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ABSTRACT

In recent years, high-dimensional data sets are widely available in many scientific

areas, such as gene expression study, finance and others. Estimating the covariance

matrix is a significant issue in such high-dimensional data analysis. This thesis focuses

on high-dimensional covariance matrix estimation and its application.

First, this thesis focuses on the covariance matrix estimation. In Chapter 2,

a new optimal shrinkage estimation of the covariance matrices is proposed. This

method is motivated by the quadratic discriminant analysis where many covariance

matrices need to be estimated simultaneously. We shrink the sample covariance

matrix towards the pooled sample covariance matrix through a shrinkage parameter.

Some properties of the optimal shrinkage parameter are investigated and we also

provide how to estimate the optimal shrinkage parameter. Simulation studies and

real data analysis are also conducted. In Chapter 4, we estimate the determinant of

the covariance matrix using some recent proposals for estimating high-dimensional

covariance matrix. Specifically, a total of nine covariance matrix estimation methods

will be considered for comparison. Through extensive simulation studies, we explore

and summarize some interesting comparison results among all compared methods.

A few practical guidelines are also made on the sample size, the dimension, and

the correlation of the data set for estimating the determinant of high-dimensional

covariance matrix. Finally, from a perspective of the loss function, the comparison

study in this chapter also serves as a proxy to assess the performance of the covariance

matrix estimation.

Second, this thesis focuses on the application of high-dimensional covariance ma-

trix estimation. In Chapter 3, we consider to estimate the high-dimensional covari-

ance matrix based on the diagonal matrix of the sample covariance matrix and apply

it to the Hotelling’s tests. In this chapter, we propose a shrinkage-based diagonal

Hotelling’s test for both one-sample and two-sample cases. We also propose several

different ways to derive the approximate null distribution under different scenarios

of p and n for our proposed shrinkage-based test. Simulation studies show that the
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proposed method performs comparably to existing competitors when n is moderate

or large, and it is better when n is small. In addition, we analyze four gene expres-

sion data sets and they demonstrate the advantage of our proposed shrinkage-based

diagonal Hotelling’s test.

Apart from the covariance matrix estimation, we also develop a new classifica-

tion method for a specific type of high-dimensional data, RNA-sequencing data. In

Chapter 5, we propose a negative binomial linear discriminant analysis for RNA-Seq

data. By Bayes’ rule, we construct the classifier by fitting a negative binomial model,

and propose some plug-in rules to estimate the unknown parameters in the classifier.

The relationship between the negative binomial classifier and the Poisson classifier is

explored, with a numerical investigation of the impact of dispersion on the discrimi-

nant score. Simulation results show the superiority of our proposed method. We also

analyze four real RNA-Seq data sets to demonstrate the advantage of our method in

real-world applications.

Keywords: Covariance matrix, Discriminant analysis, High-dimensional data, Hotelling’s

test, Log determinant, RNA-sequencing data
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Chapter 1

Introduction

1.1 High-dimensional Covariance Matrix Estima-

tion

In recent years, based on the development of modern science and technology, an in-

creasing number of variables can be observed or measured in many scientific areas.

For instance, in biomedical research, DNA microarray, which is a revolutionary tech-

nology in gene expression study, can measure thousands or even tens of thousands of

genes simultaneously. Recently, the next generation sequencing technology is widely

applied in transcriptome profiling and protein-DNA interaction and a large number

of genes can also be measured by this new sequencing technology. One important fea-

ture of such high-dimensional data sets is that the number of variables or dimension

p is often comparable with or even larger than the number of observations n. Such

feature is not uncommon in gene expression study. For example, in many microarray

experiments, the sample size is much smaller than the number of genes because of the

cost or rare patients (Kuster et al.; 2011; Mokry et al.; 2012; Kaur et al.; 2012; Searcy

et al.; 2012). Such high-dimensional data bring challenges for statistical analysis in-

cluding estimating the covariance matrix. In next two sections we briefly introduce

two applications of estimating high-dimensional covariance matrix.

Let Xi = (Xi1, . . . ,Xip)
T , i = 1, . . . , n, be independent and identically distributed

1



(i.i.d.) random vectors with the covariance matrix Σ. The sample covariance matrix

Sn =
1

n− 1

n∑
i=1

(Xi − X̄)(Xi − X̄)T , (1.1)

where X̄ = (1/n)
∑n

i=1Xi, is a common estimator of the covariance matrix. However,

in such high-dimensional settings, the sample covariance matrix is singular and is no

longer a valid estimate of Σ. To overcome the singularity problem, various covariance

matrix estimation methods are proposed in recent literatures. One type of methods is

to shrink the sample covariance matrix towards a target matrix through a shrinkage

parameter, and some properties of the optimal shrinkage parameter are investigated

(Ledoit and Wolf; 2003; Schäfer and Strimmer; 2005; Fisher and Sun; 2011). Another

type of methods is to add some structure assumptions to the covariance matrix. One

assumption is the sparsity structure which assumes that most of elements of the

covariance matrix are zeros. Consistent estimators of the covariance matrix can be

obtained under such matrix structure (Bickel and Levina; 2008; Cai and Yuan; 2012;

Rothman; 2012). Recently, Fan et al. (2013) pointed out that the sparsity assumption

may not be realistic and considered a conditional sparsity structure. In their paper,

the authors introduced a principle orthogonal complement thresholding method using

the factor model to estimate high-dimensional covariance matrix. Additionally, Tong

et al. (2014) reviewed various existing covariance matrix estimation methods.

1.2 Hotelling’s Tests

One application of high-dimensional covariance matrix estimation is Hotelling’s T 2

test (Hotelling; 1931). In biomedical research, scientists need to know whether a gene

set or pathway is significantly differentially expressed in two experiments. In statistics

this is essentially a two-sample multivariate hypothesis testing problem. Hotelling’s

T 2 test is a classical tool to solve such multivariate testing problems including one-

sample test and two-sample test problems, which are described as follows:

• One-sample test. Let Xi = (Xi1, . . . , Xip)
T , i = 1, . . . , n, be i.i.d. random

vectors from a multivariate normal distribution with the mean vector µ and

2



covariance matrix Σ. The hypothesis of one-sample test is

H0 : µ = µ0 versus H1 : µ ̸= µ0, (1.2)

where µ0 is a fixed vector. And the respective Hotelling’s T 2 statistic is

T 2
1 = n(X̄− µ0)

TS−1
n (X̄− µ0). (1.3)

Under the null hypothesis, {(n−p)/[p(n−1)]}T 2
1 follows an Fp,n−p distribution

with p and n− p degrees of freedom when p ≤ n− 1.

• Two-sample test. Let Xki = (Xki1, . . . , Xkip)
T , i = 1, . . . , nk, be i.i.d. random

vectors from a multivariate normal distribution with the mean vector µk and

the common covariance matrix Σ, for k = 1 and 2, respectively. The hypothesis

of two-sample test is

H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2, (1.4)

and the respective Hotelling’s T 2 statistic is

T 2
2 =

n1n2

n1 + n2

(X̄1 − X̄2)
TS−1

pool(X̄1 − X̄2), (1.5)

where X̄1 and X̄2 are the sample means and Spool = {(n1 − 1)Sn1 + (n2 −

1)Sn2}/(n1 + n2 − 2) is the pooled sample covariance matrix. Under the null

hypothesis, {(n1 + n2 − p− 1)/[p(n1 + n2 − 2)]}T 2
2 follows an Fp,n1+n2−p−1 dis-

tribution with p and n1 + n2 − p− 1 degrees of freedom when p ≤ n1 + n2 − 2.

Obviously, for both one-sample and two-sample tests, we need to estimate the

covariance matrix. The sample covariance matrix is used as the estimator of the co-

variance matrix in Hotelling’s T 2 tests. However, it suffers from the singularity prob-

lem in high-dimensional settings because it is no longer invertible. Therefore, high-

dimensional covariance matrix estimation methods are necessary when Hotelling’s T 2

tests are applied.
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1.3 Discriminant Analysis

Another application of high-dimensional covariance matrix estimation is discrimi-

nant analysis. In biomedical research, scientists measure the gene expression levels

of biopsy or serum sample from an individual and identify whether this individual

has a disease and/or a specific type of disease. In statistics this is essentially a clas-

sification problem. Discriminant analysis, including quadratic discriminant analysis

(QDA) and linear discriminant analysis (LDA), is one type of classical method to

solve such classification problems. In particular, let K be the number of distinct

classes. The individual or sample from class k, where k = 1, · · · , K, follows a mul-

tivariate normal distribution Np(µk,Σk), where µk and Σk are the mean vector and

covariance matrix, respectively. QDA allocates the new individual to the class which

makes the discriminant score of QDA minimum. The discriminant score of QDA is

dQk (x
∗) = (x∗ − µk)

TΣ−1
k (x∗ − µk) + log |Σk| − 2 log πk,

and πk is the prior probability that one individual comes from class k. Note that

LDA is a special case of QDA when Σk = Σ for all k.

To compute the discriminant scores of LDA and QDA, we need to estimate the

covariance matrix. Like what we mentioned in Sections 1.1 and 1.2, the sample

covariance matrix is a common estimator but it is not invertible for high-dimensional

data. Therefore, new high-dimensional covariance matrix estimation is also necessary

in discriminant analysis.

1.4 Overall Structure

The remainder of this thesis is organized as follows.

In Chapter 2, we propose the optimal shrinkage estimation of the covariance matri-

ces, which is motivated by the quadratic discriminant analysis where many covariance

matrices need to be estimated simultaneously. We compute the pooled sample co-

variance matrix which is the arithmetic mean of all sample covariance matrices, and

shrink one sample covariance matrix towards the pooled sample covariance matrix

4



to obtain its respective estimate. We also investigate some properties and estima-

tion methods of the optimal shrinkage parameter. Simulation studies and real data

analysis are conducted to investigate the performance of our methods.

In Chapter 3, we propose a shrinkage-based diagonal Hotelling’s test for both one-

sample and two-sample cases. We also propose several different ways to derive the

approximate null distribution under different scenarios of p and n for our proposed

shrinkage-based test. Simulation studies show that the proposed method performs

comparably to existing competitors when n is moderate or large, and it is better

when n is small. In addition, we analyze four gene expression data sets and they

demonstrate the advantage of our proposed shrinkage-based diagonal Hotelling’s test.

In Chapter 4, we estimate the determinant of the covariance matrix using some

recent proposals for estimating high-dimensional covariance matrix. Specifically, a

total of nine covariance matrix estimation methods will be considered for comparison.

Through extensive simulation studies, we explore and summarize some interesting

comparison results among all compared methods. A few practical guidelines are

also made on the sample size, the dimension, and the correlation of the data set for

estimating the determinant of high-dimensional covariance matrix. Finally, from a

perspective of the loss function, the comparison study in this chapter also serves as

a proxy to assess the performance of the covariance matrix estimation.

In Chapter 5, we propose a negative binomial linear discriminant analysis for

RNA-Seq data. By Bayes’ rule, we construct the classifier by fitting a negative bino-

mial model, and propose some plug-in rules to estimate the unknown parameters in

the classifier. The relationship between the negative binomial classifier and the Pois-

son classifier is explored, with a numerical investigation of the impact of dispersion

on the discriminant score. Simulation results show the superiority of our proposed

method. We also analyze four real RNA-Seq data sets to demonstrate the advantage

of our method in real-world applications.

In Chapter 6, we summarize the contents of this thesis and propose some future

work.
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Chapter 2

Optimal Shrinkage Estimation of

the Covariance Matrices

2.1 Introduction

High-throughput techniques allow us to acquire thousands of or more gene expression

values simultaneously, which introduces novel approaches to genetic research. One

important goal of analyzing gene expression microarray data is to identify to which

type of diseases a new patient belongs. Essentially, in statistics, this is a classifica-

tion problem. Quadratic discriminant analysis (QDA) is a classical method which

is used to solve such classification problem. Suppose we have G classes and the co-

variance matrices of G classes are Σ1, . . . ,ΣG, respectively. QDA assumes that Σg,

g = 1, . . . , G are unequal and we need to compute the discriminant scores to decide

to which class a new sample belongs to. In the discriminant scores, the covariance

matrices Σg, g = 1, . . . , G are unknown and hence need to be estimated. In other

words, to apply QDA to the classification problem, we need to estimate the many

covariance matrices simultaneously.

To estimate one covariance matrix, many methods are developed in the literature.

The sample covariance matrix is a common estimator but suffers from the singularity

problem when the data set is high-dimensional. To overcome such singularity prob-

lem, the diagonal matrix of the sample variances is an available high-dimensional
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covariance matrix estimator. This method has been used in high-dimensional classi-

fication (Dudoit et al.; 2002; Pang et al.; 2009). Another way is to shrink the sample

covariance matrix towards a target matrix (Schäfer and Strimmer; 2005; Fisher and

Sun; 2011). In recent years, a sparse structure of the covariance matrix is proposed.

They assume most of covariates of the data are independent, and try to delete some

weak correlations of the sample covariance matrix by thresholding (Bickel and Levina;

2008; Rothman et al.; 2009; Cai and Liu; 2011; Cai and Yuan; 2012). More recently,

Fan et al. (2013) proposed a new method to estimate the covariance matrix using a

factor model. They apply the spectral decomposition to the sample covariance ma-

trix, keep the first K principle components, and at the same time apply thresholding

to the principal orthogonal complement to obtain the final estimate.

To apply QDA, we can select one aforementioned method to estimate the covari-

ance matrices Σg and then compute the respective discriminant scores. However, all

these existing methods focus on the covariance matrix of one class and ignore the

information from other classes. It is not uncommon that borrowing information can

improve the variance estimation. Stein (1964) discovered that we can take advantage

of the information from the sample mean to improve the variance estimation. Tong

and Wang (2007) proposed an optimal shrinkage variance estimator which borrowing

information from variances and demonstrated the improvement of the variance esti-

mation. This motivates us to taking advantage of the information from other class

to improve the covariance matrix estimation.

In this chapter, we propose new optimal shrinkage estimators to estimate many

covariance matrices simultaneously. We shrink the sample covariance matrix towards

the pooled sample covariance matrix which is the arithmetic mean of the sample

covariance matrices of all classes. The shrinkage parameter in the estimators controls

the shrinkage level. Two loss functions are considered in this chapter and we attempt

to find the optimal shrinkage parameters and investigate their related properties

under these two loss functions. We conduct simulation studies and real data analysis

to investigate the performance of our methods.
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2.2 Shrinkage Covariance Matrix Estimators

In this section, we introduce the optimal shrinkage covariance matrix estimation.

Let Xgi = (X1gi, . . . , Xpgi)
T be i.i.d. random vectors from the multivariate normal

distribution Np(µg,Σg), where i = 1, . . . , n, µg is p-dimensional mean vector and Σg

is the p × p covariance matrix. Traditionally, we use the sample covariance matrix

Sgn = (1/n)Sg to estimate Σg, where

Sg =
n∑

i=1

(Xgi − X̄g)(Xgi − X̄g)
T , (2.1)

and X̄g = (1/n)
∑n

i=1Xgi. Note that Sg ∼ Wp(Σg, n), where Wp(Σg, n) denotes the

Wishart distribution with n degrees of freedom.

Let Sg be independent. To estimate Σg, we propose the following shrinkage esti-

mators:

Σ̂g = αSgn + (1− α)Σ̂pool, 0 ≤ α ≤ 1, (2.2)

where

Σ̂pool =
1

G

G∑
g=1

Sgn,

and α is the unknown shrinkage parameter which controls the shrinkage level. It is

obvious that if α = 1, the estimators are the sample covariance matrix, and if α = 0,

the estimates are shrunken to the pooled sample covariance matrix.

2.3 Optimal Shrinkage Parameters Estimation

In real application, the shrinkage parameter α is unknown and hence we need to

find its estimation. To estimate the shrinkage parameter, we first consider to derive

the average risk of the covariance matrix estimator under a loss function. Then we

investigate some properties of the average risk and estimate the optimal shrinkage

parameter based on the average risk. Note that the optimal shrinkage parameter

in this chapter is not overall optimal. Our optimal shrinkage parameter is obtained

in the domain specified by two loss functions which will be introduced in the next

paragraph.
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In this chapter, we consider the following two loss functions:

L1(Σ̂,Σ) = tr(Σ̂Σ−1)− log det(Σ̂Σ−1)− p, (2.3)

and

L2(Σ̂,Σ) = tr(Σ̂Σ−1 − I)2, (2.4)

where det(·) and tr(·) denote the determinant and trace of a covariance matrix,

respectively. Note that both two loss functions have been used in the covariance

matrix estimation (Haff; 1980, 1991; Yang and Berger; 1994). The first loss function

is Stein Loss. For ease of interpretation, we take p = 1 for example. When p = 1,

Stein Loss is

L(σ̂2, σ2) =
σ̂2

σ2
− log

σ̂2

σ2
− 1,

where σ̂2 is the estimator of σ2. If σ̂2 = σ2, the loss is 0. If σ̂2 goes to zero or

infinity, the loss will go to infinity. This means that this loss function has the same

heavy penalty for overestimation and underestimation. The second loss function is a

commonly used function: Quadratic Loss.

2.3.1 Optimal Estimator Under the Loss Function L1

Under L1, the average risk is

R1(α, Σ̂,Σ) :=
1

G

G∑
g=1

EL1(Σ̂g,Σg) (2.5)

=
1

G

G∑
g=1

Etr(Σ̂gΣ
−1
g )− 1

G

G∑
g=1

E log det(Σ̂gΣ
−1
g )− p

:= B1 +B2 − p,

where (by noting that ESg = nΣg)

B1 =
1

G

G∑
g=1

Etr(Σ̂gΣ
−1
g ) =

1

G

G∑
g=1

trE(Σ̂gΣ
−1
g )

= αp+ (1− α)tr
[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
,

9



and

B2 = − 1

G

G∑
g=1

E log det(Σ̂gΣ
−1
g ) = − 1

G

G∑
g=1

E log det
((
α
Sg

n
+ (1− α)Σ̂poo1

)
Σ−1

g

)
.

In the following discussion, the derivatives R′
k(α, Σ̂,Σ) and R

′′
k(α, Σ̂,Σ) are with

respect to α, k = 1, 2.

