as agreement.  Why do they 

systematically punish agreement and reward disagreement? 

We found this paradoxical because we compared across different distributions, 

violating the quota and predetermined-distribution assumptions. Each of the three indices 

would reward higher agreement, but only within a predetermined distribution decided by the 

quota(s). If the distribution changes, a different study including a different round of marble 

drawing is assumed.  More skewed distribution in a different marble population produces 

higher chance agreement, hence less honest coding, which π, κ and α punish according to 

Assumption 16.   

Paradox 19 : Radically and erratically moving bar.   

To highlight the dramatic paradoxes and abnormalities, the above examples used 

extremely uneven distributions, such as 99.8% & 0.2%.  More even distribution such as 60% 

& 40% would produce the same pattern, although less dramatic symptoms.  Scott’s, Cohen's 
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and Krippendorff’s chance agreements (ac) are all functions of distribution. Uneven 

distribution produces higher ac, which is the bar that ao must pass in order to produce an 

above-zero index. Both ac and ao have100% as the maximum. The closer is ac to100%, the 

less room above it, the less chance for a high index. When distribution reaches 0% or 100%, 

ac reaches 100%, leaving no chance for ao to pass ac. That’s the technical reason π, κ and α 

are all undefined there.  

Tables 3, 5, and 6 show how ac changes with two distributions. Chance agreement ac 

can reach as high as 100%, but it moves gradually with no gap or abrupt jump, starting from 

0% (Cohen), 49.7% (Krippendorff when N=100), or 50% (Scott).  This demonstrates that the 

undefined π, κ, and α are not isolated incidents under extreme circumstances.  They are 

symptoms of intrinsic defects of the three supposedly general indicators.  The moving bars 

also explain why π, κ and α change with distribution.  

We found the phenomenon paradoxical because we didn’t think the bar, as a part of 

the general indicator for typical studies, should move with distribution. But π, κ and α are not 

general indicators.  Each is to be used only when all of its assumptions are met.  Under these 

assumptions, especially those derived from Assumptions 15 & 16, the bar should move.  

Paradox 20 : Circular logic. 

The three indices are functions of coder’s observation of distribution, whose quality 

depends on the quality of the coding instrument.  But that is the very instrument that the 

indices evaluate.  The three indices depend on an instrument’s reliability to assess the 

instrument’s reliability! We found this circular because we thought the reported distributions 

embedded in π, κ or α came from coders’ observations.  We were wrong.  The distributions 

came from pre-determined quotas independent of the observations, according to Assumptions 

12,14,15, and 17.  The logic would not be circular if coders behave under a Scott, Cohen, or 

Krippendorff Scenario. 
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These paradoxes and abnormalities show that π, κ or α cannot be general indicators of 

reliability.  They might be useful within highly restrictive boundaries defined by various 

assumptions and scenarios, beyond which the paradoxes and abnormalities arise.   

 

VI.5. Benini’s β 

 Nearly sixty years before Cohen (1960), Italian sociologist Benini (1901) designed a 

chance-estimating formula that is identical to Cohen’s Equation 14. Benini’s chance 

removing formula is also similar to Cohen’s (Eq. 3), except it subtracts an extra∣npn-nnp∣from 

the denomenator: 

 𝜷 =
𝒂𝒐−𝒂𝒄

𝟏 − 𝒂𝒄 −∣ 𝒏𝒑𝒏 − 𝒏𝒏𝒑 ∣
 

 

( 

 

17 

 

) 

 Here npn is percent of cases Coder 1 judges as positive while Coder 2 judges as 

negative, and nnp is percent of cases Coder 1 judges as negative while Coder 2 judges as 

positive.  They are two components of between-coder disagreements.  If all disagreements are 

strictly random, npn=nnp, hence |npn-nnp|=0.  So some may see |npn-nnp| as non-random 

disagreements.   

The denominator of Equation 3 is a reference scale. Benini’s β (Equation 17) has a 

shorter reference scale than κ, which means β tends to be higher than κ across a scale when κ 

is above zero.  So Benini’s β is an elevated κ in the important 0-1 range, like Ir is an elevated 

ρ.  So β adopts all assumptions, paradoxes, and abnormalities of κ, and adopts Assumption 8 

of Ir. 

VI.6. Goodman and Kruskal’s λr 

Goodman and Kruskal (1954) proposed an agreement index, λr, based an ac that 

behaves in some ways similarly to Cohen’s (1960):   

 𝒂𝒄 =
𝟏

𝟐
(

𝑵𝒍𝟏

𝑵
+

𝑵𝒍𝟐
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 One may interpret Nl1 and Nl2 as, respectively, individual modal frequency reported by 

each coder.  Suppose on a binary scale Coder 1 reports 85 cases in Category 1 and 15 cases in 

Category 2, while Coder 2 reports 45 cases in Category 1 and 55 cases in Category 2, Nl1=85, 

Nl2=55, and ac=(.85+.55)/2=0.7.  Goodman and Kruskal’s λr shares Equations 1, 3, 4, and 6 

with other chance-adjusted indices. Replacing ac in Equation 3 with the right side of Equation 

18, we have Goodman and Kruskal’s λr. 

 An alternative interpretation appears equally plausible, according to Fleiss, 1975.  

(Nl1+Nl2)/2 may be the modal average frequency reported by two coders, which in the above 

example would instead produce an ac=(.85+.45)/2=.65.  As Goodman and Kruskal did not 

provide a numerical example, we are unable to decide with certainty which interpretation 

they meant.  The differences between the two interpretations would be analogous to the 

differences between κ and π, one assuming individual behaviors while the other presuming 

collective action.  Given the limited space we will assume individual modal interpretation in 

the following discussion, and analyze the modal average interpretation in more details in a 

future study.  

As Nl1 and Nl2 are a part of two coders’ individual distributions, λr shares almost all 

assumptions and paradoxes we have discussed of Cohen’s κ.  Most notably, λr shares with κ 

the individual quota assumption (17). Goodman and Kruskal (1954) were the first we know 

to make Equation 3 explicit. Their λr also started the practice of sharing the chance-removing 

procedure while creating a unique chance-estimating formula. 

Goodman and Kruskal’s λr makes a set of unique assumptions, which we will put 

under one title, “modal color assumption.” We analyze the assumption using κ as a reference:  

Basic Assumption 22 : Coders code randomly when they draw the modal color. 

While κ assumes that coders code randomly every time marbles’ colors match, λr 

assumes that coders code randomly some of the time when one or both coders draw a certain 

color.  Specifically, λr assumes: a) In addition to placing marbles into the urns according to 
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individual quotas, each coder also notes which color has the largest number of marbles, 

which we call “mode color,” in his or her urn. b) The coders would code randomly every time 

both draw the modal color(s). c) The coders would code randomly half the time when one 

draws his or her modal color but the other does not. 

Equation 18 of λr uses addition to estimate chance agreement, while Equation 14 of κ 

uses multiplication.  Consequently, Goodman and Kruskal’s chance agreement is equal to or 

larger, often much larger, than Cohen’s, which can be seen by comparing Table 8 with Table 

5.  Further comparison of Table 8 with Tables 3 and 6 and other estimates by other indices 

show that Goodman and Kruskal provide the highest estimation for chance agreement, which 

makes λr the most conservative estimation among the 22 indices reviewed in this article.   

[INSERT TABLE 8 Goodman and Kruskal’s Chance Agreement (ac) as a Function of Two 

Distributions* HERE] 

 

VII.  A Double-Based Index -- Gwet’s AC1 

Gwet’s (2008, 2010) theory about coder behavior differs from the stated theories 

behind all other indices reviewed in this article. Gwet separated difficult cases from easy 

cases, in a way that appears much closer to the Grove-Riffe Scenario than Guttman-Goodman 

Scenario. By adopting Equations 3, 4, and 6, however, Gwet’s index, AC1, adopts the 

maximum randomness assumption and the related paradoxes just like other chance-adjusted 

indices. Gwet’s chance-estimating formulas are unique.  While all other chance-adjusted 

indices use either category or distribution to estimate chance agreement, AC1 uses both, hence 

“double-based.” For a binary scale with two coders, Gwet’s Equation 19 looks similar to 

Scott’s Equation 11, except it switches one positive distribution rate (Np/N) with a negative 

one (Nn/N): 
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All chance-adjusted indices before Gwet assume coders code randomly when marbles 

match, and code honestly when marbles mismatch.  Accordingly, Scott’s Eq. 11 multiplies 

the positive rate by itself, and the negative rate by itself.  In contrast, Gwet’s Equation 19 

multiplies the positive rate by the negative rate, implying a unique assumption: coders code 

randomly when marbles mismatch, and code honestly when marbles match. 

The multiplication is done twice because the mismatches include black-white and 

white-black.  A practical implication is that Gwet’s coders have to agree on which color of 

which coder represents which category when the marbles mismatch, in a similar fashion that 

Scott’s coders agree on which color represents which category when the marbles match. The 

choice of color-category pairing does not affect probability calculation. 

While Scott had extended Equation 11 to three or more categories, Gwet also needed 

to extend Equation 19.  But Gwet could not do a simple extension like Scott had done.  More 

categories mean more marble colors hence more mismatches, which mean more random 

coding under Gwet’s unique assumption discussed above. A simple extension of Equation 19 

would lead to intolerably high ac and intolerably low AC1, especially when number of 

categories is large. To counter the effect, Gwet re-introduced categories (K) as a main 

parameter: 

 𝒂𝒄 =
𝟏

(𝑲 − 𝟏)
∑ (

𝑵𝒒

𝑵
∗

𝑵 − 𝑵𝒒
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In Equation 20, the part after the summation sign (Σ) is a simple extension of 

Equation 19 from two to K categories. Nq/N represents percent of targets in the qth category 

while (N-Nq)/N represents percent of other targets.  With a binary scale, Nq/N and (N-Nq)/N 

become respectively Np/N and Nn/N in Equation 19. The part before the summation sign is at 

least equally important.  Multiplying by 1/(K-1) effectively lowers the estimated chance 

agreement, but it also implies another unique assumption: 
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Basic Assumption 23 : Double drawing.   

While other chance-adjusted indices all assume one round of marble drawing in the 

first stage of the two-stage coding (see Section IV), Gwet’s AC1 assumes two rounds of 

marble drawing from two urns during the first stage.  Two coders first draw with replacement 

from the first urn, which has K minus one colors and an equal number of marbles per color. If 

colors differ, they go to the second stage to code honestly.  If the colors match, they draw 

with replacement from the second urn that has K colors and a distribution that equals the 

observed target distribution. Coders go to the second stage after this second drawing, and 

they code honestly if the colors match, and code by chance if the colors mismatch.  This 

implies another unique assumption: 

Basic Assumption 24 : Marble mismatch or double-match equals honesty.   

Gwet’s AC1 assumes that color mismatch in the first round or color matches in both 

rounds leads to honest coding, while color match in the first round followed by mismatch in 

the second round leads to chance coding.  

By adopting the maximum random equations and using average distribution as a 

parameter in Equations 19 and 20, Gwet’s AC1 adopts all of Scott’s assumptions except 

replacing Scott’s Assumption 8, which is about color mismatch and honest coding, with 

Assumptions  23 & 24.  

The Gwet assumptions lead to the following Gwet Scenario, which is another case of 

the broader Guttman-Goodman Scenario, for two coders and K categories:  

1. Two coders prepare two urns. 

2. They place marbles of (K-1) colors into the first urn. Each color has an equal 

number of marbles.   

3. They set a quota for the marble distribution in the second urn, and fill the second 

urn accordingly. They also agree on which color of which coder represents which 

category, which we will call color-category scheme. 
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4. They take a target to be coded. 

5. One coder draws a marble randomly from the first urn, notes the marble’s color, 

and puts it back. The other coder does the same from the same urn.  

6. If the two colors differ, each coder codes and reports objectively, then skips to 

Step 9.  If the colors match, they go to the next step.  

7. One coder draws a marble randomly from the second urn, notes the color, and puts 

it back. The other coder does the same from the same urn. 

8. If the two colors differ, each reports the results according to the pre-determined 

color-category scheme, without looking at the target under coding. If the two 

colors match, each codes and reports objectively. 

9. The two coders calculate the averages of the positive and negative cases they’ve 

reported.  If one of the two averages reaches the predetermined quota, they stop 

drawing, report the remaining targets according to the quota, and end all coding. If 

neither average reaches the quota, they repeat Step 4 and the subsequent steps.  

Which is right, one round or two rounds, color match or mismatch?  If coders code as 

AC1 assumes they do, two rounds and mismatch-or-double-match are right.  If coders code 

like π, κ, or α assume they do, one round and mismatch are right.  But if coders code like the 

Grove-Riffe Scenario assumes they do, none of them is right. 

With a binary scale, K-1=1, which means all marbles in the first urn are of the same 

color, so the colors always match, and the coders always go to the second urn for the second 

drawing. So the mismatch-or-2-matches-equals-honesty assumption can be simplified as 

match-equals-honesty assumption, as we discovered while analyzing Equation 19 above. 

[INSERT TABLE 9 Gwet’s Chance Agreement (ac) as a Function of Two Distributions* 

HERE] 

 

Comparing Table 9 with Table 3, we see that, with a binary scale, Gwet’s chance 

agreement is a mirror image of Scott’s, with the “mirror” positioned at the 50% & 50% 
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distribution line.  When each individual distribution is exactly 50% & 50%, Gwet’s ac is 

identical to Scott’s, because here the probabilities of color match and mismatch are equal. 

When average distribution deviates from 50% & 50%, Scott’s ac increases while Gwet’s ac 

decreases at the same rate. When distribution becomes more uneven, Scott’s ac continues to 

increase toward 100%, while Gwet’s ac continues to decrease toward 0%.  As Krippendorff’s 

ac and Cohen’s ac behave in the same pattern as Scott’s, Gwet’s ac also behaves in opposite 

directions of Krippendorff’s or Cohen’s, as can be seen by comparing Table 9 with Table 6 or 

5. 