Theorem 1. R1(α, Σ̂,Σ) is a strictly convex function of α on [0, 1] that satisfies

(a). R′
1(α, Σ̂,Σ)|α=0 ≤ 0, the equality holds true if and only if Σg = Σg′ for all

g, g′ ∈ {1, 2, · · · , G}.

(b). R′
1(α, Σ̂,Σ)|α=1 > 0

By Theorem 1, there exists a unique α∗
1 ∈ [0, 1) satisfies

α∗
1 = argminα∈[0,1]R1(α, Σ̂,Σ),

or, equivalently,

R′
1(α, Σ̂,Σ)|α=α∗

1
= 0.

Theorem 2. For any fixed G, p, as n→ ∞, we have

(i) α∗
1 → 1 when Σg are not all the same.

(ii) R1(α, Σ̂,Σ) tends to a constant function of α when Σg = Σg′ for any g = g′.

Theorem 2 implies that it is unnecessary to borrow information across other classes

if the sample size is large.

In real applications, the optimal shrinkage parameter α∗
1 is unknown and need

to be estimated. From the proof of Theorem 1, we know the optimal shrinkage

parameter α∗
1 is the unique solution to

R′
1(α, Σ̂,Σ) = p− tr

[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
− 1

G

G∑
g=1

trE
((Sg

n
− Σ̂poo1

)(
α
Sg

n
+ (1− α)Σ̂poo1

)−1)
.

= 0. (2.6)

10



We estimate Σg and Σ−1
g by the unbiased estimators Sg/n and (n − p − 1)S−1

g , re-

spectively and R′
1(α, Σ̂,Σ) by

R̂′
1(α, Σ̂,Σ) = p− tr

[( 1

G

G∑
g=1

Sg

n

)( 1

G

G∑
g=1

(n− p− 1)S−1
g

)]
− 1

G

G∑
g=1

tr
((Sg

n
− Σ̂poo1

)(
α
Sg

n
+ (1− α)Σ̂poo1

)−1)
. (2.7)

By using the same method as that in the proof of Theorem 1, for any α ∈ [0, 1], we

have

R̂′′
1(α, Σ̂,Σ) = − 1

G

G∑
g=1

(
log det

(
α
Sg

n
+ (1− α)Σ̂poo1

))′′
α
> 0,

which implies that R̂′
1(α, Σ̂,Σ) is strictly increasing on [0, 1]. Clearly,

R̂′
1(α, Σ̂,Σ)|α=0 = p− n− p− 1

n
tr
[( 1

G

G∑
g=1

Sg

)( 1

G

G∑
g=1

S−1
g

)]
,

R̂′
1(α, Σ̂,Σ)|α=1 =

p+ 1

n
tr
[( 1

G

G∑
g=1

Sg

)( 1

G

G∑
g=1

S−1
g

)]
> 0.

Here R̂′
1(α, Σ̂,Σ)|α=0 is not guaranteed to be negative. If R̂′

1(α, Σ̂,Σ)|α=0 ≤ 0, then

there exists a unique α satisfies R̂′
1(α, Σ̂,Σ) = 0 and we denote the solution as α̂∗

1.

Otherwise, we define α̂∗
1 = 0.

For any p× p matrix A, we define its Frobenius norm ∥A∥ as

∥A∥ := (tr(AAT ))1/2 =
( p∑

i,j=1

a2ij

)1/2
, A ∈ H,

where aij are the coefficients of A. Then for any random matrix A = (Aij), E∥A∥k <

∞ is equivalent to E|Aij|k for any i, j ∈ {1, 2, · · · , p}.

In this chapter, for p × p matrix A, A > 0 means that A is a positive definite

matrix. The following two theorems show some asymptotic results of the estimated

optimal shrinkage parameters under the loss function L1.

Theorem 3. For any fixed G, p, as n→ ∞, we have α̂∗
1 → 1 when Σg are not all the

same.
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Theorem 4. For any fixed n and p with n > p + 1, assume that Σg
i.i.d.∼ µ, where

µ is a probability measure supported on H+ := {Ap×p : A > 0} and E∥S1∥7 <

∞, E∥S−1
1 ∥7 <∞. Then R′

1(α, Σ̂,Σ)− R̂′
1(α, Σ̂,Σ) → 0 a.s. uniformly for α ∈ [0, 1]

as G→ ∞. In addition, α̂∗
1 − α∗

1 → 0 a.s.

2.3.2 Optimal Estimator Under the Loss Function L2

Under the loss function L2, the average risk is

R2(α, Σ̂,Σ) :=
1

G

G∑
g=1

EL2(Σ̂g,Σg) = α2A1 + 2αA2 + A3,

where

A1 =
1

G

G∑
g=1

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

)2
, (2.8)

A2 =
1

G

G∑
g=1

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

(
Σ̂poo1Σ

−1
g − I

))
, (2.9)

A3 =
1

G

G∑
g=1

Etr
(
Σ̂poo1Σ

−1
g − I

)2
. (2.10)

Theorem 5. R2(α, Σ̂,Σ) is a strictly convex function of α on [0, 1] with the unique

minimum point at

α∗
2 = −A2

A1

.

Theorem 6. For any fixed G, p, as n→ ∞, we have

(i) α∗
2 → 1 when Σg are not all the same.

(ii) R2(α, Σ̂,Σ) tends to a constant function of α when Σg = Σg′ for any g = g′.

To estimate the optimal shrinkage parameter α∗
2, we rewrite A1 and A2 as

A1 =
1

G

G∑
g=1

tr
((

Σg − Σ̄
)
Σ−1

g

)2
+

(G− 1)2(p2 + p)

nG2

+
1

nG3

G∑
g=1

∑
g′ ̸=g

(
tr((Σg′Σ

−1
g )2) + (tr(Σg′Σ

−1
g ))2

)
, (2.11)

A2 = −A1 +
(G− 1)(p2 + p)

nG
, (2.12)
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where Σ̄ = 1
G

∑G
g=1Σg.

We go to estimate A1. First, we must find a good estimator of

A :=
1

G

G∑
g=1

tr
((

Σg − Σ̄
)
Σ−1

g

)2
. (2.13)

As follows, assume that n > p+ 3. For any fixed constant matrix Σ0, we have

E[tr(I − rΣ0S
−1
g )2 − r(tr(Σ0S

−1
g )2 + (tr(Σ0S

−1
g ))2)] = tr

(
(Σg − Σ0)Σ

−1
g

)2
, (2.14)

where r = n− p− 1. Thus we can use

tr(I − rΣ0S
−1
g )2 − r(tr(Σ0S

−1
g )2 + (tr(Σ0S

−1
g ))2)

to estimate tr((Σg−Σ0)Σ
−1
g )2 for fixed Σ0. By using Σ̂poo1 to estimate Σ̄ and noting

that A > 0, we can define an estimator of A in (2.13) as

Â = max
{
0,

1

G

G∑
g=1

(
tr
(
I − rΣ̂poo1S

−1
g

)2
− r
(
tr(Σ̂poo1S

−1
g )2 + (tr(Σ̂poo1S

−1
g ))2

))}
.

Then we can estimate A1, A2 by

Â1 = Â+
(G− 1)2(p2 + p)

nG2
+

1

nG3

G∑
g=1

∑
g′ ̸=g

(
tr((Sg′S

−1
g )2) + (tr(Sg′S

−1
g ))2

)
,

Â2 = −Â1 +
(G− 1)(p2 + p)

nG
. (2.15)

By using the similar method as that in the proof of Theorem 5, we have 0 ≤ −Â2 ≤

Â1. Thus we can estimate the optimal shrinkage estimators by

α̂∗
2 = −Â2

Â1

.

Theorem 7. For any fixed G, p, as n → ∞, we have α̂∗
2 → 1 a.s. when Σg are not

all the same.

Theorem 8. For any fixed n and p with n > p + 3, assume that Σg
i.i.d.∼ µ, where

µ is a probability measure supported on H+ := {Ap×p : A > 0} and E∥S1∥2 <

∞, E∥S−1
1 ∥2 <∞. Then α̂∗

2 − α∗
2 → 0 a.s. as G→ ∞.

The above two theorems show the asymptotic results of the estimated optimal

shrinkage parameters under the loss function L2.
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2.4 Simulation Studies

2.4.1 Simulation Design

In this section we conduct simulations to investigate the performance of the proposed

optimal shrinkage covariance matrices estimators. The block diagonal covariance

matrices are considered in our simulation studies. This type of structure has been

considered in Guo et al. (2007), Pang et al. (2009), Tong, Chen and Zhao (2012) and

so forth. Specifically, we consider the following block diagonal covariance matrices

Σg = D1/2
g RD1/2

g ,

where

R =



Σρ 0 · · · · · · 0

0 Σ−ρ 0
. . .

...
... 0 Σρ 0

...
...

. . . 0 Σ−ρ
. . .

0 · · · · · · . . . . . .


p×p

,

Σρ is a q × q (q ≤ p) matrix, whose structure is Σρ = (σij)q×q, where σij = ρ|i−j| for

1 ≤ i, j ≤ q, and Dg = (σ2
1g, . . . , σ

2
pg) where σ

2
jg ∼ (1/5)χ2

5.

We generate the data from the multivariate normal distribution Np(0,Σg). In our

simulation studies, we compare our proposed approach with the sample covariance

matrix under the setting of p < n. We investigate how the sample size and the number

of classes affect the performance of our method, respectively. For the correlations in

the block diagonal covariance matrices, we set ρ = 0.2, 0.4, 0.6 and 0.8, respectively.

To compare different methods, we calculate the average matrix losses under L1 and

L2 loss functions based on 1,000 simulations.

2.4.2 Simulation Results

First, we investigate the performance of our method under L1 loss function. We set

(p, q) = (20, 10) for n = 22, 30, 50 and 100. Figure 2.1 exhibit the average matrix
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Figure 2.1: Average matrix losses of our method (solid lines) and Sn (dashed lines)

against the sample size for L1, (p, q) = (20, 10) and G = 2.
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Figure 2.2: Average matrix losses of our method (solid lines) and Sn (dashed lines)

against the sample size for L2, (p, q) = (10, 10) and G = 4.
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losses of our method and the sample covariance matrix for G = 2. We observe that

with an increasing number of observations, the average matrix losses for both methods

are decreasing. When the sample size is large, both methods behave very similarly.

However, when the sample size is close to the dimension, our proposed method shows

its superiority over the sample covariance matrix.

Figure 2.2 investigate the performance of our method under L2 loss function for

G = 4. We set (p, q) = (10, 10) for n = 14, 17, 20 and 30. From Figure (2.4.1) we also

observe the decreasing average matrix losses with the increasing number of samples.

Both approaches have similar performances under the case of large sample size and

our approach performs better than the sample covariance matrix when the sample

size is close to the dimension.

Besides, we consider the case of multiple class. Figure 2.3 shows the average

matrix losses for an increasing number of classes. The left panel in Figure (2.4.2)

exhibits the results of L1 loss function and the right panel exhibits the results of L2.

Obviously, when the sample size is close to the dimension, an increasing number of

classes will lead to a decreasing average matrix losses. However, the number of classes

have little impact on the performance of our method under the case of large sample

size. By simulations, we can also observe that once the sample size is much larger

than the dimension, the estimated optimal shrinkage parameters are close to 1.

2.5 Real Data Analysis

In this section, we apply our proposed optimal shrinkage covariance matrices es-

timation to QDA. We use our method to estimate the covariance matrices in the

discriminant scores and investigate the performance of classification. For real data

set, we take advantage of Myeloma data (Zhan et al.; 2007). This data set includes

two therapy groups who have multiple myeloma: Therapy 2 (TH2) with 351 samples

and Therapy 3 (TH3) with 208 samples. The total number of genes is 54,675. This

data set has been analyzed by Pang et al. (2009), and it can be downloaded from

GEO Datasets using series number GSE2658.
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Figure 2.3: Average matrix losses of our method against the number of classes for

ρ = 0.8
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Figure 2.4: Mean misclassification rates of our method (solid lines) and Sn (dashed

lines) against the training set size using Myeloma data.
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In real data analysis, we compare our methods with the sample covariance matrix

by computing the misclassification rate. First, we select top 20 and 50 genes using the

gene screening method in Dudoit et al. (2002). They select top genes by ordering the

ratio of between-class sums of squares to with-class. To compute the misclassification

rate, we divide all samples into two sets randomly: the training set and the test set.

For p = 20, we set the sample sizes in the training set are 22, 30, 40 and 50 for each

groups, respectively. For p = 50, we set the sample sizes in the training set are 55,

60, 80 and 100 for each groups, respectively. All remaining samples are put into the

test set. We compute the optimal shrinkage parameter under Stein Loss and repeat

the whole procedure 1,000 times to compute the mean misclassification rates.

Figure 2.4 shows the mean misclassification rates and exhibits the superiority of

our method in classification. From the figure, we can observe that the mean misclas-

sification rates of our method are lower than the sample covariance matrix. When the

sample size is large, our method performs similarly to the sample covariance matrix.

However, when the sample size is close to the number of genes, the performance of

our method is better.

2.6 Proofs

For any p× p matrix A, when the eigenvalues of A are all reals, we denote them as

λ1(A) ≥ · · · ≥ λp(A).

It is well known that if A is a symmetric matrix, then all its eigenvalues are reals,

and further, we have λp(A) > 0 for any A > 0. By the Weilandt-Hoffman inequality

(see, for instance, (1.67) in Tao (2012), page 55),

p∑
i=1

|λi(A+B)− λi(A)|2 ≤ ∥B∥2 (2.16)

holds for any symmetric matrices A and B.

Before the proof of theorems, we show some result on matrix calculation.
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Lemma 1. For any p× p matrices A and B, we have

|tr(A)| ≤ √
p ∥A∥, ∥AB∥2 ≤ ∥A∥2∥B∥2.

Proof. By Cauchy-Schwarz inequality,

|tr(A)| ≤
p∑

i=1

|aii| ≤

√√√√p

p∑
i=1

a2ii ≤
√
p ∥A∥

and

∥AB∥2 =

p∑
i,j=1

(AB)2ij =

p∑
i,j=1

( p∑
k=1

AikBkj

)2
≤

p∑
i,j=1

( p∑
k=1

A2
ik

p∑
l=1

B2
lj

)
=

p∑
i=1

p∑
k=1

A2
ik

p∑
j=1

p∑
l=1

B2
lj = ∥A∥2∥B∥2.

The proof of Lemma 1 is complete.

Lemma 2. Let A > 0, B > 0, then

tr((A−B)(B−1 − A−1)) ≥ 0, (2.17)

where the equality holds true if and only if A = B.

Proof. By Exercise 12.28 in Abadir and Magnus (2005), page 338, we get (2.17), and

the equality holds true if and only if A1/2B−1A1/2 + A−1/2BA−1/2 = 2I.

Since C := A1/2B−1A1/2 > 0, there exists an orthogonal matrix P such that

C = P ′diag(λ1(C), · · · , λp(C))P . If C + C−1 = 2I, then

2I = P ′diag(λ1(C) + 1/λ1(C), · · · , λp(C) + 1/λp(C))P,

which implies λ1(C) = · · · = λp(C) = 1 and then A = B. Conversely, if A = B, then

it is clear that C + C−1 = 2I.

Hence A1/2B−1A1/2 + A−1/2BA−1/2 = 2I is equivalent to A = B.

Lemma 3. Assume that αA+B > 0 for any α ∈ [0, 1] and define

f(α) = log det(αA+B),

then for any α ∈ [0, 1], we have f ′′(α) < 0 and

f ′(α) = tr(A(αA+B)−1). (2.18)
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Proof. Let µ1, · · · , µp be the eigenvalues ofAB
−1. By noting thatAB−1 = AB−1/2B−1/2

has the same eigenvalues as B−1/2AB−1/2, and B−1/2AB−1/2 is a symmetrical ma-

trix, we know that µ1, · · · , µp are positive reals and I +B
−1/2AB−1/2 has eigenvalues

{1+µ1, · · · , 1+µp}. Since I+B−1/2AB−1/2 > 0, we have 1+µi > 0, i = 1, 2, · · · , p.

Let

g(α) := log det((αA+B)B−1) = log det(I + αAB−1) =

p∑
i=1

log(1 + αµi),

then

f ′(α) = g′(α) =

p∑
i=1

µi

1 + αµi

, f ′′(α) = g′′(α) = −
p∑

i=1

µ2
i

(1 + αµi)2
< 0. (2.19)

Next, we’ll prove (2.18). For α = 0, we have

f ′(0) =

p∑
i=1

µi = tr(B−1/2AB−1/2) = tr(AB−1).

If α ̸= 0, then

f ′(α) =

p∑
i=1

µi

1 + αµi

=
p

α
−

p∑
i=1

1

α(1 + αµi)

=
1

α
tr(I − (I + αB−1/2AB−1/2)−1)

=
1

α
tr(I −B1/2(B + αA)−1B1/2)

=
1

α
tr(I −B(αA+B)−1) = tr(A(αA+B)−1).

Hence (2.18) holds and proof of Lemma 7 is complete.

Lemma 4. For any A,B,C > 0 and 0 ≤ α ≤ 1, we have

(A−B)(αA+ (1− α)B)−1 − (A− C)(αA+ (1− α)C))−1

= A(αA+ (1− α)B)−1(C −B)(αA+ (1− α)C))−1. (2.20)

Proof. For α = 1, (2.20) is clear. When α ̸= 1, by noting that

(A−B)(αA+ (1− α)B)−1

=
( 1

1− α
A− 1

1− α

(
αA+ (1− α)B

))
(αA+ (1− α)B)−1

=
1

1− α
A(αA+ (1− α)B)−1 − 1

1− α
I,
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and, similarly,

(A− C)(αA+ (1− α)C)−1 =
1

1− α
A(αA+ (1− α)C)−1 − 1

1− α
I,

we have

(A−B)(αA+ (1− α)B)−1 − (A− C)(αA+ (1− α)C))−1

=
1

1− α
A(αA+ (1− α)B)−1 − 1

1− α
A(αA+ (1− α)C)−1

=
1

1− α
A(αA+ (1− α)B)−1(αA+ (1− α)C)(αA+ (1− α)C)−1

− 1

1− α
A(αA+ (1− α)B)−1(αA+ (1− α)B)(αA+ (1− α)C)−1

= A(αA+ (1− α)B)−1(C −B)(αA+ (1− αC))−1.