 With a binary scale, Gwet’s ac assumes that color mismatch equals random coding 

while Scott, Cohen and Krippendorff’s ac assume the opposite, and Bennett et al’s ac is a 

constant at 0.5. So Gwet’s ac tends to be lower than the other four, hence Gwet’s AC1 tends to 

be higher than S, π, κ, and α. One extreme is when distribution is 0% or 100%, where π, κ, 

and α cannot be calculated because they all assume 100% chance coding and 0% honest 

coding, while, in contrast, AC1 assumes 0% chance coding and 100% honest coding, 

producing a perfect AC1=1. 

There are a few exceptions to this general pattern. The first exception is when 

individual distributions are 50% & 50% where Gwet’s ac and the other four all equal 0.5, 

assuming a large enough sample for α.  With a large enough sample, Gwet’s ac also equals 

Scott’s and Krippendorff’s when average distribution is 50% and 50%, even when individual 

distribution is not even.  The second exception is when N is very small, leading to very low ac 

by Krippendorff hence higher α than AC1.  The third exception is when two coders give 

highly uneven distributions at the opposite directions, which could lead to very low ac by 

Cohen hence higher κ than AC1.  

When categories increase to three, Bennett et al’s ac is 1/3, while Gwet’s ac ranges 

from 0, when the coders report that all targets fall into one category, to (2/9+2/9+2/9)/2=1/3, 
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when the targets distribute evenly into three categories.  So Gwet’s ac is usually smaller and 

never larger than Bennett et al’s ac, hence AC1 is usually larger and never smaller than S.  As 

categories increase further, the margins of AC1 over S increase further.  That means that AC1 

is more liberal than S and the equivalents. 

Comparing AC1 with Ir is more complicated.   With even distribution and ao=0.5, Ir 

may be higher than AC1.  With uneven distribution and and ao closer to 0 or 1, AC1 may be 

higher than Ir.  A simulation by Guangchao Charles Feng, a doctoral student at Hong Kong 

Baptist University School of Communication, shows Ir is more often higher than AC1, and the 

difference is statistically significant (Zhao, Deng, Feng, Zhu, & Chan, 2012). 

Low estimate of ac means that AC1 assumes less chance agreement and more honest 

coding. So even though AC1 still assumes maximum randomness, its specific type of 

randomness is closer to complete honesty under a Grove-Riffe Scenario.  Consequently, even 

though AC1 shares most of its assumptions with π, κ and α (see Table 4), AC1 does not 

generate as many or as dramatic paradoxes or abnormalities (see Table 10) when used under 

a Grove-Riffe Scenario.  

But there are still paradoxes and abnormalities.  Most notably, by reintroducing 

category as a major parameter, AC1 brought back the classic paradox that Scott (1955), Cohen 

(1960) and Krippendorff (1970) worked hard to avoid, which is that empty categories 

increase reliability.  In Scott’s example (see Paradox 6) that originally had “male” and 

“female,” by adding “hermaphrodite” and “indeterminant,” S increases from .2 to .47, while 

AC1 increases from .2 to .52.  The larger increase means an even more dramatic paradox. 

Gwet’s AC1 also shares Paradoxes 2~5 with other chance-adjusted indices, and shares 

Paradoxes 19 & 20 with π, κ and α.  It also suffers a couple abnormalities of its own:  

Abnormality 21 : Same quality, same agreement, higher reliability. 

Suppose, as a way of testing our instrument, we give two coders 100 news stories, and 

ask the coders to judge whether the stories contain commentary opinions.  We put in 80 easy 
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cases, 40 of them having obvious commentaries, and other 40 obviously not.  We put in 20 

difficult cases that even experienced teachers can’t judge with certainty.  As expected, the 

two coders agree on 40 clearly positive cases, 40 clearly negative cases, and disagree on 20 

difficult cases.  Also as expected, of the twenty disagreements, each coder reports half 

positive and half negative.  This generates an ao=0.8 and AC1=0.6.   

 Now we delete the commentaries from the 40 clearly-positive cases, so they become 

clearly negative.  With no other changes, we give the 100 stories to the same coders to be 

coded again.  The two coders again agree on 80 easy cases and disagree on 20 difficult cases. 

Of the 20, each coder again reports half positive and half negative.  The only change is that 

all 80 easy cases are now negative.  Again ao=0.8.  But AC1 jumps from 0.6 to 0.7561.  

The same coders, the same procedure, the same targets, the same quality of work, and 

the same agreement rate. Why the jump?  

Abnormality 22 : Lower quality, less agreement, higher reliability.   

Suppose, instead of switching all 40 easily positive to easily negative, we switch only 

36, and switch the other four to be difficult by making the commentaries ambiguous.  Now 

we have 76 obviously positive and 24 difficult cases.  As expected, the same two coders 

agree on 76 and disagree on 24, and each reports half and half for the difficult 24. As the task 

is more difficult, the quality of the coding and the agreement rate is understandably lower, 

ao=0.76.  Gwet’s AC1, however, is 0.69574, higher than the original 0.6 by nearly 1/6. Why? 

We found the results “abnormal” because, again, we assumed the coders code 

honestly under the Grove-Riffe Scenario.  AC1 assumes that the coders conspire to set quotas, 

place marbles into the second urn according to the quotas, and draw from it. They code 

randomly when marbles mismatch.  In both abnormalities, target distribution moves from 

even to uneven, which means uneven marble distribution, less chance for color mismatches, 

less random agreement, lower bar, and therefore higher AC1. The results would have seemed 

“normal” had coders indeed followed the Gwet Scenario. 



ASSUMPTIONS BEHIND INTERCODER RELIABILITY INDICES  58 

Communication Yearbook 36 

 

VIII. When to Use Which Index? 

 Tables 4, 10 and 11 summarize our findings from various angles. A contrast emerges 

in Tables 4 and 10 – the long list of assumptions, paradoxes, and abnormalities for what we 

believed to be the sophisticated and rigorous measures, such as α, and the much shorter list, 

just one unreasonable assumption and one paradox, for the supposedly primitive and flawed 

percent agreement ao.  To avoid this one assumption and one paradox, we adopted more and 

stronger assumptions, which created more and stagier paradoxes and abnormalities.  Are the 

medicines worse than the disease? 

 

[INSERT TABLE 10 Paradoxes and Abnormalities of 22 Intercoder Reliability Indices  

AND TABLE 11 What’s Missing in the Map of Reliabilities? HERE] 

 

 The “medicines” cause not only more symptoms, but also more severe symptoms. 

Under a Grove-Riffe Scenario, the zero-chance-agreement assumption underlying ao may 

hold sometimes, namely for “easy” and “textbook” cases with “well-developed protocols,” 

while the maximum-randomness and other assumptions of the chance-adjusted indices may 

never hold. 

 Methodologists talk about chance agreement (ao) as what would have happened, as a 

reference for comparison, but not what really happens in typical research.  Following this 

thinking, each methodologist could have selected several hypothetical scenarios, such as 

flipping coins or throwing dice, drawing marbles of 60% or 90% distribution, from one or 

multiple urns, with or without replacement, in one, two or more rounds, and code randomly 

with color match or mismatch, etc. and etc.  Each scenario can produce a unique chance 

agreement.  As there is an unlimited number of ways for “random coding,” we could have 

unlimited number of chance agreements, as reference lines for comparison with just one 
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index, which is percent agreement.  Had we done that, we would not have assumed so many 

whimsical coders, and we would not have had so many paradoxes and abnormalities. 

 The methodologists, instead, used maximum-randomness equations (3, 4, and 6) to 

“remove” and “correct for” chance agreement.  Each of them chose one hypothetical scenario 

of randomness, yet each believed his index applied to all real studies. This created a gap 

between theoretical understanding, which sees maximum randomness as hypothetical, and the 

actual computation, which treats maximum randomness as real, leading to the paradoxes, 

abnormalities, and confusions.  We need to close this gap by developing a reliability index 

based on complete honesty and variable randomness assumptions under a Grove-Riffe 

Scenario. 

 Table 11 shows 18 cells under Column 1 titled “maximum random,” seven of which 

occupied and 11 empty. Each empty cell represents an opportunity to propose a new index, 

and spend years advocating it.  There are even more opportunities for creativity outside the 

table – e.g. rounds of drawing or number of urns could increase to three or more; marble 

colors could be any positive constant or variable; and marble distribution could be any 

percentage.  

What we really need, however, is to fill the empty Column 2 titled “variable random,” 

representing typical studies under a Grove-Riffe Scenario. We need reliability formulas based 

on empirical facts, rather than hypothetical imagination.  

 

VIII.1. Liberal vs Conservative Estimates of Reliabilities  

Do some indices regularly give higher scores than others? Earlier, by comparing 

chance agreements estimated by Scott (Table 3) and Cohen (Table 5), we established that 

Scott’s π is more conservative than Cohen’s κ.  By comparing Goodman and Kruskal’s Table 

8 with other counterpart estimates, we found that λr is more conservative than all others. 
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Lombard et al (2002) used the “liberal” vs “conservative” concepts. Krippendorff 

(2004b, p. 412) objected, arguing that “trying to understand diverse agreement coefficients by 

their numerical results alone, conceptually placing them on a conservative-liberal continuum, 

is seriously misleading.”  We contend that patterns of numerical results can be helpful if they 

are grounded on an analysis of the underlying concepts and assumptions.  Suppose we know 

that, with a large sample, λr is always lower than or equal to α, which is always lower than or 

equal to Ir, which is always lower than or equal to ao, then if a researcher gets a very low λr, 

low α, high Ir, and very high ao, she may look into the possibility that this is an artifact of the 

four indices, rather than focusing exclusively on possible deficiencies in her data, calculation 

or coding instrument.   

The key is that this pattern or continuum must be based on a systematic and 

comprehensive comparison, rather than anecdotal observations of isolated cases.  Such a 

comparison is now feasible, because -- 

First, of the 11 unique indices, the only difference between seven (percent agreement 

and equivalents, S and equivalents, λr, π and two equivalents, κ and an equivalent, α, and AC1) 

is in chance agreement ac. The other four are more complicated but still comparable, as β is 

an elevated κ, Ir is an elevated S, ρ is an approximate of S, and A1 is a reweighted ao.    

Second, there is an inverse relation between chance agreement ac and agreement 

index ri.  This can be proven by assuming ac1≥ac2, replacing ao in Equation 3 with ac1 and ac2 

to obtain ri1=(ao-ac1)/(1-ac1) and ri2=(ao-ac2)/(1-ac2). Rearranging the equalities and 

inequalities, we have ac1≥ac2  ri1 ≤ ri2. So if Index A’s ac is often larger and never smaller 

than Index B’s ac, we may conclude with confidence that A is more conservative than B. 

Third, chance agreement ac for all indices have been calculated for binary scale with 

two coders. Five of them are in Tables 3, 5, 6, 8, and 9. We also know ac=0 for ao and A1, 
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ac=0.5 for S, Ir is an elevated S with the same ac, β is an elevated κ with the same ac, and ρ is 

an approximate of S with the same ac. 

So we can and should compare these ac.  If a hierarchy emerges for the nine ac, it 

implies a reversed hierarchy for the nine groups of indices listed in Table 4.   

[INSERT TABLE 12 Liberal vs Conservative Estimates of Reliability for Binary Scale, Two 

Coders, and Sufficiently Large Sample HERE] 

 

The result of this comparison is in Table 12, which shows two hierarchies.  The 

relative positions of any two indices in two different hierarchies are also meaningful, e.g., ρ is 

generally more liberal than β because ρ is in a higher cell in one hierarchy than β is in another 

hierarchy. They are in two different hierarchies because strict mathematical comparison 

between them does not yield stable results, i.e., in less frequent or less important situtions, an 

index in a lower cell in one hierarchy could produce a higher number than another index in a 

higher cell in another hierarchy.  We assume two coders, binary scale, and reasonably large 

samples. When categories increase to three or more, category and double-based indices can 

be very liberal.  When a sample reduces to 20 or below, Krippendorff’s α can be very liberal.  

To the extent that these indices have to be used, the liberal-conservative hierarchies in 

Table 12 may be helpful.  If a researcher gets high scores from the most liberal indices, she 

should not assume everything is fine.  If she gets low scores from the most conservative 

indices, she should not immediately abandon the study.  In both cases, check what other 

indices say.   Researchers might pay more attention to the more liberal indices at early stages 

of a study when the protocols are formulated and coders are trained, and pay more attention 

to the more conservative indices in the later stages, so as to be cautious before publication. 

We developed software to assist researchers to calculate the various indices. The software is 

available at http://reliability.hkbu.edu.hk. 
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VIII.2. Discussions and Recommendations 

Reliability assesses the empirical foundation of research.  Ironically, the foundation of 

intercoder reliability calculation is more imaginative than empirical. Scientists and scholars 

tend to be skeptical that our findings are sound.  We tend to guard against Type I errors more 

than Type II errors.  We want to be rigorous, which often means conservative.  This usually 

helpful tendency may have contributed to the development of some intercoder reliability 

indices.  But can we be too conservative?  Are we overcorrecting?  

Perhaps some designers of the indices wanted to estimate and remove the occasional 

dishonesty, and used maximum randomness as a surrogate. They probably did not realize 

their formulas assume that all coders maximize randomness, hence were all dishonest, in 

every study.  We know dishonesty does not exist in large amounts in all data.  Even if it 

exists, it has no consistent patterns that can be modeled or estimated mathematically. 

 We need an index of intercoder reliability to accommodate typical research where 

coders try to be accurate but sometimes involuntarily allow some randomness.  The existing 

indices do not meet this need.  They assume either no or maximum randomness.  The 

maximum-randomness assumption also entails other whimsical behaviors, such as setting 

quota or matching categories with marble colors.  The chance-adjusted indices assume 

category, distribution or both as the factors affecting chance agreement, causing various 

paradoxes and abnormalities. 

While a zero-random assumption likely overestimates reliability, we do not know 

when it overestimates or by how much.  While maximum-random assumption may 

underestimate reliability in many situations, it may also overestimate in other situations, and, 

again, we do not know when it errs, at which direction, or by how much. We do know that 

some indices are more liberal than others, and the differences can be drastic. 
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When agreement is 100% and distribution is not 0% or 100%, major indices produce 

the same result -- ri=1. The indices start to differ when ao is lower than 100%.  This implies 

that researchers can help to overcome deficiencies of the indices by perfecting their protocols, 

assuming their distributions are not skewed.  The difficulty is that researchers cannot always 

expect perfect agreement or even distribution.  