The proof is complete.

Lemma 5. For any A > 0, B > 0, we have

sup
0≤α≤1

∥(αA+ (1− α)B)−1∥ ≤ √
p ∥A−1∥(1 + ∥A∥ ∥B−1∥). (2.21)

Proof. By the minimax formulae for eigenvalues (see, for instance, Theorem 1.3.2 in

Tao (2012), page 49)

∥(αA+ (1− α)B)−1∥2 = tr((αA+ (1− α)B)−2)

= tr(A−1/2WA−1WA−1/2)

≤ pmax
|v|=1

vTA−1/2WA−1WA−1/2v

≤ pmax
|v|=1

vTA−1vmax
|v|=1

vTA−1/2W 2A−1/2v

vTA−1v
max
|v|=1

vTA−1/2WA−1WA−1/2v

vTA−1/2W 2A−1/2v

≤ pmax
|v|=1

vTA−1vmax
|v|=1

vTW 2vmax
|v|=1

vTA−1v

= p(λ1(A
−1))2λ1((αI + (1− α)A−1/2BA−1/2)−2)

= p(λ1(A
−1))2(α + (1− α)λp(A

−1/2BA−1/2))−2, (2.22)

where W = W (α,A,B) := (αI + (1 − α)A−1/2BA−1/2)−1 > 0, v = (v1, · · · , vn) ∈

Rp, |v|2 = v21 + · · · + v2n and vT means the transposition of the column vector v. By

using the similar method as that in (2.22), we can get that

λp(A
−1/2BA−1/2) = min

|v|=1
vTA−1/2BA−1/2v ≥ min

|v|=1
vTBvmin

|v|=1
vTA−1v = λp(B)λp(A

−1).
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Hence

sup
0≤a≤1

∥(αA+ (1− α)B)−1∥ ≤ √
pλ1(A

−1) sup
0≤a≤1

(α + (1− α)λp(B)λp(A
−1))−1

=
√
pλ1(A

−1)max
(
1,

1

λp(B)λp(A−1)

)
≤ √

pλ1(A
−1)(1 + λ1(A)λ1(B

−1))

≤ √
p ∥A−1∥(1 + ∥A∥ ∥B−1∥),

where we have used λ1(A) ≤ ∥A∥ for any A > 0 since (2.16). The proof is complete.

2.6.1 Proof of Theorem 1

Proof. Now for any g ∈ {1, 2, · · · , G}, applying Lemma 7 with A = Sg

n
− Σ̂poo1, B =

Σ̂poo1, we have that for α ∈ [0, 1],

(
log det

((
α
Sg

n
+ (1− α)Σ̂poo1

)
Σ−1

g

))′′
α
=
(
log det

(
α
Sg

n
+ (1− α)Σ̂poo1

))′′
α
< 0,

and (
log det

((
α
Sg

n
+ (1− α)Σ̂poo1

)
Σ−1

g

))′
α

=
(
log det

(
α
Sg

n
+ (1− α)Σ̂poo1

))′
α

= tr
((Sg

n
− Σ̂poo1

)(
α
Sg

n
+ (1− α)Σ̂poo1

)−1)
.

Hence

R′′
1(α, Σ̂,Σ) = − 1

G

G∑
g=1

E
(
log det

((
α
Sg

n
+ (1− α)Σ̂poo1

)
Σ−1

g

))′′
α
> 0,

which implies that R1(α, Σ̂,Σ) is a strictly convex function on [0, 1], and

R′
1(α, Σ̂,Σ) = p− tr

[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
− 1

G

G∑
g=1

trE
((Sg

n
− Σ̂poo1

)(
α
Sg

n
+ (1− α)Σ̂poo1

)−1)
.
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Specially,

R′
1(α, Σ̂,Σ)|α=0 = p− tr

[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
, (2.23)

and

R′
1(α, Σ̂,Σ)|α=1 = trE

[( 1

G

G∑
g=1

Sg

)( 1

G

G∑
g=1

S−1
g

)]
(2.24)

−tr
[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
.

For any g, g′ ∈ {1, 2, · · · , G}, by Lemma 2, we get that

tr(Σg − Σg′)(Σ
−1
g′ − Σ−1

g ) ≥ 0,

which means

tr(ΣgΣ
−1
g′ + Σg′Σ

−1
g ) ≥ 2p.

Thus

tr
[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
≥ p. (2.25)

This together with (2.23) impliesR′
1(α, Σ̂,Σ)|α=0 ≤ 0. And by Lemma 2, R′

1(α, Σ̂,Σ)|α=0 =

0 if and only if Σg = Σg′ for all g, g
′ ∈ {1, 2, · · · , G}.

For any g ∈ {1, 2, · · · , G}, since Sg ∼ Wp(Σg, n), we know that ESg = nΣg, S
−1
g is

an inverse Wishart random matrix with S−1
g ∼ W−1

p (Σ−1
g , n) and ES−1

g = 1
n−p−1

Σ−1
g .

Hence, for any g, g′ ∈ {1, 2, · · · , G} with g ̸= g′,

tr(ESg′S
−1
g − Σg′Σ

−1
g ) = tr(ESg′ES

−1
g − Σg′Σ

−1
g ) =

p+ 1

n− p− 1
tr(Σg′Σ

−1
g )

=
p+ 1

n− p− 1
tr(Σ−1/2

g Σg′Σ
−1/2
g ) > 0.

This, together with (2.25) and (2.25), implies (b).

2.6.2 Proof of Theorem 2
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Proof. For any g = 1, 2, · · · , G, we have that,

Sg

n

L1

−→ Σg,

which implies that, for any g ̸= g′,(Sg

n
− Σg

)(
nS−1

g′ − Σ−1
g′

)
L1

−→ 0.

Thus

R′
1(α, Σ̂,Σ)|α=1 = trE

[( 1

G

G∑
g=1

Sg

)( 1

G

G∑
g=1

S−1
g

)]
− tr

[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
=

1

G2

∑
g ̸=g′

trE
[(Sg

n
− Σg

)(
nS−1

g′ − Σ−1
g′

)]
→ 0. (2.26)

Now (ii) follows by the fact that R1(α, Σ̂,Σ) is a strictly convex function of α on [0, 1]

and

R′
1(α, Σ̂,Σ)|α=0 = p− tr

[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
= 0 (2.27)

when Σg = Σg′ for any g = g′.

If Σg are not all the same, then by using SLLN and the dominated convergence

theorem, we have that, for any 1 ≤ α ≤ 1,

R′′
1(α, Σ̂,Σ) =

1

G

G∑
g=1

p∑
i=1

E

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
(
1 + αλi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
≥ 1

G

G∑
g=1

p∑
i=1

E

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
2 + 2

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
→ 1

G

G∑
g=1

p∑
i=1

(
λi

(
Σ̄−1/2(Σg − Σ̄)Σ̄−1/2

))2
2 + 2

(
λi

(
Σ̄−1/2(Σg − Σ̄)Σ̄−1/2

))2 > 0.

Now (i) follows by (2.26) and (2.28)

2.6.3 Proof of Theorem 3
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Proof. By SLLN, we have that, for any g = 1, 2, · · · , G,

Sg

n
→ Σg a.s.

Thus

tr
[( 1

G

G∑
g=1

Sg

)( 1

G

G∑
g=1

S−1
g

)]
→ tr

[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
a.s.,

and then

R̂′
1(α, Σ̂,Σ)|α=1 =

p+ 1

n
tr
[( 1

G

G∑
g=1

Sg

)( 1

G

G∑
g=1

S−1
g

)]
→ 0 a.s.

By applying (2.19) and SLLN, and noting that λi(·) is a continuous function for any

i = 1, 2, · · · , p, we get that

R̂′′
1(α, Σ̂,Σ) =

1

G

G∑
g=1

p∑
i=1

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
(
1 + αλi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
→ 1

G

G∑
g=1

p∑
i=1

(
λi

(
Σ̄−1/2(Σg − Σ̄)Σ̄−1/2

))2
(
1 + αλi

(
Σ̄−1/2(Σg − Σ̄)Σ̄−1/2

))2 ≥ 0,

where Σ̄ = 1
G

∑G
g=1Σg, and the equality holds if and only if Σg = Σg′ for any g = g′.

Hence α̂∗
1 → 1 when Σg are not all the same.

2.6.4 Proof of Theorem 4

Proof. By (2.6) and (2.7), we have

sup
0≤α≤1

|R′
1(α, Σ̂,Σ)− R̂′

1(α, Σ̂,Σ)| ≤
5∑

i=1

Ji,
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where

J1 =
∣∣∣tr[( 1

G

G∑
g=1

Sg

n

)( 1

G

G∑
g=1

(n− p− 1)S−1
g

)]
− tr(EΣ1EΣ

−1
1 )
∣∣∣

J2 =
∣∣∣tr[( 1

G

G∑
g=1

Σg

)( 1

G

G∑
g=1

Σ−1
g

)]
− tr(EΣ1EΣ

−1
1 )
∣∣∣

J3 =
1

G

G∑
g=1

sup
α∈[0,1]

∣∣∣tr((Sg

n
− Σ̂poo1

)(
α
Sg

n
+ (1− α)Σ̂poo1

)−1)
− tr

((Sg

n
− EΣ1

)(
α
Sg

n
+ (1− α)EΣ1

)−1)∣∣∣
J4 = sup

α∈[0,1]

∣∣∣ 1
G

G∑
g=1

tr
((Sg

n
− EΣ1

)(
α
Sg

n
+ (1− α)EΣ1

)−1)
− Etr

((S1

n
− EΣ1

)(
α
S1

n
+ (1− α)EΣ1

)−1)∣∣∣,
J5 = sup

α∈[0,1]

∣∣∣trE((S1

n
− Σ̂poo1

)(
α
S1

n
+ (1− α)Σ̂poo1

)−1)
− trE

((S1

n
− EΣ1

)(
α
S1

n
+ (1− α)EΣ1

)−1)∣∣∣.
In the following, we’ll prove Ji → 0 a.s. for i = 1, · · · , 5.

Since

ESg = E(E(Sg|Σg)) = nEΣ1

and

(n− p+ 1)ES−1
g = (n− p+ 1)E(E(S−1

g |Σg)) = EΣ−1
1 > 0,

by the classical strong law of large number (SLLN), we have

Σ̂pool =
1

G

G∑
g=1

Sg

n
→ EΣ1 a.s.,

1

G

G∑
g=1

(n− p− 1)S−1
g → EΣ−1

1 a.s.,

which, together with the fact that tr(·) is a continuous function (by Lemma 1), implies

that

J1 → 0 a.s.

Similarly,

J2 → 0 a.s.
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By applying Lemma 4, we have(Sg

n
− Σ̂poo1

)(
α
Sg

n
+ (1− α)Σ̂poo1

)−1

−
(Sg

n
− EΣ1

)(
α
Sg

n
+ (1− α)EΣ1

)−1

=
Sg

n

(
α
Sg

n
+ (1− α)Σ̂poo1

)−1(
EΣ1 − Σ̂poo1

)(
α
Sg

n
+ (1− α)EΣ1

)−1

. (2.28)

Then, by Lemmas 1 and 5,

J3 ≤ √
p
1

G

G∑
g=1

∥∥∥Sg

n

∥∥∥ sup
a∈[0,1]

∥∥∥(αSg

n
+ (1− α)Σ̂poo1

)−1∥∥∥
× sup

a∈[0,1]

∥∥∥(αSg

n
+ (1− α)EΣ1

)−1∥∥∥∥∥∥EΣ1 − Σ̂poo1

∥∥∥
≤ (n

√
p)3
∥∥∥EΣ1 − Σ̂poo1

∥∥∥× 1

G

G∑
g=1

T (Sg, Σ̂poo1), (2.29)

where

T (Sg, Σ̂poo1)

:= ∥Sg∥ ∥S−1
g ∥2

(
1 + ∥Sg∥ ∥(Σ̂poo1)

−1∥
)(

1 + ∥Sg∥ ∥(EΣ1)
−1∥
)

= ∥(Σ̂poo1)
−1∥

(
∥Sg∥2 ∥S−1

g ∥2
(
1 + ∥Sg∥ ∥(EΣ1)

−1∥
))

+ ∥Sg∥ ∥S−1
g ∥2

(
1 + ∥Sg∥ ∥(EΣ1)

−1∥
)
.

By noting that ∥(EΣ1)
−1∥ is a positive constant and recalling thatE∥S1∥7 <∞, E∥S−1

1 ∥7 <

∞, it is easy to get that

E
[
∥S1∥2 ∥S−1

1 ∥2
(
1 + ∥S1∥ ∥(EΣ1)

−1∥
)]

<∞,

E
[
∥S1∥ ∥S−1

1 ∥2
(
1 + ∥S1∥ ∥(EΣ1)

−1∥
)]

<∞.

Hence by the SLLN, we have∥∥∥EΣ1 − Σ̂poo1

∥∥∥→ 0 a.s., ∥(Σ̂poo1)
−1∥ → ∥(EΣ1)

−1∥ a.s.

and

1

G

G∑
g=1

T (Sg, Σ̂poo1) −→
(
∥(EΣ1)

−1∥
)
E
[
∥S1∥2 ∥S−1

1 ∥2
(
1 + ∥S1∥ ∥(EΣ1)

−1∥
)]

+ E
[
∥S1∥∥S−1

1 ∥2
(
1 + ∥S1∥∥(EΣ1)

−1∥
)]

<∞ a.s.
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Thus

J3 → 0 a.s.

By (2.28), we have

E
(S1

n
− Σ̂poo1

)(
α
S1

n
+ (1− α)Σ̂poo1

)−1

− E
(S1

n
− EΣ1

)(
α
S1

n
+ (1− α)EΣ1

)−1

= E
[S1

n

(
α
S1

n
+ (1− α)Σ̂poo1

)−1(
EΣ1 − Σ̂poo1

)(
α
S1

n
+ (1− α)EΣ1

)−1]
,

and, similarly to (2.29), we have

J5 ≤ (n
√
p)3E

(
T (S1, Σ̂poo1) ∥EΣ1 − Σ̂poo1∥

)
≤ (n

√
p)3
(
1 + ∥(EΣ1)

−1∥
)2
(J51 + J52).

where

J51 = E
[
∥S1∥ ∥S−1

1 ∥2
(
1 + ∥S1∥

)2
∥EΣ1 − Σ̂poo1∥

]
,

J52 = E
[
∥S1∥2 ∥S−1

1 ∥2
(
1 + ∥S1∥

)
∥EΣ1 − Σ̂poo1∥ ∥(Σ̂poo1)

−1∥
]
.

By Hölder’s inequality, we have

J52 ≤
(
E
(
∥S1∥2(1 + ∥S1∥)

)7/3)3/7
(E∥S−1

1 ∥7)2/7

× (E∥EΣ1 − Σ̂poo1∥
7)1/7 (E∥(Σ̂poo1)

−1∥7)1/7.

Clearly, by the assumption E∥S1∥7 <∞, we have

E
(
∥S1∥2(1 + ∥S1∥)

)7/3
<∞,

and, by the Lp convergence theorem,

E∥EΣ1 − Σ̂poo1∥
7 = E

∥∥∥ 1
G

G∑
g=1

(Sg

n
− ESg

n

)∥∥∥7 → 0.

Define a function f : H+ → R with

f(A) = ∥A−1∥2 = tr(A−2) =

p∑
i=1

1

(λi(A))2
, A > 0.
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Since x 7→ 1/x2 is a convex function on (0,∞), by Klein’s lemma (See, for instance,

Guionnet (2009), page 78), f is a convex function on H+. Thus

∥(Σ̂poo1)
−1∥2 =

∥∥∥( 1

G

G∑
g=1

Sg

n

)−1∥∥∥2 ≤ 1

G

G∑
g=1

∥∥∥(Sg

n

)−1∥∥∥2.
Then, by Jensen’s inequality,

E∥(Σ̂poo1)
−1∥7 ≤ E

( 1

G

G∑
g=1

∥nS−1
g ∥2

)7/2
≤ E

( 1

G

G∑
g=1

∥nS−1
g ∥7

)
= E∥nS−1

1 ∥7 <∞.

Combing the above facts, we get that J52 → 0. Similarly, J51 → 0. Thus

J5 → 0.

Note that by Lemmas 1 and 5, we have that for any 0 ≤ α ≤ 1,∣∣∣tr((S1

n
− EΣ1

)(
α
S1

n
+ (1− α)EΣ1

)−1)∣∣∣
≤ √

p
∥∥∥S1

n
− EΣ1

∥∥∥ sup
0≤α≤1

∥∥∥(αS1

n
+ (1− α)EΣ1

)−1∥∥∥
≤ np

(
∥S1∥+ ∥EΣ1∥

)
∥S−1

1 ∥
(
1 + ∥S1∥ ∥(EΣ1)

−1∥
)
.

Since E
[(

∥S1∥+ ∥EΣ1∥
)
∥S−1

1 ∥
(
1+ ∥S1∥ ∥(EΣ1)

−1∥
)]

<∞, by applying a uniform

SLLN (see Theorem 16(a) in Ferguson (1996)), we have

J4 → 0 a.s.

Now we get that

sup
0≤α≤1

|R′
1(α, Σ̂,Σ)− R̂′

1(α, Σ̂,Σ)| ≤
5∑

i=1

Ji → 0 a.s.

As follows, we’ll show that α̂∗
1 − α∗

1 → 0 a.s. Since

R′
1(α̂

∗
1, Σ̂,Σ)− R̂′

1(α̂
∗
1, Σ̂,Σ) ≥ R′

1(α
∗
1, Σ̂,Σ)− R̂′

1(α̂
∗
1, Σ̂,Σ) ≥ R′

1(α
∗
1, Σ̂,Σ)− R̂′

1(α
∗
1, Σ̂,Σ),

we have

|R′
1(α

∗, Σ̂,Σ)− R̂′
1(α̂

∗
1, Σ̂,Σ)| ≤ sup

0≤α≤1
|R′

1(α, Σ̂,Σ)− R̂′
1(α, Σ̂,Σ)|.
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Hence

|R̂′
1(α

∗
1, Σ̂,Σ)− R̂′

1(α̂
∗
1, Σ̂,Σ)|

≤ |R′
1(α

∗
1, Σ̂,Σ)− R̂′

1(α
∗
1, Σ̂,Σ)|+ |R′

1(α
∗
1, Σ̂,Σ)− R̂′

1(α̂
∗
1, Σ̂,Σ)|

≤ 2 sup
0≤α≤1

|R′
1(α, Σ̂,Σ)− R̂′

1(α, Σ̂,Σ)| → 0 a.s..

By the mean value theorem,

|α∗
1 − α̂∗

1| ≤ |R̂′
1(α

∗
1, Σ̂,Σ)− R̂′

1(α̂
∗
1, Σ̂,Σ)|/ inf

0≤α≤1
R̂′′

1(α, Σ̂,Σ). (2.30)

Now, we’ll estimate inf0≤α≤1 R̂
′′
1(α, Σ̂,Σ). By applying (2.19) and using the similar

method as that in (2.22), we get that

inf
0≤α≤1

R̂′′
1(α, Σ̂,Σ)

= inf
0≤α≤1

1

G

G∑
g=1

p∑
i=1

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
(
1 + αλi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
≥ 1

G

G∑
g=1

p∑
i=1

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
2 + 2

(
λi

(
Σ̂

−1/2

poo1

(
Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

))2
≥ 1

4

1

G

G∑
g=1

min
{
1, λp

(
Σ̂

−1/2

poo1

(Sg

n
− Σ̂poo1

)
Σ̂−1

poo1

(Sg

n
− Σ̂poo1

)
Σ̂

−1/2

poo1

)}
≥ 1

4

1

G

G∑
g=1

min
{
1, λp

((Sg

n
− Σ̂poo1

)2)(
λp

(
Σ̂−1

poo1

))2}
≥ 1

4
min

{
1,
(
λp

(
Σ̂−1

poo1

))2} 1

G

G∑
g=1

min
{
1,
(
λp

(
Σ̂−1

poo1

))2}
.

By Lemma 1,

1

G

G∑
g=1

min
{
1, λp

((Sg

n
− Σ̂poo1

)2)}
≥ 1

G

G∑
g=1

min
{
1, λp

((Sg

n
− EΣ1

)2)}
− 1

G

G∑
g=1

∥∥∥(Sg

n
− Σ̂poo1

)2
−
(Sg

n
− EΣ1

)2∥∥∥.
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Note that

(A+B)2 − (A+ C)2 = (A+B)2 − (A+B)(A+ C) + (A+B)(A+ C)− (A+ C)2

= (A+B)(B − C) + (B − C)(A+ C)

= (A+ C)(B − C) + (B − C)2 + (B − C)(A+ C)

holds for any A,B,C > 0. This, together with Lemma 1, SLLN and the fact that

E
∥∥∥S1

n
− EΣ1

∥∥∥ ≤ (1/n)E∥S1∥+ E∥EΣ1∥ <∞,

yields that

1

G

G∑
g=1

∥∥∥(Sg

n
− Σ̂poo1

)2
−
(Sg

n
− EΣ1

)2∥∥∥
≤
∥∥∥EΣ1 − Σ̂poo1

∥∥∥2 + 2

G

G∑
g=1

∥∥∥EΣ1 − Σ̂poo1

∥∥∥∥∥∥Sg

n
− EΣ1

∥∥∥
→ 0 a.s.

Thus, by noting that λp(·) is a continuous function (since (2.16)) and applying

SLLN,

lim inf
G→∞

inf
0≤α≤1

R̂′′
1(α, Σ̂,Σ)

≥ 1

4
min{1, (λp((EΣ1)

−1))2}Emin
{
1, λp

((S1

n
− EΣ1

)2)}
> 0 a.s.

Now, by (2.30), we get α̂∗
1 − α∗

1 → 0 a.s. .

2.6.5 Proof of Theorem 5

Proof. It is sufficient to show that A1 > 0 and −A1 ≤ A2 ≤ 0. Define

Vg := Σ−1/2
g

(Sg

n
− Σ̂poo1

)
Σ−1

g

(Sg

n
− Σ̂poo1

)
Σ−1/2

g .

Since Vg ≥ 0, we have

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

)2
= Etr(Vg) ≥ 0,
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and the equality holds if and only if Vg = 0 a.s. Note that Vg = 0 a.s. implies

Sg = Σ̂poo1 a.s., which is impossible. Hence Etr
((

Sg

n
− Σ̂poo1

)
Σ−1

g

)2
> 0. Then

A1 > 0.

It follows from (2.12) that −A1 ≤ A2. By Lemma 2, we know tr(AB−1+BA−1) ≥

2p holds for any A > 0, B > 0. Thus, for any g ̸= g′,

tr((Σg′Σ
−1
g )2) + tr((ΣgΣ

−1
g′ )

2) = tr((Σg′Σ
−1
g )2) + tr(((Σg′Σ

−1
g )2)−1) ≥ 2p,

(tr(Σg′Σ
−1
g ))2 + (tr(ΣgΣ

−1
g′ ))

2 ≥ 1

2
(tr(Σg′Σ

−1
g ) + tr(ΣgΣ

−1
g′ ))

2 ≥ 2p2.

Then, by (2.11) and (2.12),

−A2 ≥ (G− 1)2(p2 + p)

nG2
− (G− 1)(p2 + p)

nG

+
1

nG3

G∑
g=1

∑
g′ ̸=g

(
tr((Σg′Σ

−1
g )2) + (tr(Σg′Σ

−1
g ))2

)
≥ (G− 1)2(p2 + p)

nG2
− (G− 1)(p2 + p)

nG
+
G(G− 1)(p2 + p)

nG3
= 0.

The proof of Theorem 5 is complete.

2.6.6 Proof of Theorem 6

Proof. For any g = 1, 2, · · · , G, we have that,

Sg

n

L2

−→ Σg.

Then, as n→ ∞,

A1 → 1

G

G∑
g=1

tr
((

Σg − Σ̄
)
Σ−1

g

(
Σg − Σ̄

)
Σ−1

g

)
=

1

G

G∑
g=1

tr
(
(I − Σ̄Σ−1

g )2
)
,

where Σ̄ = 1
G

∑G
g=1Σg. Similarly, as n→ ∞,

A2 →
1

G

G∑
g=1

tr
(
(Σg − Σ̄)Σ−1

g (Σ̄Σ−1
g − I)

)
= − 1

G

G∑
g=1

tr
(
(I − Σ̄Σ−1

g )2
)
,
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and

A3 →
1

G

G∑
g=1

tr
(
Σ̄Σ−1

g − I
)2
.

When Σg are not all the same, we have lim
n→∞

A1 > 0 and then α∗
2 = −A2/A1 → 1.

When Σg = Σg′ for any g = g′, we have

lim
n→∞

A1 = − lim
n→∞

A2 =
1

G

G∑
g=1

tr
(
(I − Σ̄Σ−1

g )2
)
= 0.

Thus

lim
n→∞

R2(α, Σ̂,Σ) = lim
n→∞

A3 =
1

G

G∑
g=1

tr
(
Σ̄Σ−1

g − I
)2

is a constant function of α.

2.6.7 Proofs of (2.11) and (2.12)

Proof. We have

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

)2
− tr

((
Σg − Σ̄

)
Σ−1

g

)2
= Etr

(
Σ−1/2

g

(Sg

n
− Σ̂poo1

)
Σ−1/2

g

)2
− tr

(
Σ−1/2

g

(
Σg − Σ̄

)
Σ−1/2

g

)2
=

p∑
i,j=1

E
(
Σ−1/2

g

(Sg

n
− Σ̂poo1 − (Σg − Σ̄)

)
Σ−1/2

g

)2
ij
.

Let

Sg,g′ = Σ−1/2
g Sg′Σ

−1/2
g , Σg,g′ = Σ−1/2

g Σg′Σ
−1/2
g , g′ = 1, 2, · · · ,

then Sg,g′ ∼ Wp(Σ
g,g′ , n). By noting that Var(Sg,g′

ij ) = n((Σg,g′

ij )2+Σg,g′

ii Σg,g′

jj ), we have

E
(
Σ−1/2

g

(Sg

n
− Σ̂poo1 − (Σg − Σ̄)

)
Σ−1/2

g

)2
ij

=
1

n2
Var
(G− 1

G
Sg,g
ij − 1

G

∑
g′ ̸=g

Sg,g′

ij

)
=

(G− 1)2

n2G2
Var(Sg,g

ij ) +
1

n2G2

∑
g′ ̸=g

Var
(
Sg,g′

ij

)
=

(G− 1)2

nG2
(δij + 1) +

1

nG2

∑
g′ ̸=g

((Σg,g′

ij )2 + Σg,g′

ii Σg,g′

jj ).
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Thus

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

)2
= tr

((
Σg − Σ̄

)
Σ−1

g

)2
+

(G− 1)2(p2 + p)

nG2

+
1

nG2

∑
g′ ̸=g

(
tr((Σg′Σ

−1
g )2) + (tr(Σg′Σ

−1
g ))2

)
.

Then we get (2.11) from (2.8).

For A2, we have

A2 = −A1 +
1

G

G∑
g=1

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

((Sg

n

)
Σ−1

g − I
))
.

Since ESg = nΣg and Sg, g = 1, 2, · · · are independent, we have

Etr
((Sg

n
− Σ̂poo1

)
Σ−1

g

((Sg

n

)
Σ−1

g − I
))

=
G− 1

nG
Etr
(
SgΣ

−1
g

((Sg

n

)
Σ−1

g − I
))

=
G− 1

n2G
Etr(Sg,g)2 − (G− 1)p

G

=
(G− 1)(p2 + p)

nG
,

where we have used

Etr(Sg,g)2 =

p∑
i,j=1

E(Sg,g
i,j )

2 =

p∑
i,j=1

(Var(Sg,g
i,j ) + n2δij) = (n2 + n)p+ np2.

Hence

A2 = −A1 +
(G− 1)(p2 + p)

nG
,

and we get (2.12).

2.6.8 Proof of (2.14)

Proof. Define

S̃ := (Σ0)
−1/2Sg(Σ0)

−1/2, Σ̃ := (Σ0)
−1/2Σg(Σ0)

−1/2,

then S̃ ∼ Wp(Σ̃, n) and S̃
−1 has an inverse Wishart distribution, i.e. S̃−1 ∼ W−1

p (Σ̃−1, n).

Since (see, for instance, Letac and Massam (2004), page 308)

ES̃−2 =
(n− p− 1)Σ̃−2 + Σ̃−1tr(Σ̃−1)

(n− p)(n− p− 1)(n− p− 3)
,

E(S̃−1tr(S̃−1)) =
2Σ̃−2 + (n− p− 2)Σ̃−1tr(Σ̃−1)

(n− p)(n− p− 1)(n− p− 3)
,
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we have

(n− p− 2)ES̃−2 − E(S̃−1tr(S̃−1)) =
Σ̃−2

n− p− 1
.

Then, by noting that E(S̃−1) = 1
n−p−1

Σ̃−1,

E[tr(I − (n− p− 1)Σ0S
−1
g )2 − (n− p− 1)(tr(Σ0S

−1
g )2 + (tr(Σ0S

−1
g ))2)]

= E[p− 2(n− p− 1)tr(Σ0S
−1
g ) + (n− p− 1)((n− p− 2)tr(Σ0S

−1
g )2 − (tr(Σ0S

−1
g ))2)]

= p− 2(n− p− 1)trE(S̃−1) + (n− p− 1)((n− p− 2)trE(S̃−2)− (trE(S̃−1))2)

= tr
(
(Σg − Σ0)Σ

−1
g

)2
.

where we have used that

tr
(
(Σg − Σ0)Σ

−1
g

)2
= tr(I − Σ̃−1)2 = p− 2tr(Σ̃−1) + tr(Σ̃−2).

So we get (2.14).

2.6.9 Proof of Theorem 7

Proof. For any g = 1, 2, · · · , G, we have that,

Sg

n
→ Σg a.s.

When Σg are not all the same, we have that, as n→ ∞,

tr
(
I − rΣ̂poo1S

−1
g

)2
→ tr

(
(I − Σ̄Σ−1

g )2
)
> 0 a.s.,

r2
(
tr(Σ̂poo1S

−1
g )2 + (tr(Σ̂poo1S

−1
g ))2

)
→ tr(Σ̄Σ−1

g )2 + (tr(Σ̄Σ−1
g )2 a.s.,

tr((Sg′S
−1
g )2) + (tr(Sg′S

−1
g ))2 → tr((Σg′Σ

−1
g )2) + (tr(Σg′Σ

−1
g ))2 a.s.

Thus, as n→ ∞,

Â1 →
1

G

G∑
g=1

tr
(
(I − Σ̄Σ−1

g )2
)
> 0 a.s.,

By (2.15), as n→ ∞,

lim
n→∞

Â2 = − lim
n→∞

Â1 a.s.

Then α̂∗
2 → 1 a.s.
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2.6.10 Proof of Theorem 8

Proof. It is sufficient to prove that, as G→ ∞,

Â→ trE(I − (EΣ1)Σ
−1
1 )2 a.s., (2.31)

1

G

G∑
g=1

tr
((

Σg − Σ̄
)
Σ−1

g

)2
→ trE(I − (EΣ1)Σ

−1
1 )2 a.s., (2.32)

1

G3

G∑
g=1

∑
g′ ̸=g

(
tr((Sg′S

−1
g )2) + (tr(Sg′S

−1
g ))2

)
→ 0 a.s., (2.33)

1

G3

G∑
g=1

∑
g′ ̸=g

(
tr((Σg′Σ

−1
g )2) + (tr(Σg′Σ

−1
g ))2

)
→ 0 a.s. (2.34)

We only prove (2.31) and (2.33), the others’ proofs are similar.

By SLLN and Lemma 1, as G→ ∞, we have

1

G3

G∑
g=1

∑
g′ ̸=g

(
tr((Sg′S

−1
g )2) + (tr(Sg′S

−1
g ))2

)
≤ 2p

G3

G∑
g=1

∑
g′ ̸=g

∥Sg′∥2 ∥S−1
g ∥2

≤ 2p

G

( 1

G

G∑
g=1

∥Sg∥2
)( 1

G

G∑
g=1

∥S−1
g ∥2

)
→ 0 a.s.

Hence we get (2.33).

By (2.14), we have

E
(
tr
(
I − r(EΣ1)S

−1
g

)2
− r
(
tr((EΣ1)S

−1
g )2 + (tr((EΣ1)S

−1
g ))2

)∣∣∣Σg

)
= tr(I − (EΣ1)Σ

−1
g )2.

Thus, by SLLN,

1

G

G∑
g=1

(
tr
(
I − r(EΣ1)S

−1
g

)2
− r
(
tr((EΣ1)S

−1
g )2 + (tr((EΣ1)S

−1
g ))2

))
→ trE(I − (EΣ1)Σ

−1
1 )2 a.s.
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In order to prove (2.31), it is sufficient to prove that

1

G

G∑
g=1

(
tr
(
I − rΣ̂poo1S

−1
g

)2
− tr

(
I − r(EΣ1)S

−1
g

)2)
→ 0 a.s., (2.35)

1

G

G∑
g=1

(
tr(Σ̂poo1S

−1
g )2 − tr((EΣ1)S

−1
g )2

)
→ 0 a.s., (2.36)

1

G

G∑
g=1

(
(tr(Σ̂poo1S

−1
g ))2 − (tr((EΣ1)S

−1
g ))2

)
→ 0 a.s. (2.37)

By noting that tr(A2)− tr(B2) = tr(A−B)(A+B) and applying SLLN and Lemma

1,

∣∣∣ 1
G

G∑
g=1

(
tr
(
I − rΣ̂poo1S

−1
g

)2
− tr

(
I − r(EΣ1)S

−1
g

)2)∣∣∣
≤ r

G

G∑
g=1

∣∣∣tr(((Σ̂poo1 − EΣ1)S
−1
g

)(
2I − r(Σ̂poo1 + EΣ1)S

−1
g

))∣∣∣
≤
r
√
p

G

G∑
g=1

∥∥∥Σ̂poo1 − EΣ1

∥∥∥∥∥∥S−1
g

∥∥∥(2√p+ r
(
∥Σ̂poo1∥+ ∥EΣ1∥

)
∥S−1

g ∥
)

=
∥∥∥Σ̂poo1 − EΣ1

∥∥∥ 2rp
G

G∑
g=1

∥∥∥S−1
g

∥∥∥
+
(
∥Σ̂poo1∥+ ∥EΣ1∥

)∥∥∥Σ̂poo1 − EΣ1

∥∥∥ r2√p
G

G∑
g=1

∥∥∥S−1
g

∥∥∥2 → 0 a.s.

This proves (2.35). And we can similarly get (2.36) and (2.37).

Hence we get (2.31) and the proof of Theorem 8 is complete.
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Chapter 3

Shrinkage-Based Diagonal

Hotelling’s Tests for

High-Dimensional Small Sample

Size Data

3.1 Introduction

DNA microarrays allow us to acquire thousands or even tens of thousands of gene

expression values simultaneously, which introduces novel approaches to genetic re-

search. One important goal of analyzing gene expression microarray data is to detect

differentially expressed genes. Recently, biologists and medical scientists have also

recognized that testing the significance of gene sets or pathway analysis is an equally

important problem (Efron and Tibshirani; 2007; Newton et al.; 2007; Chen and Qin;

2010; Maciejewski; 2014). Specifically, if we want to know whether a certain gene

set, Z, is significantly differentially expressed in two different treatments, A and B,

the testing hypothesis is H0 : µZA = µZB, where µZA and µZB are the mean vectors

of Z in A and B, respectively. In statistics, this is essentially a two-sample multi-

variate testing problem. One classical method used to solve such testing problems

is Hotelling’s T 2 test (Hotelling; 1931), which is a generalization of Student’s t test.
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This method works when the sample size, n, is larger than the data dimension, p.