Researchers want the appearance of high reliability.  The various indices and easy 

software allow shopping around until hitting the highest number. The two newer indices, Ir 

and AC1, are more liberal than other chance-adjusted indices and are gaining in popularity. It 

should worry those striving to maintain high standards in academic publications. On the other 

hand, we should not equate low estimates with rigor, or complex calculations with 

sophistication.  We should not require π or λr just for their low estimates.  Given its unusual 

assumptions, we also should not require universal application of α, especially when the 

distribution is highly uneven or the sample is very small.  We should not condemn a research 

just because the observed distribution is uneven, presuming that the coders have fallen asleep, 

agreed in advance, or had a broken instrument. We also should not reward small sample sizes. 

The frequent use of π, κ and α may have had an undesired effect.  All three favor 

more even distributions. Since the three have been applied by so many for so long, it may 

have reduced the publication of more uneven distributions of communication content and 

other things coded, rated, assessed, or diagnosed, making the world appear a bit more even 

than it actually is.     

 Our century-old concern over the zero-randomness assumption is legitimate. Our 

century-long search for a remedy assuming maximum-randomness and dishonest coders 

needs to stop. We need an index based on assumptions of variable-randomness and honest 

coders that uses degree of difficultiy, rather than category or distribution, as the main factor. 

 

[INSERT TABLE 13 When to Use or Not Use Which Index of Reliability HERE] 
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 Before such an index is established, researchers have to choose from the existing 

indices.  We hope the practical recommendations in Table 13 can be of some help. As the 

table recommends various indices for various situations, we developed software available at 

http://reliability.hkbu.edu.hk to help researchers to calculate the indices.  It is not a long-term 

solution.  If and when the better index(es) is established, we should stop using Table 13 and 

the existing indices. 

 A major difference between indices is in their assumptions about coder behavior. 

Percent agreement indices assume coders never do any random coding, while chance-

adjusted indices assume coders maximize random coding.  Category-based indices assume 

coders draw from marbles of equal distribution, while distribution-based indices assume 

quotas. This article derived these assumptions through mathematical analysis.  Social 

scientists may be more receptive of empirical evidences.  Future research may test these 

assumptions as empirical hypotheses, through simulations and controlled experiments.  For 

instance, a researcher may assign some participants to code according to a Bennett Scenario, 

and others to follow a Scott Scenario, yet others follow other scenarios.  We may consider 

derived assumptions supported if the observed “wrong” agreements produced by a scenario, 

e.g. Cohen Scenario, are closest to or best correlated with the predictions of the 

corresponding index, i.e., κ. 
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Table 1 

Reliability and Related Concepts 

 Concepts of Consistency 

Multi-Measure 

Reliability 

Intercoder &  

Test-Retest Reliability 

 

 

Scales 

 

Categorical 

Association  

/ Covariation 

e.g. χ2 

Agreement  

/ Proximity 

e.g. percent agreement  

 

Numerical 

Correlation 

/ Covariation. 

e.g. Pearson r & r2  

Agreement  

/ Proximity 

e.g. closeness measure* 

  

* Correlation indices, such as Pearson r or r2, is at present the most often used indicator of 

intercoder or test-retest reliability for numerical scales. Closeness measure would be a more 

appropriate measure, which we will discuss in another paper.  
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Table 2 

A Typology of 22 Intercoder Reliability Indices 

 Adjusted for chance agreement? 

Yes No 

 

 

On what 

basis is 

chance 

agreement 

estimated? 

 

Category 

 

ρ, S, (G, RE, C, kn,  

PABAK, rdf-Pi)*, Ir  

 

 

ao, 
 

(Osgood’s, 

 

Holsti’s CR)* 

 

A1 

 

Distribution 

 

β, λr, π, (Rev-Κ, 

BAK)*, κ, (A2), α  

Category 

& 

Distribution  

 

AC1  

 

* Index(es) in parentheses is a mathematical equivalent(s) of the preceding index 

 

  Index 

symbol 

Author, 

Year 

other known name 

of the index 

1 α Krippendorff, 1970, 1980.  

2 A1 Rogot & Goldberg, 1966  

3 A2 Rogot & Goldberg, 1966  

4 AC1 Gwet, 2008, 2010.  

5 ao unknown author, pre 1901. Percent agreement 

6 β Benini, 1901.  

7 BAK Byrt et al., 1993.  

8 C Jason & Vegelius, 1979  

9 CR Holsti, 1969. Holsti’s 

10 G Guilford, 1961; Holley & Guilford, 1964.  

11 Ir Perreault & Leigh, 1989.  

12 κ Cohen, 1960.  

13 kn Brennan & Prediger, 1981.  

14 λr Goodman & Kruskal, 1954.  

15 Osgood’s Osgood, 1959.  

16 π Scott, 1955.  

17 PABAK Byrt et al., 1993.  

18 Rdf-Pi Potter & Levine-Donnerstein, 1999. Redefined Pi 

19 Rev-Κ Siegel & Castellan, 1988. Revised Κ 

20 ρ Guttman, 1946.  

21 RE Maxwell, 1977.  

22 S Bennett et al., 1954.  
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Table 3 

Scott’s Chance Agreement (ac) as a Function of Two Distributions* 

 Distribution 1: Percent of Positive Findings by Coder 1 (Np1/N)** 
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 (

N
p

2
/N
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*
 

100 50.0 50.5 52.0 54.5 58.0 62.5 68.0 74.5 82.0 90.5 100.0 

90 50.5 50.0 50.5 52.0 54.5 58.0 62.5 68.0 74.5 82.0 90.5 

80 52.0 50.5 50.0 50.5 52.0 54.5 58.0 62.5 68.0 74.5 82.0 

70 54.5 52.0 50.5 50.0 50.5 52.0 54.5 58.0 62.5 68.0 74.5 

60 58.0 54.5 52.0 50.5 50.0 50.5 52.0 54.5 58.0 62.5 68.0 

50 62.5 58.0 54.5 52.0 50.5 50.0 50.5 52.0 54.5 58.0 62.5 

40 68.0 62.5 58.0 54.5 52.0 50.5 50.0 50.5 52.0 54.5 58.0 

30 74.5 68.0 62.5 58.0 54.5 52.0 50.5 50.0 50.5 52.0 54.5 

20 82.0 74.5 68.0 62.5 58.0 54.5 52.0 50.5 50.0 50.5 52.0 

10 90.5 82.0 74.5 68.0 62.5 58.0 54.5 52.0 50.5 50.0 50.5 

0 100.0 90.5 82.0 74.5 68.0 62.5 58.0 54.5 52.0 50.5 50.0 

*:  Main cell entries are Scott’s Chance Agreement (ac) in %. 