More generally, in a k-sample experiment, we are interested in whether or not there

exist some differences among the k mean vectors of populations.

In this chapter, we focus on one-sample and two-sample multivariate testing prob-

lems for high-dimensional small sample size data, or equivalently, for “large p small

n” data. In such settings, Hotelling’s T 2 test suffers from a singularity problem in the

covariance matrix estimation and therefore is not valid in this setting. To overcome

the singularity problem, some remedies have been proposed in the literature; see,

for example, the non-exact significance test and the randomization test in Dempster

(1960). These approaches, however, are known to perform poorly in practice due

to their complicated estimation of the degrees of freedom and some related issues

(Bai and Saranadasa; 1996). In recent years, a number of approaches to improve

Hotelling’s T 2 test have emerged for testing high-dimensional data. In essence, these

approaches can be classified into the following three categories, with the main differ-

ence among them how the covariance matrix is handled:

1) In the first category, the covariance matrix is removed from Hotelling’s T 2

statistic to avoid the covariance matrix estimation. This idea was first con-

sidered by Bai and Saranadasa (1996). Specifically, they proposed to use

(X̄1 − X̄2)
T (X̄1 − X̄2) to replace (X̄1 − X̄2)

TS−1(X̄1 − X̄2) in Hotelling’s T 2

statistic, where X̄1 and X̄2 are the sample mean vectors and S is the pooled

sample covariance matrix. They demonstrated that the proposed test has bet-

ter power than Hotelling’s T 2 test under the requirement of p and n being of the

same order. Recently, Zhang and Xu (2009) and Chen and Qin (2010) extended

this method to “large p small n” data. We refer to the methods in this category

as the unscaled Hotelling’s tests.

2) In the second category, a regularization method is applied to the covariance

matrix estimation to resolve the singularity problem. In this direction, Chen

et al. (2011) have made a major contribution. They proposed a regularized

Hotelling’s T 2 test that estimates the covariance matrix by S + λIp, where Ip
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is the identity matrix and λ > 0 is a shrinkage parameter. This test works for

both p < n and p ≥ n cases. Note that a similar method was also proposed

in Shen et al. (2011), where the form of λS+ (1− λ)Ip is used to estimate the

covariance matrix with 0 ≤ λ < 1. In the special case of λ = 0, the test reduces

to an unscaled Hotelling’s test. We refer to the methods in this category as the

regularized Hotelling’s tests.

3) In the third category, the covariance matrix is assumed to be diagonal. Under

this assumption, the singularity problem is circumvented since a diagonal matrix

is always invertible for non-zero entries, whether or not p is larger than n. This

idea was first considered by Wu et al. (2006) and then revisited by several other

researchers; see, for example, Srivastava and Du (2008), Srivastava (2009), Park

and Nag Ayyala (2013), and Srivastava et al. (2013). For more details, see

Section 3.2.1 below. These methods are essentially all the same and we refer to

them as the diagonal Hotelling’s tests.

In our simulation studies, we note that the unscaled Hotelling’s tests are often

sensitive to the deviation of equal eigenvalues of the covariance matrix. If one eigen-

value is extremely large, then the performance of the test will be dominated by that

individual component and thus a lower power will result. For more details, see the

simulation studies in Section 3.4. In addition, even for the case of equal eigenvalues,

Chen and Qin (2010) suggested n = [20 log(p)] to have a reasonably large power. For

instance, n needs to be at least 46, 92 and 138 for p = 10, 100 and 1000, respectively.

For high-dimensional data such as gene expression microarray data, however, it is

not uncommon that n is very small, say for example less than 10 samples per group

(Pomeroy et al.; 2002; Dong et al.; 2005). This has motivated researchers to consider

more realistic testing methods for high-dimensional small sample size data, e.g., the

regularized Hotelling’s tests and the diagonal Hotelling’s tests. Our additional simu-

lation studies indicate that the existing regularized Hotelling’s tests do not perform

comparably to the diagonal Hotelling’s tests when n is relatively small.

In view of the good performance of the diagonal Hotelling’s tests, we also assume
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that the covariance matrix is diagonal in this chapter. Before moving forward, we

note that this diagonal covariance matrix assumption has been commonly used for

high-dimensional small sample size data, e.g., Dudoit et al. (2002), Bickel and Levina

(2004) and Tong and Wang (2007). In particular, Bickel and Levina (2004) pointed

out that if the estimated correlations are all very noisy, then we are probably better

off without estimating them. This, in essence, is the assumption of a diagonal covari-

ance matrix when n is relatively small. In discriminant analysis, Lee et al. (2005a)

have also observed that discriminant rules with an inverse generalized matrix may

not perform as well as diagonal discriminant rules for microarray data. Although

very promising, the performance of the diagonal Hotelling’s tests themselves can be

suboptimal due to the unreliable estimates of the sample variances from the lim-

ited number of observations. This suggests that some modifications to the diagonal

Hotelling’s tests are necessary to further improve their performance. We note that

one such attempt has already been made by Dinu et al. (2007). They proposed a

modified diagonal Hotelling’s test, called “SAM-GS”, by adding a small constant

to each gene-specific variance estimate to stabilize the variance estimation, an idea

originated in the SAM test of Tusher et al. (2001).

In this chapter, we propose a shrinkage-based diagonal Hotelling’s test for both

one-sample and two-sample cases. The test is structured by replacing the sample

variances in the diagonal Hotelling’s tests by the optimal shrinkage estimation of

variances in Tong and Wang (2007). For the proposed shrinkage-based test, we

then consider several different ways to derive the approximate null distribution under

different scenarios of p and n. Simulation results show that the proposed method

always performs comparably to existing competitors, especially when n is less than

10. In addition, to assess the performance of the proposed method using real data, we

consider four gene expression data sets. A case study also demonstrates the advantage

of the proposed shrinkage-based diagonal Hotelling’s test.

The remainder of this chapter is organized as follows. The shrinkage-based diag-

onal Hotelling’s tests are introduced in Section 3.2. In Section 3.3, we derive both a

scaled chi-squared null distribution and a normal null distribution. Simulation stud-
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ies and real data analysis are conducted in Sections 3.4 and 3.5, respectively. Section

3.6 provide some discussions and Section 3.7 give some proofs.

3.2 Improving the Diagonal Hotelling’s Tests

Let Xi = (Xi1, . . . , Xip)
T , i = 1, . . . , n, be i.i.d. random vectors from a multivariate

normal distribution, Np(µ,Σ), where µ is the population mean vector and Σ is the

population covariance matrix. Let also X̄ =
∑n

i=1Xi/n be the sample mean vector

and S =
∑n

i=1(Xi − X̄)(Xi − X̄)T/(n− 1) be the sample covariance matrix. For the

one-sample testing problem, the hypothesis is

H0 : µ = µ0 versus H1 : µ ̸= µ0, (3.1)

where µ0 is a fixed vector. To test hypothesis (3.1), the one-sample Hotelling’s T 2

statistic is defined as

T 2
1 = n(X̄− µ0)

TS−1(X̄− µ0). (3.2)

When p ≤ n − 1 so that S is invertible, under H0, the scaled test statistic, {(n −

p)/p(n− 1)}T 2
1 , follows an Fp,n−p distribution with p and n− p degrees of freedom.

For the two-sample testing problem, similarly, we assume thatXki = (Xki1, . . . , Xkip)
T ,

i = 1, . . . , nk, are i.i.d. from a multivariate normal distribution, Np(µk,Σ), for k = 1

and 2, respectively, where µk are the population mean vectors and Σ is the common

covariance matrix. Let X̄1 and X̄2 denote the class-specific sample means, and let

Spool = {(n1 − 1)S1 + (n2 − 1)S2}/(n1 + n2 − 2) be the pooled sample covariance

matrix. Then, to test the hypothesis

H0 : µ1 = µ2 versus H1 : µ1 ̸= µ2, (3.3)

the two-sample Hotelling’s T 2 statistic is given by

T 2
2 =

n1n2

n1 + n2

(X̄1 − X̄2)
TS−1

pool(X̄1 − X̄2). (3.4)

When p ≤ n1 + n2 − 2 so that Spool is invertible, under H0, the scaled test statistic,

{(n1 +n2 − p− 1)/p(n1 +n2 − 2)}T 2
2 , follows an Fp,n1+n2−p−1 distribution with p and

n1 + n2 − p− 1 degrees of freedom.
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3.2.1 The Diagonal Hotelling’s Tests

We note that Hotelling’s T 2 statistics require n − 1 ≥ p for the one-sample case

and n1 + n2 − 2 ≥ p for the two-sample case to ensure that the sample covariance

matrix is nonsingular. Hence, these methods do not work under the “large p small

n” paradigm. To avoid the singularity problem, Wu et al. (2006) proposed a pooled

component test for the two-sample case, which essentially is a diagonal version of

Hotelling’s T 2 statistic (3.4). Specifically, their proposed test statistic is

T 2
D2 =

n1n2

n1 + n2

(X̄1 − X̄2)
T{diag(Spool)}−1(X̄1 − X̄2)

=
n1n2

n1 + n2

p∑
j=1

(X̄1j − X̄2j)
2/s2j,pool, (3.5)

where diag(Spool) = diag(s21,pool, . . . , s
2
p,pool) with s

2
j,pool = {(n1−1)s21j+(n2−1)s22j)}/(n1+

n2 − 2) for j = 1, . . . , p. Note that, for simplicity, the missing data problem is not

considered in (3.5) unlike in Wu et al. (2006). Although only the two-sample case was

considered in their paper, the diagonal idea can be readily extended to the one-sample

case with T 2
D1 taking the form

T 2
D1 = n(X̄− µ0)

T{diag(S)}−1(X̄− µ0)

= n

p∑
j=1

(X̄j − µ0j)
2/s2j .

To define the rejection region of the diagonal Hotelling’s tests, we rejectH0 if T
2
D1 > C1

for the one-sample case and T 2
D2 > C2 for the two-sample case, where C1 and C2 are

two critical values.

Besides the aforementioned pooled components test, Srivastava and Du (2008)

proposed scalar transformation invariant tests for both one-sample and two-sample

cases, which essentially are the functions of the diagonal Hotelling’s test. Srivas-

tava (2009) constructed the test statistic using the diagonal Hotelling’s test under

non-normality. This test statistic is similar to Srivastava and Du (2008), and the

only difference is that Srivastava (2009) deleted the adjustment coefficient appear-

ing in Srivastava and Du (2008). Park and Nag Ayyala (2013) proposed new scalar

transformation invariant tests for both one-sample and two-sample cases. Their tests
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modified the test statistic of Srivastava (2009). This test statistic still assumes that

the covariance matrix is diagonal. Srivastava et al. (2013) proposed a two-sample

test under the condition of unequal covariance matrices, which essentially is also a

function of the diagonal Hotelling’s test.

3.2.2 Shrinkage-Based Diagonal Hotelling’s Tests

To establish the diagonal Hotelling’s tests, the aforementioned references used the

diagonal matrix of sample variances to estimate the covariance matrix. However,

when the number of observations is limited, such as when there are fewer than 10

observations, the sample variances are not reliable estimations any more, and the

diagonal Hotelling’s tests are thus unreliable. This point has been demonstrated by

the simulation studies of Srivastava et al. (2013). Therefore, it is necessary to find

an improved variance estimation. Dinu et al. (2007) made such an attempt. In this

section, we use the optimal shrinkage estimation in Tong and Wang (2007) to improve

the variance estimation.

Let diag(Σ)=diag(σ2
1, . . . , σ

2
p), and (σ2

j )
t = σ2t

j , j = 1, . . . , p. The shrinkage esti-

mator of σ2t
j is

σ̃2t
j (α) = {hν,p(t)σ̂2t

pool}α{hν,1(t)σ̂2t
j }1−α, (3.6)

where σ̂2t
j estimates σ2t

j , σ̂
2t
pool =

∏p
j=1(σ̂

2
j )

t/p, ν = n− 1, Γ(·) is the gamma function,

and

hν,p(t) =
(ν
2

)t{ Γ(ν/2)

Γ(ν/2 + t/p)

}p

.

This shrinkage estimator includes a shrinkage parameter α ∈[0,1]. The estimator

degenerates to the unbiased estimation of σ2t
j if α = 0, and it shrinks to the pooled

variance estimation if α = 1. Under the Stein loss function, L(σ2, σ̃2) = σ̃2/σ2 −

ln(σ̃2/σ2) − 1, Tong and Wang (2007) proved that there exists a unique optimal α

in (0,1], denoted by α∗, to achieve the minimum average risk for any fixed p, ν and

t > −ν/2. A two-step procedure, proposed by Tong and Wang (2007), can be useful

to estimate α∗.
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Now, we move to the shrinkage-based diagonal Hotelling’s tests. For ease of

distinction, let σ2
j and σ2

j,pool denote the jth variance in diag(Σ) for one-sample and

two-sample cases, respectively. Then, σ̂2
j = s2j and σ̂2

j,pool = s2j,pool. Moreover, since

the sample variances appear in the denominator of the diagonal Hotelling’s tests, we

consider estimating σ−2
j = 1/σ2

j instead of σ2
j , which is the case of t = −1. Pang et al.

(2009) found that results for t = 1 and t = −1 were similar with the latter slightly

better. Therefore, we focus on estimating σ−2
j in the remaining of this chapter.

Let α̃∗ denote the estimated optimal shrinkage parameter. For the one-sample

test, we define the shrinkage-based diagonal Hotelling’s test statistic as

T 2
SD1(α̃

∗) = n(X̄− µ0)
T S̃∗(X̄− µ0)

= n

p∑
j=1

(X̄j − µ0j)
2σ̃−2

j (α̃∗), (3.7)

where S̃∗ = diag{σ̃−2
1 (α̃∗), . . . , σ̃−2

p (α̃∗)}. Similarly, for the two-sample test, the

shrinkage-based diagonal Hotelling’s test statistic is

T 2
SD2(α̃

∗) =
n1n2

n1 + n2

(X̄1 − X̄2)
T S̃∗

pool(X̄1 − X̄2)

=
n1n2

n1 + n2

p∑
j=1

(X̄1j − X̄2j)
2σ̃−2

j,pool(α̃
∗), (3.8)

where S̃∗
pool = diag{σ̃−2

1,pool(α̃
∗), . . . , σ̃−2

p,pool(α̃
∗)}.

Tong and Wang (2007) showed that α̃∗ → 0 for n → ∞ and fixed p. This

property demonstrates that, when the sample size is very large, on the one hand,

our methods degenerate to the diagonal Hotelling’s tests and thus it is unnecessary

to borrow information from other genes. Our simulation studies indicate that our

methods perform comparably to current approaches, and the diagonal Hotelling’s

tests are hence appropriate for testing the significance of gene sets. On the other

hand, the approximate null distributions in the diagonal Hotelling’s tests can also be

used. However, when the sample size is small, the above approximations may not be

accurate. Hence, it is of great importance to derive the approximate null distribution

in the case of small sample sizes.
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3.3 Null Distributions of Shrinkage-Based Diago-

nal Hotelling’s Tests for Small Sample Size

When the sample size is large, two types of distributions are derived to be the ap-

proximate null distributions. One is the chi-squared distribution. Wu et al. (2006)

considered a scaled chi-squared distribution as an approximation for both p < n and

p ≥ n. If (n, p) → ∞, the other possible choice, the normal distribution, is used as

the asymptotic null distribution (Srivastava and Du; 2008; Srivastava; 2009; Park and

Nag Ayyala; 2013; Srivastava et al.; 2013). This motivates us to derive approximate

null distributions similarly when the sample size is very small. In this section, we

follow Wu et al. (2006) and derive the scaled chi-squared null distribution, and the

normal null distribution is derived as p→ ∞.

To obtain the null distributions of the shrinkage-based diagonal Hotelling’s tests,

we first derive the means and variances for T 2
SD1(α) and T

2
SD2(α) in Lemmas 1 and 2,

respectively.

Lemma 6. For any ν = n− 1 > 4 and α ∈ (0, 1], the mean and variance of the test

statistic, T 2
SD1, under H0 are

E
{
T 2
SD1(α)

}
= C1σ

−2α
pool

p∑
j=1

σ2α
j ,

and

Var
{
T 2
SD1(α)

}
= (3C2 − C3)σ

−4α
pool

p∑
j=1

σ4α
j + (C3 − C2

1)σ
−4α
pool (

p∑
j=1

σ2α
j )2,

where

C1 =
hαν,p(−1)h1−α

ν,1 (−1)

hp−1
ν,1 (−α/p)hν,1{−α/p− (1− α)}

,

C2 =
h2αν,p(−1)h

2(1−α)
ν,1 (−1)

hp−1
ν,1 (−2α/p)hν,1{−2α/p− 2(1− α)}

,

C3 =
h2αν,p(−1)h

2(1−α)
ν,1 (−1)

hp−2
ν,1 (−2α/p)h2ν,1{−2α/p− (1− α)}

.
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Lemma 7. For any ν = n1 + n2 − 2 > 4 and α ∈ (0, 1], the mean and variance of

the test statistic, T 2
SD2, under H0 are

E
{
T 2
SD2(α)

}
= C1σ

−2α
pool

p∑
j=1

σ2α
j,pool,

and

Var
{
T 2
SD2(α)

}
= (3C2 − C3)σ

−4α
pool

p∑
j=1

σ4α
j,pool + (C3 − C2

1)σ
−4α
pool (

p∑
j=1

σ2α
j,pool)

2,

where

C1 =
hαν,p(−1)h1−α

ν,1 (−1)

hp−1
ν,1 (−α/p)hν,1{−α/p− (1− α)}

,

C2 =
h2αν,p(−1)h

2(1−α)
ν,1 (−1)

hp−1
ν,1 (−2α/p)hν,1{−2α/p− 2(1− α)}

,

C3 =
h2αν,p(−1)h

2(1−α)
ν,1 (−1)

hp−2
ν,1 (−2α/p)h2ν,1{−2α/p− (1− α)}

.

The proof of Lemma 6 is given in Appendix 1. The proof of Lemma 7 is omitted

since it is essentially the same as that for Lemma 6. Both lemmas are however

necessary for determining the parameters of the approximate null distributions.

3.3.1 Chi-squared Approximation

For small p, the chi-squared distribution can be used as a good approximate null

distribution. In this section, we approximate the null distributions of the proposed

test statistics as a scaled chi-squared distribution, cχ2
d, as in Wu et al. (2006). To

determine the scale parameter, c1, and the degrees of freedom, d1, for T
2
SD1(α̃

∗), we

equate the mean and variance of c1χ
2
d1

with the mean and variance of T 2
SD1(α̃

∗).

Specifically, we have

E{T 2
SD1(α̃

∗)} = c1d1 and Var{T 2
SD1(α̃

∗)} = 2c21d1.

For T 2
SD2(α̃

∗), we use the same approach to determine the corresponding scale pa-

rameter, c2, and the degrees of freedom, d2. The following theorems describe the

approximate null distributions for our test statistics.
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Theorem 9. For any n > 5 and optimal shrinkage parameter estimation, α̃∗, under

the null hypothesis, we have

T 2
SD1(α̃

∗) ∼ c1χ
2
d1
,

where

c1 =
(3C2 − C3)σ

−4α̃∗

pool

∑p
j=1 σ

4α̃∗
j + (C3 − C2

1)σ
−4α̃∗

pool (
∑p

j=1 σ
2α̃∗
j )2

2C1σ
−2α̃∗

pool

∑p
j=1 σ

2α̃∗
j

,

d1 =
2C2

1σ
−4α̃∗

pool (
∑p

j=1 σ
2α̃∗
j )2

(3C2 − C3)σ
−4α̃∗

pool

∑p
j=1 σ

4α̃∗
j + (C3 − C2

1)σ
−4α̃∗

pool (
∑p

j=1 σ
2α̃∗
j )2

.

Theorem 10. For any n1+n2 > 6 and optimal shrinkage parameter estimation, α̃∗,

under the null hypothesis, we have

T 2
SD2(α̃

∗) ∼ c2χ
2
d2
,

where

c2 =
(3C2 − C3)σ

−4α̃∗

pool

∑p
j=1 σ

4α̃∗

j,pool + (C3 − C2
1)σ

−4α̃∗

pool (
∑p

j=1 σ
2α̃∗

j,pool)
2

2C1σ
−2α̃∗

pool

∑p
j=1 σ

2α̃∗
j,pool

,

d2 =
2C2

1σ
−4α̃∗

pool (
∑p

j=1 σ
2α̃∗

j,pool)
2

(3C2 − C3)σ
−4α̃∗

pool

∑p
j=1 σ

4α̃∗
j,pool + (C3 − C2

1)σ
−4α̃∗

pool (
∑p

j=1 σ
2α̃∗
j,pool)

2
.

The proofs of Theorems 9 and 10 are simple and straightforward. They are thus

omitted. Note that c1, d1, c2 and d2 involve some unknown quantities. Take c1 and

d1 for example. Then, b1(σ
2) = σ−2α̃∗

pool

∑p
j=1 σ

2α̃∗
j and b2(σ

2) = σ−4α̃∗

pool

∑p
j=1 σ

4α̃∗
j are

the unknown quantities. In practice, we suggest the following rules for estimating

b1(σ
2) and b2(σ

2), according to the different scenarios:

(i) For any fixed p but large n, by noting that σ̂2
j

a.s.→ σ2
j as n→ ∞, where

a.s.→ denotes

the almost sure convergence, we have the following consistent estimators:

b̂1(σ
2) = σ̂−2α̃∗

pool

p∑
j=1

σ̂2α̃∗

j and b̂2(σ
2) = σ̂−4α̃∗

pool

p∑
j=1

σ̂4α̃∗

j ;

(ii) For any fixed n but large p, by Lemma 2 of Tong and Wang (2007), we estimate

b̆1(σ
2) = w(α̃∗)σ̂−2α̃∗

pool

p∑
j=1

σ̂2α̃∗

j and b̆2(σ
2) = w(2α̃∗)σ̂−4α̃∗

pool

p∑
j=1

σ̂4α̃∗

j ,
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where Ψ(t) = Γ′(t)/Γ(t) and w(α) = (ν/2)−αhν,1(α) exp {αΨ(ν/2)}. More

specifically, under some mild conditions, we have b̆1(σ
2)

a.s.→ b1(σ
2) and b̆2(σ

2)
a.s.→

b2(σ
2) as p→ ∞;

(iii) Otherwise, we estimate b1(σ
2) and b2(σ

2) by replacing σ2
j with the estimated

optimal shrinkage estimates σ̃2
j (α̃

∗). Specifically, we estimate them by

b̃1(σ
2) = σ̃−2α̃∗

pool

p∑
j=1

σ̃2α̃∗

j (α̃∗) and b̃2(σ
2) = σ̃−4α̃∗

pool

p∑
j=1

σ̃4α̃∗

j (α̃∗).

3.3.2 Normal Approximation

For large p, the normal distribution can be a good approximation. The following

content of this section can illustrate this point.

Take the one-sample shrinkage-based diagonal Hotelling’s test for example. Con-

sider the variances, σ2
j , as random variables and assume that they are i.i.d. from

a common distribution, F , with E(σ4
1) < ∞ and E {ln(σ2

1)} < ∞. Let Uj(α) =

n(X̄j − µ0j)
2{hν,1(−1)σ̂−2

j }1−α, where j = 1, . . . , p and α ∈ (0, 1]. Then,

T 2
SD1(α) = {hν,p(−1)σ̂−2

pool}
α

p∑
j=1

Uj(α). (3.9)

In Appendix 2, we show that

σ̂−2
pool

a.s.−→ exp
[
−E

{
ln(σ2

1)
}
+ ln

(ν
2

)
−Ψ

(ν
2

)]
as p→ ∞. (3.10)

This implies that the first term in (3.9), {hν,p(−1)σ̂−2
pool}α, converges to a constant

when p is large. In addition, given that σ2
j are i.i.d. random variables, under H0, it

is easy to see that Uj(α) are also i.i.d. random variables. Thus, by the central limit

theorem, for any ν > 4 and α ∈ (0, 1], we have∑p
j=1 Uj(α)− pE{U1(α)}√

pVar{U1(α)}
D−→ N(0, 1) as p→ ∞, (3.11)

where
D−→ denotes the convergence in distribution, E{U1(α)} = E [E {U1(α)|σ2

1}] =
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h1−α
ν,1 (−1)E(σ2α

1 )/hν,1{−(1− α)} and

Var{U1(α)} = E
[
Var

{
U1(α)|σ2

1

}]
+Var

[
E
{
U1(α)|σ2

1

}]
=

[
3h

2(1−α)
ν,1 (−1)

hν,1{−2(1− α)}
−

h
2(1−α)
ν,1 (−1)

h2ν,1{−(1− α)}

]
E(σ4α

1 ) +
h
2(1−α)
ν,1 (−1)

h2ν,1{−(1− α)}
Var(σ2α

1 )

=
3h

2(1−α)
ν,1 (−1)

hν,1{−2(1− α)}
E(σ4α

1 )−
h
2(1−α)
ν,1 (−1)

h2ν,1{−(1− α)}
{
E(σ2α

1 )
}2
.

By (3.10) and (3.11), together with Slutsky’s Theorem, we can claim that the test

statistic T 2
SD1(α̃

∗) is approximately normally distributed when p is large. The same

conclusion can also be obtained for T 2
SD2(α̃

∗).

Now as in Section 3.3.1, to have the normal approximation, we equate the mean

and variance of N(ξ1, τ1) with the mean and variance of T 2
SD1(α̃

∗). Similarly, for the

two-sample comparison, we use the same method to determine the mean, ξ2, and the

variance, τ2, of T
2
SD2(α̃

∗). The results are summarized as the following theorems.

Theorem 11. For any n > 5 and optimal shrinkage parameter estimation α̃∗, under

the null hypothesis, we have

T 2
SD1(α̃

∗) ∼ N(ξ1, τ1), as p→ ∞,

where

ξ1 = C1σ
−2α̃∗

pool

p∑
j=1

σ2α̃∗

j ,

τ1 = (3C2 − C3)σ
−4α̃∗

pool

p∑
j=1

σ4α̃∗

j + (C3 − C2
1)σ

−4α̃∗

pool (

p∑
j=1

σ2α̃∗

j )2.

Theorem 12. For any n1 + n2 > 6 and optimal shrinkage parameter estimation α̃∗,

under the null hypothesis, we have

T 2
SD2(α̃

∗) ∼ N(ξ2, τ2), as p→ ∞,

where

ξ2 = C1σ
−2α̃∗

pool

p∑
j=1

σ2α̃∗

j,pool,

τ2 = (3C2 − C3)σ
−4α̃∗

pool

p∑
j=1

σ4α̃∗

j,pool + (C3 − C2
1)σ

−4α̃∗

pool (

p∑
j=1

σ2α̃∗

j,pool)
2.
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The practical rules for estimating the unknown quantities are the same as those

in Section 3.3.1.

3.4 Monte Carlo Simulation Studies

In this section, we compare the shrinkage-based diagonal Hotelling’s tests, including

the chi-squared null distribution (SDchi) and the normal null distribution (SDnor),

with some current methods in the aforementioned three categories:

• One unscaled Hotelling’s test: Chen and Qin (2010) (CQ).

• One regularized Hotelling’s test: Chen et al. (2011) (RHT ).

• Two diagonal Hotelling’s tests: Wu et al. (2006) (PCT ) and Srivastava et al.

(2013) (SR).

For RHT , we use the function “RHT.2samp” in the R package “RHT” provided

by Chen et al. (2011). In our simulation studies, we simulate both the type I error rate

and the power to assess the performances of all approaches. Moreover, we compare all

methods by plotting the receiver operating characteristic (ROC) curves. The ROC

curve describes the performance of the true positive rate (TPR) as the false positive

rate (FPR) varies. The area under the curve (AUC) values are also provided. We

mainly focus on small sample sizes in this section; but moderate to large sample

sizes are also considered. Note that most existing methods were proposed for the

two-sample case. For ease of comparison, we consider only the two-sample test in the

simulation studies.

3.4.1 Simulation Design

In our simulation, we generate data from the multivariate normal distribution with a

common covariance matrix Σ. To assess the type I error rate, the data are generated

for both groups from Np(0,Σ). To assess the power, one group of data is generated

from Np(0,Σ) and the other one from Np(µ,Σ), where µj = cσ2
j for j = 1, . . . , p
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with c being the effect size, and σ2
j is randomly drawn from the scaled chi-squared

distribution (1/5)χ2
5.

The structure of the common covariance matrix is Σ = D1/2RD1/2, where D =

diag(Σ) = diag(σ2
1, . . . , σ

2
p) and R is the correlation matrix. We use the following

block-diagonal matrix as the correlation matrix:

R =



Σρ 0 · · · · · · 0

0 Σ−ρ 0
. . .

...
... 0 Σρ 0

...
...

. . . 0 Σ−ρ
. . .

0 · · · · · · . . . . . .


p×p

,

where Σρ is a q× q matrix and q ≤ p. We consider the following two settings for Σρ:

• Σρ = (σij)q×q, where σij = ρ|i−j| for 1 ≤ i, j ≤ q. Let ΣAR denote this type of

common covariance matrix.

• Σρ = (σij)q×q, where σij = 1 for i = j and σij = ρ for 1 ≤ i ̸= j ≤ q. Let ΣCS

denote this type of common covariance matrix.

For ΣAR, the correlation matrix is autoregressive of the order-1 structure (Guo et al.;

2007; Tong, Chen and Zhao; 2012). For ΣCS, the correlation matrix takes the com-

pound symmetry structure.

In our simulation, we set n1=n2=n from 5 to 10, and the effect sizes are c=0.55,

0.52, 0.50, 0.47, 0.43, 0.39 and 0.35. For different correlations, we set ρ=0, 0.2 and

0.4. Note that ΣCS is not positive if both ±0.4 are included in the block-diagonal

correlation matrix. For the case of ρ = 0.4, we set all correlations in ΣCS to be

positive. The type I error rate and power are obtained by running 1000 simulations

under the settings of p = 50, q = 5 and α = 0.05, where α is the significance level.

3.4.2 Simulation Results

We first focus on the performances of all approaches for small sample sizes. The type

I error rate and power are reported in Tables 3.1 and 3.2, respectively. Two different
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structures of the correlation are considered, and we find that the results are similar

for both ΣAR and ΣCS. From the results in Tables 3.1 and 3.2, we observe that the

shrinkage-based diagonal Hotelling’s tests outperform the other methods for different

ρ. When the correlation is weak, our methods control the type I error rate well and at

the same time maintain high power. As the correlation increases, the type I error rate

of our methods becomes higher but it is still better than those of the other methods.

PCT and SR have high type I error rates when the sample size is smaller than 10.

CQ selects the null hypothesis too often; RHT tends to be conservative; and both of

their powers are low. For higher correlations, these four approaches perform similarly.

The superiority of the shrinkage-based diagonal Hotelling’s tests is also demon-

strated in Figure 3.1 and Table 3.3. Figure 3.1 shows the plots of the ROC curves and

their respective AUC values are shown in Table 3.3. As in Si and Liu (2013), we plot

ROC curves with a range of FPR values from 0 to 0.1. AUC values are also calculated

in the same range as the FPR values. Without loss of generality, we plot the ROC

curves for n=6 in Figure 3.1 to assess the overall performances of all approaches for

small sample sizes. The figure shows that our methods, SDchi and SDnor, have the

largest AUC values and highest ROC curves for all three correlations. Additionally,

we observe a very interesting and important result from Figure 3.1 and Table 3.3. The

six curves appearing in Figure 3.1 can be divided into three groups, and these three

groups clearly represent the aforementioned three categories. We can see that diago-

nal Hotelling’s tests, including our shrinkage-based methods, have the highest ROC

curves. The unscaled Hotelling’s test has the second highest ROC curves and the

regularized Hotelling’s test has the lowest ROC curves. This demonstrates that with

limited numbers of observations, the diagonal Hotelling’s tests are the best options.

Finally, we keep an eye on the case of the large sample size; for example, n = 50.

The type I error rates and powers of all approaches are also reported in Tables 3.1

and 3.2. We find that the the shrinkage-based diagonal Hotelling’s tests perform

similarly to when the small sample size is small. However, the other approaches

obtain satisfactory results that different greatly from the small sample size case.

This demonstrates that for large sample sizes, it is unnecessary to borrow information
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Table 3.1: Type I error rates for p=50 under the null case

ρ Σ n SDchi SDnor PCT SR CQ RHT

0 ΣAR = ΣCS 5 0.049 0.060 0.228 0.356 0.000 0.042

6 0.044 0.059 0.132 0.250 0.000 0.039

7 0.045 0.056 0.108 0.178 0.000 0.038

8 0.052 0.056 0.072 0.148 0.000 0.040

9 0.050 0.051 0.056 0.128 0.000 0.032

10 0.046 0.053 0.047 0.120 0.000 0.023

50 0.052 0.054 0.045 0.059 0.067 0.020

0.2 ΣAR 5 0.054 0.086 0.181 0.217 0.000 0.042

6 0.051 0.075 0.135 0.253 0.000 0.026

7 0.052 0.072 0.147 0.202 0.000 0.028

8 0.050 0.076 0.105 0.154 0.000 0.034

9 0.054 0.070 0.072 0.149 0.000 0.034

10 0.055 0.068 0.049 0.140 0.000 0.016

50 0.054 0.068 0.043 0.055 0.065 0.012

ΣCS 5 0.055 0.090 0.273 0.338 0.000 0.044

6 0.052 0.089 0.136 0.257 0.000 0.040

7 0.052 0.094 0.110 0.204 0.000 0.038

8 0.051 0.085 0.094 0.160 0.000 0.031

9 0.056 0.085 0.060 0.156 0.000 0.023

10 0.054 0.075 0.046 0.125 0.000 0.019

50 0.059 0.076 0.044 0.064 0.070 0.008

0.4 ΣAR 5 0.069 0.106 0.280 0.257 0.000 0.063

6 0.067 0.092 0.136 0.223 0.000 0.053

7 0.073 0.087 0.110 0.175 0.000 0.033

8 0.070 0.088 0.102 0.151 0.000 0.032

9 0.069 0.083 0.070 0.116 0.000 0.020

10 0.067 0.081 0.064 0.113 0.000 0.019

50 0.068 0.083 0.046 0.058 0.064 0.010

ΣCS 5 0.081 0.119 0.270 0.252 0.000 0.038

6 0.085 0.119 0.136 0.214 0.000 0.036

7 0.091 0.116 0.110 0.176 0.000 0.034

8 0.085 0.114 0.106 0.143 0.000 0.034

9 0.091 0.105 0.096 0.127 0.000 0.027

10 0.092 0.106 0.063 0.113 0.000 0.015

50 0.089 0.103 0.033 0.061 0.056 0.007
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Table 3.2: Powers for p=50 under the alternative case

ρ Σ n SDchi SDnor PCT SR CQ RHT

0 ΣAR = ΣCS 5 0.859 0.904 0.910 0.978 0.000 0.070

6 0.912 0.927 0.925 0.969 0.000 0.059

7 0.887 0.953 0.830 0.952 0.000 0.060

8 0.818 0.950 0.842 0.928 0.000 0.076

9 0.855 0.873 0.756 0.915 0.002 0.062

10 0.788 0.810 0.713 0.869 0.003 0.045

50 0.771 0.798 0.739 0.776 0.804 0.406

0.2 ΣAR 5 0.866 0.848 0.878 0.884 0.000 0.056

6 0.823 0.853 0.824 0.941 0.000 0.038

7 0.839 0.950 0.896 0.936 0.000 0.040

8 0.842 0.888 0.752 0.914 0.000 0.036

9 0.867 0.859 0.724 0.902 0.002 0.040

10 0.789 0.847 0.668 0.823 0.002 0.033

50 0.761 0.772 0.696 0.734 0.744 0.572

ΣCS 5 0.843 0.864 0.963 0.965 0.000 0.061

6 0.847 0.908 0.950 0.961 0.000 0.050

7 0.897 0.874 0.796 0.924 0.000 0.053

8 0.849 0.893 0.736 0.913 0.000 0.046

9 0.876 0.855 0.800 0.892 0.002 0.042

10 0.747 0.825 0.750 0.818 0.003 0.033

50 0.750 0.838 0.733 0.728 0.750 0.690

0.4 ΣAR 5 0.793 0.868 0.834 0.824 0.000 0.051

6 0.836 0.902 0.910 0.866 0.000 0.034

7 0.873 0.940 0.713 0.889 0.000 0.040

8 0.784 0.880 0.729 0.846 0.000 0.041

9 0.859 0.861 0.730 0.823 0.003 0.040

10 0.728 0.782 0.714 0.725 0.003 0.036

50 0.713 0.697 0.589 0.588 0.571 0.668

ΣCS 5 0.792 0.789 0.847 0.884 0.000 0.038

6 0.882 0.837 0.732 0.841 0.000 0.038

7 0.875 0.886 0.715 0.861 0.000 0.041

8 0.770 0.783 0.690 0.782 0.000 0.033

9 0.778 0.796 0.700 0.710 0.000 0.031

10 0.726 0.685 0.570 0.694 0.002 0.037

50 0.664 0.689 0.522 0.636 0.556 0.470
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Figure 3.1: ROC curves for n=6 and p=50. “AR” represents ΣAR and “CS” repre-

sents ΣCS.
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Table 3.3: AUC values for n=6 and p=50

ρ Σ SDchi SDnor PCT SR CQ RHT

0 ΣAR 0.0823 0.0822 0.0711 0.0707 0.0351 0.0076

0.2 ΣAR 0.0772 0.0771 0.0680 0.0656 0.0429 0.0074

0.4 ΣAR 0.0698 0.0706 0.0558 0.0581 0.0353 0.0070

0.4 ΣCS 0.0668 0.0683 0.0528 0.0579 0.0350 0.0071

across all variables.