**:  M1 is the number of positive answers by Coder 1, M2 is the number of positive answers by Coder 2, and N is the total number of cases 

analyzed.  See also Table 4 for various assumptions behind Scott’s π. 
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Table 4 

Assumptions of 22 Intercoder Reliability Indices 

Down: Assumption name (assumption #) 

% Agreement 

ao (Osgood, 

Holsti’s CR), 

Rogot & 

Goldberg’s A1 

 

 

Benini’s  

β 
Guttman’s ρ 

Bennett’  

et al’s S  

(C, G, kn, 

PABAK, 

rdf-Pi, RE) 

 

Goodman 

& 

Kruskal’s  
λr  

Scott’s π 

(Rev-Κ, 

BAK) 

Cohen’s 

κ 

(A2) 

Krippen-

dorff’s 

α 

 

Perreault 

& Leigh’s  

Ir 

Gwet’s 

AC1 

Random chance agreement (1, 2) zero maximum maximum maximum maximum maximum maximum maximum maximum maximum 

Honesty (3) complete limited limited limited limited limited limited limited limited limited 

Specified random (4) no yes yes yes yes yes yes yes yes yes 

Rounds of marble drawing (23) zero one one one one one one one one two 

Drawing with replacement (7, 18) N/A yes yes yes yes yes yes no yes yes 

What marble pattern = honesty? (8, 22, 24) N/A mismatch mismatch mismatch mode color mismatch mismatch mismatch mismatch 
mismatch 

or 

2 matches 

Categories=colors (5) no yes yes yes yes yes yes yes yes yes 

Equal number per color (6) no no yes yes no no no no yes yes 

Categories reduce chance agreements ac (9) no no yes yes no no no no yes yes 

Agreement observed or approximated (10) observed observed approximated observed observed observed observed observed observed observed 

Elevated index (11) no yes no no no no no no yes no 

Quota (12, 17) no individual no no individual conspired individual conspired no conspired 

Trinity distribution (13) no yes no no yes yes yes yes no yes 

Constrained task (14) no yes no no yes yes yes yes no yes 

Predetermined distribution (15) no yes no no yes yes yes yes no yes 

Quota & Distribution affects ac  (16) no yes no no yes yes yes yes no yes 

Trinity size (19) no no no no no no no yes no no 

Predetermined target size (20) no no no no no no no yes no no 

Larger samples increase ac (21) no no no no no no no yes no no 
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Table 5 

Cohen’s Chance Agreement (ac) as a Function of Two Distributions* 

 Distribution 1: Positive Findings by Coder 1 (Np1/N) in %** 
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100 0.0 10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.0 

90 10.0 18.0 26.0 34.0 42.0 50.0 58.0 66.0 74.0 82.0 90.0 

80 20.0 26.0 32.0 38.0 44.0 50.0 56.0 62.0 68.0 74.0 80.0 

70 30.0 34.0 38.0 42.0 46.0 50.0 54.0 58.0 62.0 66.0 70.0 

60 40.0 42.0 44.0 46.0 48.0 50.0 52.0 54.0 56.0 58.0 60.0 

50 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 

40 60.0 58.0 56.0 54.0 52.0 50.0 48.0 46.0 44.0 42.0 40.0 

30 70.0 66.0 62.0 58.0 54.0 50.0 46.0 42.0 38.0 34.0 30.0 

20 80.0 74.0 68.0 62.0 56.0 50.0 44.0 38.0 32.0 26.0 20.0 

10 90.0 82.0 74.0 66.0 58.0 50.0 42.0 34.0 26.0 18.0 10.0 

0 100.0 90.0 80.0 70.0 60.0 50.0 40.0 30.0 20.0 10.0 0.0 

*: Main cell entries are Cohen’s Chance Agreement (ac) in %. 

**: Np1 is the number of positive answers by Coder 1, Np2 is the number of positive answers by Coder 2, and N is the total number of cases 

analyzed.  See also Table 4 for various assumptions behind Cohen’s κ.  



ASSUMPTIONS BEHIND INTERCODER RELIABILITY INDICES  75 

Communication Yearbook 36 

 

Table 6 

Krippendorff’s Chance Agreement (ac) as a Function of Two Distributions (N=100)* 

 Distribution 1: Percent of Positive Findings by Coder 1 (Np1/N)** 
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100 49.7  50.3  51.8  54.3  57.8  62.3  67.8  74.4  81.9  90.5  100.0  

90 50.3  49.7  50.3  51.8  54.3  57.8  62.3  67.8  74.4  81.9  90.5  

80 51.8  50.3  49.7  50.3  51.8  54.3  57.8  62.3  67.8  74.4  81.9  

70 54.3  51.8  50.3  49.7  50.3  51.8  54.3  57.8  62.3  67.8  74.4  

60 57.8  54.3  51.8  50.3  49.7  50.3  51.8  54.3  57.8  62.3  67.8  

50 62.3  57.8  54.3  51.8  50.3  49.7  50.3  51.8  54.3  57.8  62.3  

40 67.8  62.3  57.8  54.3  51.8  50.3  49.7  50.3  51.8  54.3  57.8  

30 74.4  67.8  62.3  57.8  54.3  51.8  50.3  49.7  50.3  51.8  54.3  

20 81.9  74.4  67.8  62.3  57.8  54.3  51.8  50.3  49.7  50.3  51.8  

10 90.5  81.9  74.4  67.8  62.3  57.8  54.3  51.8  50.3  49.7  50.3  

0 100.0  90.5  81.9  74.4  67.8  62.3  57.8  54.3  51.8  50.3  49.7  

*: Main cell entries are Krippendorff’s Chance Agreement (ac) in %. 

**:  Np1 is the number of positive answers by Coder 1, Np2 is the number of positive answers by Coder 2, and N is the total number of cases 

analyzed.  See also Table 4 for various assumptions behind Krippendorff’s α. 
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Table 7 

Krippendorff's Chance Agreement Rate (ac) as a Function of Coded Targets (N) and Average 

Distribution (Np/N) 
 Average Distribution of Positive Cases (Np/N in %) 

0 10 20 30 40 50 60 70 80 90 100 

N
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1 100.00  64.00  36.00  16.00  4.00  0.00  4.00  16.00  36.00  64.00  100.00  

2 100.00  76.00  57.33  44.00  36.00  33.33  36.00  44.00  57.33  76.00  100.00  

3 100.00  78.40  61.60  49.60  42.40  40.00  42.40  49.60  61.60  78.40  100.00  

4 100.00  79.43  63.43  52.00  45.14  42.86  45.14  52.00  63.43  79.43  100.00  

5 100.00  80.00  64.44  53.33  46.67  44.44  46.67  53.33  64.44  80.00  100.00  

6 100.00  80.36  65.09  54.18  47.64  45.45  47.64  54.18  65.09  80.36  100.00  

7 100.00  80.62  65.54  54.77  48.31  46.15  48.31  54.77  65.54  80.62  100.00  

8 100.00  80.80  65.87  55.20  48.80  46.67  48.80  55.20  65.87  80.80  100.00  

9 100.00  80.94  66.12  55.53  49.18  47.06  49.18  55.53  66.12  80.94  100.00  

10 100.00  81.05  66.32  55.79  49.47  47.37  49.47  55.79  66.32  81.05  100.00  

11 100.00  81.14  66.48  56.00  49.71  47.62  49.71  56.00  66.48  81.14  100.00  

12 100.00  81.22  66.61  56.17  49.91  47.83  49.91  56.17  66.61  81.22  100.00  

13 100.00  81.28  66.72  56.32  50.08  48.00  50.08  56.32  66.72  81.28  100.00  

14 100.00  81.33  66.81  56.44  50.22  48.15  50.22  56.44  66.81  81.33  100.00  

15 100.00  81.38  66.90  56.55  50.34  48.28  50.34  56.55  66.90  81.38  100.00  

16 100.00  81.42  66.97  56.65  50.45  48.39  50.45  56.65  66.97  81.42  100.00  

17 100.00  81.45  67.03  56.73  50.55  48.48  50.55  56.73  67.03  81.45  100.00  

18 100.00  81.49  67.09  56.80  50.63  48.57  50.63  56.80  67.09  81.49  100.00  

19 100.00  81.51  67.14  56.86  50.70  48.65  50.70  56.86  67.14  81.51  100.00  

20 100.00  81.54  67.18  56.92  50.77  48.72  50.77  56.92  67.18  81.54  100.00  

21 100.00  81.56  67.22  56.98  50.83  48.78  50.83  56.98  67.22  81.56  100.00  

22 100.00  81.58  67.26  57.02  50.88  48.84  50.88  57.02  67.26  81.58  100.00  

23 100.00  81.60  67.29  57.07  50.93  48.89  50.93  57.07  67.29  81.60  100.00  

24 100.00  81.62  67.32  57.11  50.98  48.94  50.98  57.11  67.32  81.62  100.00  

25 100.00  81.63  67.35  57.14  51.02  48.98  51.02  57.14  67.35  81.63  100.00  

26 100.00  81.65  67.37  57.18  51.06  49.02  51.06  57.18  67.37  81.65  100.00  

27 100.00  81.66  67.40  57.21  51.09  49.06  51.09  57.21  67.40  81.66  100.00  

28 100.00  81.67  67.42  57.24  51.13  49.09  51.13  57.24  67.42  81.67  100.00  

29 100.00  81.68  67.44  57.26  51.16  49.12  51.16  57.26  67.44  81.68  100.00  

30 100.00  81.69  67.46  57.29  51.19  49.15  51.19  57.29  67.46  81.69  100.00  
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Table 8 

Goodman and Kruskal’s Chance Agreement (ac) as a Function of Two Distributions* 

 Distribution 1: Positive Findings by Coder 1 (Np2/N) in %** 
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100 100.0 95.0 90.0 85.0 80.0 75.0 80.0 85.0 90.0 95.0 100.0 

90 95.0 90.0 85.0 80.0 75.0 70.0 75.0 80.0 85.0 90.0 95.0 

80 90.0 85.0 80.0 75.0 70.0 65.0 70.0 75.0 80.0 85.0 90.0 

70 85.0 80.0 75.0 70.0 65.0 60.0 65.0 70.0 75.0 80.0 85.0 

60 80.0 75.0 70.0 65.0 60.0 55.0 60.0 65.0 70.0 75.0 80.0 

50 75.0 70.0 65.0 60.0 55.0 50.0 55.0 60.0 65.0 70.0 75.0 

40 80.0 75.0 70.0 65.0 60.0 55.0 60.0 65.0 70.0 75.0 80.0 

30 85.0 80.0 75.0 70.0 65.0 60.0 65.0 70.0 75.0 80.0 85.0 

20 90.0 85.0 80.0 75.0 70.0 65.0 70.0 75.0 80.0 85.0 90.0 

10 95.0 90.0 85.0 80.0 75.0 70.0 75.0 80.0 85.0 90.0 95.0 

0 100.0 95.0 90.0 85.0 80.0 75.0 80.0 85.0 90.0 95.0 100.0 

*: Main cell entries are Goodman and Kruskal’s Chance Agreement (ac) in %. 

**: Np1 is the number of positive answers by Coder 1, Np2 is the number of positive answers by Coder 2, and N is the total number of cases 

analyzed.  See also Table 4 for various assumptions behind Cohen’s κ and Goodman and Kruskal’s λr. 
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Table 9 

Gwet’s Chance Agreement (ac) as a Function of Two Distributions* 

 Distribution 1: Percent of Positive Findings by Coder 1 (Np1/N)** 
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100 50.0 49.5 48.0 45.5 42.0 37.5 32.0 25.5 18.0 9.5 0.0 

90 49.5 50.0 49.5 48.0 45.5 42.0 37.5 32.0 25.5 18.0 9.5 

80 48.0 49.5 50.0 49.5 48.0 45.5 42.0 37.5 32.0 25.5 18.0 

70 45.5 48.0 49.5 50.0 49.5 48.0 45.5 42.0 37.5 32.0 25.5 

60 42.0 45.5 48.0 49.5 50.0 49.5 48.0 45.5 42.0 37.5 32.0 

50 37.5 42.0 45.5 48.0 49.5 50.0 49.5 48.0 45.5 42.0 37.5 

40 32.0 37.5 42.0 45.5 48.0 49.5 50.0 49.5 48.0 45.5 42.0 

30 25.5 32.0 37.5 42.0 45.5 48.0 49.5 50.0 49.5 48.0 45.5 

20 18.0 25.5 32.0 37.5 42.0 45.5 48.0 49.5 50.0 49.5 48.0 

10 9.5 18.0 25.5 32.0 37.5 42.0 45.5 48.0 49.5 50.0 49.5 

0 0.0 9.5 18.0 25.5 32.0 37.5 42.0 45.5 48.0 49.5 50.0 

*:  Main cell entries are Gwet’s Chance Agreement (ac) in %. 

**:  Np1 is the number of positive answers by Coder 1, Np2 is the number of positive answers by Coder 2, and N is the total number of cases 

analyzed.  See also Table 4 for various assumptions behind Gwet’s AC1. 
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Table 10 

Paradoxes and Abnormalities of 22 Intercoder Reliability Indices 
Paradox or 

Abnormality # 

Paradox or Abnormality  

% Agreement ao, 

(Osgood, Holsti’s CR), 

Rogot & Goldberg’s A1 

Bennett et al’s S, 

Guttman’s ρ,  

Perreault & Leigh’s Ir, 

(C, G, kn, PABAK, rdf-

Pi, RE)* 

Scott’s π, 

(Rev-Κ, 

BAK) 

Cohen’s κ, (Rogot 

& Goldberg’s A2), 

Benini’s β, 

Goodman & 

Kruskal’s λr,  

Krippendorff’s 

α 
Gwet’s AC1 

Prdx 1 Random guessing is reliable yes           

Prdx 2 Nothing but chance  yes yes yes yes yes 

Prdx 3 Apples compared with oranges  yes yes yes yes yes 

Prdx 4 Humans are subgroup of men  yes yes yes yes yes 

Prdx 5 Pandas are subgroup of men  yes yes yes yes yes 

Prdx 6 Categories increase reliability  yes       yes  

Prdx 7 Punishing larger sample & replicability     yes  

Prdx 8 Purely random coding is reliable     yes  

Prdx 9 Randomness more reliable than honesty      yes  

Abn 10 High agreement, low reliability    yes yes yes  

Abn 11 Undefined reliability    yes yes yes   

Abn 12 No change in ao, large drop in reliability     yes yes yes   

Abn 13 Zero disagreement, no improvement in ri     yes yes yes  

Abn 14 Tiny rise in ao, huge rise in ri    yes yes yes   

Abn 15 Rise in ao, huge drop in ri    yes yes yes   

Abn 16 Honest coding as bad as coin flipping   yes yes yes  

Prdx 17 Punishing improved coding   yes yes yes  

Prdx 18 Punishing agreement   yes yes yes  

Prdx 19 Moving bar   yes yes yes yes 

Prdx 20 Circular logic   yes yes yes yes 

Abn 21 Same quality, same ao, higher ri      yes 

Abn 22 Lower quality, lower ao, higher ri      yes 
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* AC1 occupies two cells because it is double based, on category and distribution. 