3.5 Case Studies

A real gene expression data set, whose sample size is smaller than 10, is not un-

common. In addition to the references in Section 3.1, the following data sets also

demonstrate this point:

• Kuster et al. (2011). The data set includes two groups: the sham control group

(n1 = 8) and the myocardial infarction group (n2 = 8). The total number of

genes is 24,123.

• Bchetnia et al. (2012). The data set includes two groups: the control group

(n1 = 6) and the epidermolysis bullosa simplex group (n2 = 3). The total

number of genes is 32,321.

• Kaur et al. (2012). The data set includes two groups: the control group (n1 = 3)

and the polycystic ovary syndrome group (n2 = 7). The total number of genes

is 54,675.

• Mokry et al. (2012). The data set includes two groups: the Ls174T-L8 group

(n1 = 6) and the Ls174T-pTER-β-catenin group (n2 = 8). The total number

of genes is 54,675.
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• Searcy et al. (2012). The data set includes two groups: the control group

(n1 = 8) and the Pioglitazone group (n2 = 8). The total number of genes is

45,101.

In this section, we assess the performances of the shrinkage-based diagonall Hotelling’s

tests when they are applied to real gene expression data sets. Besides the Myeloma

data which we have analyzed in Chapter 2, we also use the following three gene

expression data sets in our case studies.

1. Nakayama data(Nakayama et al.; 2007).

In this data set, there are ten types of soft tissue tumors based on 105 samples

and 22,283 probe sets. Without loss of generality, we use the first two types of

soft tissue tumors: synovial sarcoma (SS) and myxoid/round cell liposarcoma

(MRCL), and the sample sizes are 16 and 19, respectively. All samples are log-

transformed as described by Nakayama et al. (2007). This data set has been

analyzed by Witten and Tibshirani (2011), who discussed the classification

problem, and it can be downloaded from Gene Expression Omnibus (GEO)

Datasets using access number GDS2736.

2. Glioma data (Sun et al.; 2006).

There are four classes of data in this data set: one non-tumor class and three

glioma classes. Totally, the data include 54,613 genes and 180 samples. We use

the non-tumor (NON) class and the astrocytomas (AS) class, and the sample

sizes are 23 and 26, respectively. The data set has also been analyzed by

Witten and Tibshirani (2011), and it can be downloaded from GEO Datasets

with access number GDS1962.

3. Leukemia data (Golub et al.; 1999).

There are two different groups in this data set: the acute lymphoblastic leukemia

(ALL) patients group and the acute myeloid leukemia (AML) patients group.

The data contain 7,129 genes and 72 samples. We follow the method of Dudoit
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et al. (2002) to threshold, filter, logarithmically (base 10) transform and stan-

dardize the data. Finally, we obtain leukemia data with 3,571 genes, 47 ALL

patients and 25 AML patients, which are used in our analysis. The data set is

available from the package “golubEsets” in Bioconductor.

To plot the ROC curves and calculate the AUC values, we first randomly select p

genes from each data set for further analysis. Throughout this section, we consider

p = 50 and n = 5. We then choose one class from each data set to calculate FPR.

Specifically, they are SS, TH2, NON and ALL in our analysis. Now we use the first

data set (SS and MRCL) for illustration to describe how the FPR and TPR are

calculated. For the FPR, we randomly sample two distinct groups (each with size

n) from SS and then use them to assess the type I errors. Instead, for the TPR,

we sample one group (with size n) from SS and the other group (with size n) from

MRCL and use them to assess the power. The FPR and TPR are calculated based

on 1000 simulations.

Table 3.4: AUC values for all data sets when p=50 and n=5

DataSet SDchi SDnor PCT SR CQ RHT

Nakayama 0.0942 0.0941 0.0899 0.0880 0.0255 0.0668

Myloma 0.0174 0.0165 0.0148 0.0148 0.0088 0.0780

Glioma 0.0868 0.0856 0.0831 0.0781 0.0276 0.0399

Leukemia 0.0484 0.0479 0.0435 0.0382 0.0434 0.0291

Figure 3.2 shows the ROC curves for all four data sets, and AUC values are

provided in Table 3.4. Similar to Figure 3.1, the ROC curves in Figure 3.2 are also

generated with a range of FPR values from 0 to 0.1, and the same for AUC values. In

Figure 3.2 and Table 3.4, our proposed approaches have the highest ROC curves and

largest AUC values. This illustrates the advantage of the shrinkage-based diagonal

Hotelling’s tests. Additionally, the same result as in Section 3.4 can also be obtained;

that is, the diagonal Hotelling’s tests perform better than the unscaled Hotelling’s

tests and the regularized Hotelling’s tests when the sample size is small.
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Figure 3.2: ROC curves for all data sets when p=50 and n=5
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3.6 Discussion

The Hotelling’s T 2 test is an important and useful tool for testing multivariate dif-

ferences in means. However, its requirement that the sample size must be larger

than the number of variables is violated in gene expression data analysis. Testing

the significance of gene sets would be impossible with the Hotelling’s T 2 test due to

the difficulty of estimating Σ−1. It is therefore necessary to develop new methods to

tackle “large p small n” multivariate testing problems. Currently, many statisticians

have devoted themselves to solving this problem and some available approaches have

been discovered, such as the unscaled Hotelling’s tests, the regularized Hotelling’s

tests and the diagonal Hotelling’s tests. However, because of cost or rarity of samples,

a small sample size is a very common case. Current available approaches encounter

difficulties while testing high-dimensional small sample size data. Our Monte Carlo

simulation studies have demonstrated these issues.

In this chapter, we proposed a shrinkage-based diagonal Hotelling’s test for both

one-sample and two-sample cases. For high-dimensional small sample size data, the

diagonal Hotelling’s tests are better than the unscaled Hotelling’s tests and the regu-

larized Hotelling’s tests. However, sample variance is an unreliable variance estimator

for limited observations. Therefore, we use optimal shrinkage variance estimations

to improve the performance of the diagonal Hotelling’s test. The improvements are

shown in our simulation studies. Consequently, we suggest using shrinkage-based

diagonal Hotelling’s tests to test the significance of gene sets with small sample sizes.

Furthermore, if the number of genes in the gene sets is not large, the scaled chi-

squared null distribution is recommended.

Nevertheless, from our simulation studies, we find that when the correlation be-

comes high, our methods have higher type I error rates, although higher ROC curves

and larger AUC values than those of other methods can be obtained. This phe-

nomenon is likely because the approximate null distributions in this chapter are not

accurate enough. In addition, real data might not come from a multivariate normal

distribution. Some heavy-tailed distributions or even discrete distributions are possi-
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ble in real data. For example, RNA-seq data, obtained by next-generation sequencing

technologies, have better coverage than microarray data have and such data have al-

ready been applied in medical science. RNA-seq data from typical high-dimensional

small sample size discrete data sets and thus the shrinkage-based diagonal Hotelling’s

tests, based on multivariate normal distributions, are not suitable for testing the sig-

nificance of RNA-seq gene sets.

3.7 Proofs

3.7.1 Proof of Lemma 6

For any non-zero t > −ν/2, by Lemma 1 of Tong and Wang (2007), we have

E(σ̂2t
j ) = σ2t

j /hν,1(t), j = 1, . . . , p.

This leads to

E{σ̃−2
j (α)} = E

[
{hν,p(−1)σ̂−2

pool}
α{hν,1(−1)σ̂−2

j }1−α
]

= hαν,p(−1)h1−α
ν,1 (−1)E

(
σ̂
−2α/p
1 · · · σ̂−2α/p−2(1−α)

j · · · σ̂−2α/p
p

)
= hαν,p(−1)h1−α

ν,1 (−1)E(σ̂
−2α/p
1 ) · · ·E(σ̂−2α/p−2(1−α)

j ) · · ·E(σ̂−2α/p
p )

= hαν,p(−1)h1−α
ν,1 (−1)

σ
−2α/p
1

hν,1(−α/p)
· · ·

σ
−2α/p−2(1−α)
j

hν,1{−α/p− (1− α)}
· · · σ

−2α/p
p

hν,1(−α/p)
= C1σ

−2α
pool σ

−2(1−α)
j .

Further, noting that X̄j and σ
2
j are independent of each other, we have

E
{
T 2
SD1(α)

}
= nE

{
p∑

j=1

(X̄j − µ0j)
2σ̃−2

j (α)

}

= n

p∑
j=1

E(X̄j − µ0j)
2E{σ̃−2

j (α)}

= n

p∑
j=1

σ2
j

n
C1σ

−2α
pool σ

−2(1−α)
j

= C1σ
−2α
pool

p∑
j=1

σ2α
j .
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To find the variance of T 2
SD1(α), it suffices to compute the second moment of

T 2
SD1(α). For any j ̸= k, by similar algebra as above, we have

E{σ̃−2
j (α)σ̃−2

k (α)} = C3σ
−4α
pool σ

−2(1−α)
j σ

−2(1−α)
k .

In addition, by the fact that E(X̄j − µoj)
4 = 3σ4

j/n
2, it gives

E(σ̃−4
j (α)) = 3C2σ

−4α
pool σ

−4(1−α)
j .

Therefore,

E
{
T 2
SD1(α)

}2
= n2E

{
p∑

j=1

p∑
k=1

(X̄j − µ0j)
2(X̄k − µ0k)

2σ̃−2
j (α)σ̃−2

k (α)

}

= n2

p∑
j=1

E(X̄j − µ0j)
4σ̃−4

j (α)

+n2
∑
j ̸=k

E(X̄j − µ0j)
2E(X̄k − µ0k)

2E{σ̃−2
j (α)σ̃−2

k (α)}

= 3C2σ
−4α
pool

p∑
j=1

σ4α
j + C3σ

−4α
pool

∑
j ̸=k

σ2α
j σ2α

k .

Finally, we have

Var{T 2
SD1(α)} = E

{
T 2
SD1(α)

}2 − [E{T 2
SD1(α)}

]2
= (3C2 − C3)σ

−4α
pool

p∑
j=1

σ4α
j + (C3 − C2

1)σ
−4α
pool (

p∑
j=1

σ2α
j )2.

3.7.2 Derivation of formula (3.10)

Note that

ln(σ̂−2
pool) = −1

p

p∑
j=1

ln(σ2
j )−

1

p

p∑
j=1

ln

(
νσ̂2

j

σ2
j

)
+ ln(ν).

Given that σ2
j are i.i.d. random variables with E {ln(σ2

1)} <∞, by the strong law of

large numbers,

1

p

p∑
j=1

ln(σ2
j )

a.s.−→ E
{
ln(σ2

1)
}

as p→ ∞.
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In addition, noting that νσ̂2
j/σ

2
j are i.i.d. chi-squared distributed with ν degrees of

freedom, we have

1

p

p∑
j=1

ln

(
νσ̂2

j

σ2
j

)
a.s.−→ E

{
ln(

νσ̂2
1

σ2
1

)

}
= Ψ

(ν
2

)
+ ln(2) as p→ ∞.

Then, by Slutsky’s theorem,

ln(σ̂−2
pool)

a.s.−→ −E
{
ln(σ2

1)
}
+ ln

(ν
2

)
−Ψ

(ν
2

)
as p→ ∞,

which leads to (3.10).
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Chapter 4

A Comparison of Methods for

Estimating the Determinant of

High-Dimensional Covariance

Matrix

4.1 Introduction

With the advancement of technology, high-dimensional data are becoming more and

more common in scientific research including gene expression study, financial en-

gineering and signal processing. One significant feature of such data is that the

dimension is usually larger or much larger than the sample size. This results in the

so-called “large p small n” data, where p is the dimension of the data and n is the

sample size. One such example is the gene expression microarray data, in which one

often measures thousands of gene expression values simultaneously for each individ-

ual. In contrary, due to the cost or other reasons such as the limited availability of

patients, the number of samples in microarray experiments is usually small compared

to the number of genes. It is not even uncommon to see microarray data with less

than 10 samples (Kuster et al.; 2011; Mokry et al.; 2012; Kaur et al.; 2012; Searcy

et al.; 2012). As seen in the literature, there are many statistical and computational
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challenges in analyzing the “large p small n” data.

Let Xi = (Xi1, . . . ,Xip)
T , i = 1, . . . , n, be i.i.d. random vectors from the mul-

tivariate normal distribution Np(µ,Σ), where µ is a p-dimensional mean vector and

Σ is a symmetric, nonnegative-definite, covariance matrix of size p × p. When p is

larger than n, it is known that the sample covariance matrix Sn is a singular matrix

and so it is no longer a valid estimate of Σ. To overcome the singularity problem,

various methods for estimating Σ have been proposed in the recent literature, e.g.,

the ridge-type estimators in Ledoit and Wolf (2003) and Fisher and Sun (2011), and

the sparse estimators in Bickel and Levina (2008), Cai and Yuan (2012) and Rothman

(2012). For more details, see also Tong et al. (2014) and the references therein.

Apart from the covariance matrix estimation, there are situations where one needs

an estimate of the determinant (or the log-determinant) of the covariance matrix for

high-dimensional data. To illustrate it, we write the log-likelihood function of the

data as

log(L) = −np
2

log(2π)− n

2
log |Σ| − 1

2

n∑
i=1

(Xi − µ)TΣ−1(Xi − µ),

where |Σ| denotes the determinant of the covariance matrix Σ. The term |Σ| plays

an important role in statistical inference. It has many real applications including

classification, multivariate multiple regression, and information theory. To cater for

this demand, we present here several examples.

• Quadratic discriminant analysis (QDA) is an important method of classification.

Assuming that the data in class k follow Np(µk,Σk), the quadratic discriminant

scores are given by

dk(Y) = (Y − µk)
TΣ−1

k (Y − µk) + log |Σk| − 2 log πk, k = 1, . . . , K,

where Y is the new sample, K is the total number of classes, and πk is the

prior probability of observing a sample from class k. The classification rule is

to assign Y to class k that minimizes dk(Y) among all classes. To implement

QDA, it is obvious that we need an estimate of |Σk| or log |Σk|.
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• To estimate the high-dimensional precision matrix Ω = Σ−1, Yuan and Lin

(2007) and Friedman et al. (2008) proposed to solve the following optimization

problem:

Ω̂ = argmin
Ω>0

{tr(SnΩ)− log |Ω|+ λ∥Ω∥1},

where tr(·) is the trace, ∥ · ∥1 is the ℓ1 norm, and λ is a tuning parameter. The

purpose of the term, log |Ω| = − log |Σ|, is to ensure that the optimization prob-

lem has a unique global positive definite minimizer (Rothman; 2012). Other

proposals in this direction include Banerjee et al. (2008), Witten and Tibshirani

(2009), Ravikumar et al. (2011), Yin and Li (2013), and among others.

• In probability theory and information theory, the differential entropy is com-

monly used by extending the concept of entropy to the continuous probability

distribution. For a random vector from Np(µ,Σ), the differential entropy is

h(Σ) =
p

2
+
p log(2π)

2
+

log |Σ|
2

.

Another related quantity is the Kullback-Leibler divergence that measures the

difference between two probability distributions. Specifically, the Kullback-

Leibler divergence between Np(µ,Σ) and Np(µ1,Σ1) is given by

DKL =
1

2

{
tr(Σ−1

1 Σ) + (µ1 − µ)TΣ−1
1 (µ1 − µ)− p− log |Σ|+ log |Σ1|

}
.

Needless to say, an estimate of the determinant |Σ|, or equivalently an estimate of

the log-determinant log |Σ|, is increasingly needed in high-dimensional data analysis.

For ease of notation, we let

θ = log |Σ|

throughout this chapter. In contrast to the covariance matrix estimation, the impor-

tance of estimating θ is relatively overlooked in the literature. In practice, one often

estimates the covariance matrix first and then use it to compute the log-determinant,

rather than a direct estimate of θ. Recently, Cai et al. (2013) investigated the es-

timation of θ under various settings. Under some “moderate” setting with p ≤ n,

they proposed to estimate θ by the determinant of the sample covariance matrix, i.e.,
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log |Sn|. A central limit theorem was also established for log |Sn| in the setting where

p can grow with n. For the “large p small n” data, however, they showed that it

is impossible to estimate θ consistently, unless some structural assumption such as

sparsity on the parameter can be imposed.