  

Table 11 

What’s Missing in the Map of Reliabilities? 

1. Maximum Random 2.Variable Random 3. Zero Random 

 Observed Distribution = 

Marble Distribution 

 

Categories = Colors 

 

Percent Agreement (ao) 

Osgood’s coefficient, 

Holsti’s CR 

Rogot and Goldberg’s A1 

Individual 

Quota  

Conspired 

Quota  

 

Color Mismatch= Honesty 
Replacement drawing κ, A2, β π, Rev-Κ, 

BAK  

ρ, S, G, RE, C,  

kn Ir, PABAK, rdf-Pi. 

Non-replacement drawing  α  

Mismatch or Double Match 

= Honesty 

Replacement Drawing  AC1* AC1* 

Non-replacement drawing    

Largest Color= Honesty 
Replacement Drawing λr   

Non-replacement drawing    
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Table 12 

Liberal vs Conservative Estimates of Reliability for Binary Scale, Two Coders, and Sufficiently Large Sample 

 Hierarchy 1 Hierarchy 2 

More liberal estimates of reliability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More conservative estimates of reliability. 

Percent Agreement (ao) (pre 1901),  

Osgood’s (1959), Holsti’s CR (1969), 

Rogot & Goldberg’s A1 (1966) 

Percent Agreement (ao) (pre 1901),  

Osgood’s (1959), Holsti’s CR (1969) 

Rogot & Goldberg’s A1 (1966) 

Perreault & Leigh’s Ir (1989)  

Gwet’s AC1 (2008, 2010) 

Guttman’s ρ (1946), 

Bennett et al.’s S (1954),  

Guilford’s G (1961), Maxwell’s RE (1977),  

Jason & Vegelius’ C (1979),  

Brennan & Prediger’s kn (1981),  

Byrt et al.’s PABAK (1993) 

Potter & Levine-Donnerstein’s rdf-Pi (1999). 

 

 Benini’s β (1901) 

 Cohen’s κ (1960) 

Rogot & Goldberg’s A2 (1966) 

Krippendorff’s α (1970, 1980) Krippendorff’s α (1970, 1980) 

Scott’s π (1955),  

Siegel & Castellan’s Rev-Κ (1988),  

Byrt et al’s BAK (1993) 

Scott’s π (1955), 

Siegel & Castellan’s Rev-Κ (1988),  

Byrt et al’s BAK (1993) 

Goodman & Kruskal’s λr (1954) Goodman & Kruskal’s λr (1954) 

 

Comparisons across the dotted lines are between the general patterns in situations that are more frequent and more important for typical 

research, e.g., when indices are zero or above, and when the distribution estimates of two coders are not extremely skewed in opposite directions. 

Comparisons involving Guttman’s ρ, its eight equivalents, and Perreault & Leigh’s Ir assume binary scale.  Comparisons involving 

Krippendorff’s α assume sufficiently large sample.   
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Table 13  

When to Use or Not Use Which Index of Reliability  

Down: observed 

condition 

Indices that tend to produce unfairly low 

reliability scores 

Indices that tend to produce unfairly high 

reliability scores 

Indices not obviously unfair due to the 

observed condition at the left, hence may be 

considered for temporary use until a more 

reasonable index is available iv, v ,vi 

Low agreement  

Percent Agreement ao,  

Osgood’s, Holsti’s CR, 

Rogot and Goldberg’s A1 

Gwet’s AC1, Perreault & Leigh’s Ir, Bennett 

et al’s S, Cohen’s κ, Scott’s π, 

Krippendorff’s α 

Highly uneven 

individual distribution 

Benini’s β i, 

Goodman & Kruskal’s λr, Scott’s π, 

Cohen’s κ i, Rogot & Goldberg’s A2, 
Krippendorff’s α,  

Byrt et al’s BAK,  

Siegel and Castellan’s Rev-Κ (1988)  

Benini’s β i, 

Cohen’s κ i,  

Rogot & Goldberg’s A2, 

Gwet’s AC1,  

Percent Agreement ao,  

Perreault & Leigh’s Ir,  

Bennett et al’s S 

Highly uneven 

average distribution 

Benini’s β,  

Goodman & Kruskal’s λr,    

Scott’s π, Byrt et al’s BAK,  

Siegel and Castellan’s Rev-Κ (1988), 

Cohen’s κ, Rogot & Goldberg’s A2,  

Krippendorff’s α 

Gwet’s AC1 

Percent Agreement ao,  

Perreault & Leigh’s Ir,  

Bennett et al’s S 

ρ ≈ 0.5  Perreault & Leigh’s Ir 

Percent Agreement ao, Gwet’s AC1, Bennett 

et al’s S, Cohen’s κ, Scott’s π,  

Krippendorff’s α 

N<20 ii  Krippendorff’s α 

Percent Agreement ao, Gwet’s AC1, 

Perreault & Leigh’s Ir,  

Bennett et al’s S, Cohen’s κ, Scott’s π 

K≥3 iii  

Guttman’s ρ, Perreault & Leigh’s Ir, 

Bennett et al.’s S, Guilford’s G,  Maxwell’s 

RE, Jason & Vegelius’ C, Brennan & 

Prediger’s kn, , Byrt et al’s PABAK, Potter 

& Levine-Donnerstein’s redefined Pi,  
Gwet’s AC1 

 

Percent Agreement ao,  

Cohen’s κ, 

Scott’s π 

Krippendorff’s α 



ASSUMPTIONS BEHIND INTERCODER RELIABILITY INDICES  83 

Communication Yearbook 36 

Table 13 (Continued) 

 

i When individual distributions are highly uneven, Benini’s β and Cohen’s κ can be unfairly high when the two 

distributions are highly skewed at the opposite directions, e.g., one coder reports 95% positive while the other 95% 

negative; the two can be unfairly low when the two distributions are skewed at the same direction, e.g., both coders 

report 95% positive. 

ii N is number of target cases analyzed. 

iii K is number of categories in the nominal coding scale. 

iv Use with caution!  While the indices in the extreme right cells are not necessarily unfair due to the observed condition in the extreme left 

cells of the same row, they may be unfair due to other condition(s) present in a study.  For example, when a study uses three or more 

categories (last row), it does not make Scott’s π unfair.  But the same study may also have highly uneven distribution (second and third 

rows), which makes π unfairly low, so the researcher may have to use percent agreement. Combination of conditions could make all 

available indices unfair for a given study, which is one of the reasons that a better index is needed. 

v In each cell of this column, the indices are listed according to their positions in the liberal-conservative hierarchies shown in Table 12.  

The information may be useful for meta analysts and other content analysts who wish to better evaluate their reliability level.   

vi  We excluded all “equivalents” from this “not obviously unfair” column, as credits should go to the first designer(s). 
 

 

 