Note that a good estimate of Σ may not necessarily lead to a satisfactory estimate

of θ. This motivates us to conduct a comprehensive simulation study that evaluates

the performance of the existing methods for estimating Σ. In Section 4.2, we consider

a total of nine methods for estimating θ. A brief review on each of the methods is also

given. In Section 4.3, we conduct simulation studies to evaluate and compare their

performance under various settings. In particular, we will consider different types

of correlation structures including a non-positive definite covariance matrix that is

often ignored in the existing literature. We then explore and summarize some useful

findings, and provide some practical guidelines for scientists in Section 4.4. Finally,

we note that the comparison study in this chapter also provides a way for assessing

the performance of existing covariance matrix estimation methods. Technical details

are provided in Section 4.5.

4.2 Methods for Estimating θ

Needless to say, estimating the high-dimensional covariance matrix has attracted a

lot of attention. Various approaches have been proposed in the literature. In this

section, we review eight representative methods for estimating the covariance matrix.

We then estimate the log-determinant θ using the eight estimates of Σ, respectively.

In addition, we also propose a new method for estimating θ under the assumption of

a diagonal covariance matrix. For ease of presentation, we divide the nine methods

into four different categories: the diagonal estimation, the shrinkage estimation, the

sparse estimation, and the factor model estimation.

4.2.1 Diagonal Estimation

Method 1: Diagonal Estimator (DE)
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Under the “large p small n” setting, one naive approach is to estimate Σ by the

diagonal sample covariance matrix, i.e. diag(Sn). This estimator was first consid-

ered in Dudoit et al. (2002) where the authors proposed a diagonal linear discriminant

analysis. It was also considered in Bickel and Levina (2004) where the authors demon-

strated that a diagonal covariance matrix estimation can be sometimes reasonable

when p is much larger than n. Let diag(Σ) = diag(σ2
1, . . . , σ

2
p) where σ2

j are the

covariate-specific variances for j = 1, . . . , p, and diag(Sn) = diag(s21, . . . , s
2
p) where s

2
j

are the sample variances of σ2
j , respectively. By letting Σ̂ = diag(Sn), we define the

first estimator of θ as

θ̂(1) = log
∣∣diag(Sn)

∣∣ = p∑
j=1

log s2j . (4.1)

We refer to θ̂(1) as the diagonal estimator (DE). To be specific, DE is proposed to

estimate log |diag(Σ)| rather than log |Σ|.

Method 2: Improved Diagonal Estimator (IDE)

It is noteworthy that DE may not perform well as an estimate of log |diag(Σ)|

when the sample size is small, mainly due to the unreliable estimates of the sample

variances. Various approaches have been proposed to improving the variance estima-

tion in the literature. See, for example, Baldi and Long (2001), Wright and Simon

(2003), Cui et al. (2005), Tong and Wang (2007), and Tong, Jang and Wang (2012).

To improve DE, we consider the optimal shrinkage estimator in Tong and Wang

(2007),

σ̂2
j = {hp(1)s2pool}α{h1(1)s2j}1−α,

where s2pool =
∏p

i=1(s
2
j)

1/p, hp(1) = (ν/2) {Γ(ν/2)/Γ(ν/2 + 1/p)}p with ν = n − 1,

Γ(·) is the Gamma function, and α ∈ [0, 1] is the shrinkage parameter. Replacing s2j

in DE by σ̂2
j , we have

θ̂ =

p∑
j=1

log σ̂2
j = θ̂(1) + C, (4.2)

where C = log {hαpp (1)h
(1−α)p
1 (1)} is a constant.
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The estimation structure in (4.2) shows that the DE estimator, θ̂(1), can be further

improved. Specifically, if we have C0 such that E(θ̂(1) + C0) = log |diag(Σ)|, then C0

defines as the optimal C value so that the estimator θ̂(1) + C0 minimizes the mean

squared error in the family of estimators {θ̂(1) + C : C ∈ (−∞,∞)}.

Theorem 13. Let s2j = σ2
jχ

2
ν,j/ν, where χ

2
ν,j are i.i.d random variables with a common

chi-squared distribution with ν degrees of freedom, and C0 = −p {log (2/ν) + ψ(ν/2)},

where ψ(·) = Γ′(·)/Γ(·) is the digamma function. Then for any fixed ν > 0, we have

(1) θ̂(1) + C0 is an unbiased estimator of log |diag(Σ)|.

(2) Assume also that σ2
j are i.i.d random variables from a common distribution F

and E(log σ2
1) <∞. Then

1

p

(
θ̂(1) + C0 − log |diag(Σ)|

)
a.s.−→ 0 as p→ ∞,

where
a.s.−→ denotes almost sure convergence.

The proof of Theorem 13 is given in Section 4.5. By (4.2) and Theorem 13, we

define the second estimator of θ as

θ̂(2) =

p∑
j=1

log s2j − p {log (2/ν) + ψ(ν/2)} .

We refer to θ̂(2) as the improved diagonal estimator (IDE).

4.2.2 Shrinkage Estimation

Recall that the sample covariance matrix Sn is singular when the dimension is larger

than the sample size. To overcome the singularity problem, other than the diagonal

methods in Section 4.2.1, one may also estimate the covariance matrix by the following

convex combination:

S∗ = δT+ (1− δ)Sn,

where T is the target matrix and δ ∈ [0, 1] is the shrinkage parameter. Both the

target matrix and the shrinkage parameter play an important role in the shrinkage
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estimation. For instance, if we let T = diag(Sn) and δ = 1, then S∗ reduces to the

DE estimator.

The appropriate choice of the target matrix has been extensively studies in the

literature. See, for example, Ledoit and Wolf (2003), Schäfer and Strimmer (2005),

Warton (2008), Warton (2011), and Fisher and Sun (2011) and the references therein.

Note that T is often chosen to be positive definite and well-conditioned, and conse-

quently, the final estimate S∗ is also guaranteed positive definite and well-conditioned

for any dimensionality. As suggested in Schäfer and Strimmer (2005) and Fisher and

Sun (2011), we consider two popular target matrices: (1) the “diagonal, unit vari-

ance” matrix, i.e., the identity matrix I, and (2) the “diagonal, unequal variance”

matrix, i.e., the diagonal sample covariance matrix diag(Sn).

Note also that, given the target matrix, the estimation of the shrinkage parameter

δ is also crucial to the final estimation. The available estimation methods for the

shrinkage parameter are mainly: (1) the unbiased estimation, and (2) the consistent

estimation. The unbiased estimation is obtained by minimizing a risk function to

compute the optimal value, replacing unknown terms in the optimal value by their

unbiased estimation, and truncating the estimated optimal value. The consistent

estimation is obtained by deriving the (n, p)-consistent estimators for the unknown

terms in the optimal shrinkage parameter derived in Ledoit and Wolf (2004). Taken

together, we consider a total of four methods for estimating the covariance matrix

and consequently for estimating θ.

Method 3: Unbiased Shrinkage Estimator with T = I (USIE)

Letting the target matrix be T = I, Schäfer and Strimmer (2005) proposed an

unbiased estimator for the shrinkage parameter, denoted by δ̂∗1. This leads to S∗ =

δ̂∗1I+ (1− δ̂∗1)Sn. We then define the third estimator of θ as

θ̂(3) = log |δ̂∗1I+ (1− δ̂∗1)Sn|. (4.3)

Method 4: Consistent Shrinkage Estimator with T = I (CSIE)

Letting the target matrix be T = I, Fisher and Sun (2011) proposed a consistent
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estimator for the shrinkage parameter, denoted by δ̂∗2. This leads to S∗ = δ̂∗2I+ (1−

δ̂∗2)Sn. We then define the fourth estimator of θ as

θ̂(4) = log |δ̂∗2I+ (1− δ̂∗2)Sn|. (4.4)

Method 5: Unbiased Shrinkage Estimator with T = diag(Sn) (USDE)

Letting T = diag(Sn), Schäfer and Strimmer (2005) also proposed an unbiased

estimator for the shrinkage parameter, denoted by δ̂∗3. This leads to S
∗ = δ̂∗3diag(Sn)+

(1− δ̂∗3)Sn. We then define the fifth estimator of θ as

θ̂(5) = log |δ̂∗3diag(Sn) + (1− δ̂∗3)Sn|. (4.5)

Method 6: Consistent Shrinkage Estimator with T = diag(Sn) (CSDE)

Letting T = diag(Sn), Fisher and Sun (2011) also proposed a consistent estimator

for the shrinkage parameter, denoted by δ̂∗4. This leads to S
∗ = δ̂∗4diag(Sn)+(1−δ̂∗4)Sn.

We then define the sixth estimator of θ as

θ̂(6) = log |δ̂∗4diag(Sn) + (1− δ̂∗4)Sn|. (4.6)

4.2.3 Sparse Estimation

When p is much larger than n, the shrinkage methods in Section 4.2.2 may not

achieve a significant improvement over Sn. In such settings, to have a good estimate

of Σ, one may have to impose some structural assumptions such as sparsity in the

parameters. A typical sparsity is to assume that most of the off-diagonal elements in

the covariance matrix are zero. To estimate the covariance matrix under a sparsity

condition, various thresholding-based methods have been proposed in the literature

that aim to locate some “large” off-diagonal elements. See, for example, Bickel and

Levina (2008), Karoui (2008), Rothman et al. (2009), Lam and Fan (2009), Cai and

Liu (2011), Cai and Yuan (2012), and Cai and Zhou (2012). In this section, we

consider two representative sparsity methods and then use them to estimate θ, i.e.,

the log-determinant of the covariance matrix.
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Method 7: Hard Thresholding Estimator (HTE)

Under the sparsity assumption, Bickel and Levina (2008) introduces a universal

thresholding method for estimating the sparse covariance matrix. Specifically, given

Sn = (sij)p×p, their proposed estimator is

Σ̂γ = (σ̃ij)p×p with σ̃ij = sij1{abs(sij) ≥ γ},

where 1{·} is the indicator function, abs(·) is the absolute operation, and γ is a

threshold value. Now by Σ̂γ, we define the seventh estimator of θ as

θ̂(7) = log |Σ̂γ|. (4.7)

We refer to θ̂(7) as the hard thresholding estimator (HTE).

Method 8: Adaptive Thresholding Estimator (ATE)

Note that HTE is a universal thresholding method where all entries in the sample

covariance matrix are thresholded by a common value γ. To make HTE well behaved,

we require that the variances σ2
j are uniformly bounded by a constant K, and con-

sequently, the variances of the entries of the sample covariance matrix are uniformly

bounded.

Cai and Liu (2011) showed that HTE is suboptimal over a certain class of sparse

covariance matrices. To improve it, they proposed an adaptive thresholding estimator

for the covariance matrix:

Σ̂∗ = (σ̃∗
ij)p×p with σ̃∗

ij = sγij(sij),

where γij are individual threshold values of all entries in the sample covariance matrix,

and sγij(·) is a generalized thresholding operator which is defined similarly as those

in Rothman et al. (2009). They further showed that, with the proper choices of γij

and sγij(·), the estimator Σ̂∗ adaptively achieves the optimal rate of convergence over

a large class of sparse covariance matrices under the spectral norm. Now by Σ̂∗, we

define the eighth estimator of θ as

θ̂(8) = log |Σ̂∗|. (4.8)

We refer to θ̂(8) as the adaptive thresholding estimator (ATE).
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4.2.4 Factor Model Estimation

The sparsity condition on the covariance matrix assumes that most of covariates are

uncorrelated to each other. Note that, however, this assumption may not be realistic

in practice. Recently, under the assumption of conditional sparsity, Fan et al. (2013)

introduced a principle orthogonal complement thresholding method using the factor

model. In this section, we briefly review their method and then apply it to estimate

the log-determinant of the covariance matrix.

Method 9: Principal Orthogonal Complement Thresholding Estimator (POCTE)

Fan et al. (2013) considered the approximate factor model:

yg = Bfg + ug, g = 1, . . . , G,

where yg = (y1g, . . . , ypg)
T is the observed response, B = (b1, . . . ,bp)

T is the loading

matrix, fg is a Q× 1 vector of common factors, and ug = (u1g, . . . , upg)
T is the error

vector. In this model, we can only observe yg. Let

Σ = Bcov(fg)B
T + Σu, g = 1, . . . , G,

where Σu is the covariance matrix of ug. To estimate Σ, Fan et al. (2013) applied

the spectral decomposition on the sample covariance matrix:

Sn =

Q∑
j=1

λ̂j ξ̂j ξ̂
T
j + R̂Q,

where λ̂1 ≥ λ̂1 ≥ · · · ≥ λ̂p are eigenvalues of Sn, ξ̂j, j = 1, . . . , p are the corresponding

eigenvectors, and R̂Q =
∑p

j=Q+1 λ̂j ξ̂j ξ̂
T
j is the principle orthogonal complement. For

this decomposition, the first Q principle components were kept and the thresholding

was applied on R̂Q. Here, the generalized thresholding operator can be used. In

addition, Fan et al. (2013) also introduced a method to obtain an estimation of Q,

denoted by Q̂. Their final estimator of Σ is

Σ̂Q̂ =

Q̂∑
j=1

λ̂j ξ̂j ξ̂
T
j + R̂T

Q̂
, (4.9)

76



where R̂T
Q̂
is the thresholding result of R̂Q. Now by (4.9), we define the ninth esti-

mator of θ as

θ̂(9) = log |Σ̂Q̂|. (4.10)

We refer to θ̂(9) as the principal orthogonal complement thresholding estimator (POCTE).

4.3 Simulation Studies

In this section, we evaluate and compare the performance of all nine methods un-

der various simulation settings. To compare these methods, we compute the mean

squared error (MSE) as below:

MSE(θ, θ̂) =
1

Mp

M∑
m=1

(θ̂m − θ)2,

where M is the repeated time. Throughout the simulations, we take M = 1, 000.

The data are generated from the multivariate normal distribution Np(0,Σ). In what

follows, three different setups of Σ will be considered, respectively.

4.3.1 Setup I

In this setup, we consider to generate a realistic covariance matrix from the Myeloma

data (Zhan et al.; 2007), which is a real microarray data set including a total of

54,675 genes, 351 samples in the first group and 208 samples in the second group. To

generate the covariance matrix, we first select p genes (50 or 300) randomly from the

first group and then compute the sample covariance matrix using the selected genes,

denote by Σr. Next, to evaluate the performance of the estimators under different

levels of dependence, we follow Tong et al. (2013) and define the true covariance

matrix as

Σ1 = (1− ρ)diag(Σr) + ρΣr,

where ρ controls the level of dependence. We set ρ = 0, 1/3, 2/3, and 1. Note that

ρ = 0 corresponds to a diagonal covariance matrix, and ρ = 1 treats the generated

covariance matrix as the true covariance matrix.
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Figures 4.1 and 4.2 show the log(MSE) of all nine methods for different correla-

tions, numbers of genes and sample sizes. Among the nine methods, the shrinkage

estimation performs the best when the sample size is very small. If the sample size

becomes large, the performances of the nine methods are different under different

correlations. IDE outperforms the other eight methods if the covariates are indepen-

dent. USDE and CSDE perform better if the correlation among covariates becomes

strong. In addition, we note that under the case of strong correlations, POCTE tends

to outperform others if we have larger number of genes.

4.3.2 Setup II

In this setup, we consider a block diagonal structure for the covariance matrix. This

structure is widely adopted in the literature, e.g., in Guo et al. (2007) and Pang et al.

(2009). Specifically, we let

Σ2 = D1/2RD1/2,

where D = diag(σ2
1, . . . , σ

2
p) with σ2

j being i.i.d. from the distribution (1/5)χ2
5, and

R follows the following block diagonal structure:

R =



Σρ 0 · · · · · · 0

0 Σ−ρ 0
. . .

...
... 0 Σρ 0

...
...

. . . 0 Σ−ρ
. . .

0 · · · · · · . . . . . .


p×p

.

In our simulations, we consider Σρ = (σij(ρ))q×q with σij(ρ) = ρ|i−j| for 1 ≤ i, j ≤ q.

In addition, we set ρ = 0, 0.3, 0.6, and 0.9, to represent different levels of dependence,

and (p, q) = (50, 5) and (300, 15), respectively.

Figures 4.3 and 4.4 display the log(MSE) of all nine methods for different correla-

tions, numbers of genes and sample sizes. Both figures exhibit similar results as those

of Setup I in the case of small sample sizes and independent covariates. For larger

sample sizes, however, we can see the improved performances of sparse estimation

and factor model estimation. In particular, POCTE gives the best performance for
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strong correlations. Figure 4.5 displays the performances of the nine methods for

different levels of dependence. It is also shown that POCTE outperforms the other

eight methods for high level of dependence when the sample size is large.

4.3.3 Setup III

Recall that most existing methods require that Σ is positive definite. In this setup, we

consider a non-positive definite covariance matrix and investigate the performance of

the nine methods under the violation of the positive definite assumption. Note that

this new setting is often overlooked in the literature. To construct a non-positive

definite covariance matrix, we define the affine transformation C as

C =



1 0 · · · · · · · · · · · · · · · 0

0 1 0
. . . . . . . . . . . .

...
... 0 1 0

. . . . . . . . .
...

...
. . . . . . . . . . . . . . . . . .

...
...

. . . . . . . . . 0 1 0
...

...
. . . . . . . . . . . . 0 1 0

0 · · · 0 1 1 1 1 0


p×p

.

We then apply the affine transformation to the covariance matrix in Setup II and

form

Σ3 = CΣ2C
T .

It is obvious that |Σ3| = 0 since |C| = 0. We set (p, q) = (50, 5), and ρ = 0, 0.3,

0.6, and 0.9. Note that the log-determinant of Σ3 is negative infinity. Hence, for

this degenerate setting, the MSE is defined on the determinant rather than on the

log-determinant. Specifically, it is

MSE(eθ, eθ̂) =
1

Mp

M∑
m=1

(
eθ̂m − eθ

)2
.

Figure 4.6 shows the log(MSE) of all nine methods for different correlations and

sample sizes. We can see that the simulation results are different from those of Setups
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I and II. It is evident that POCTE outperforms the other eight methods when the

positive definite assumption on Σ is violated.

4.4 Conclusion and Discussion

In this chapter, we have compared a total of nine methods for estimating the log-

determinant, or equivalently the determinant, of high-dimensional covariance matrix.

Three types of covariance structures are considered in our simulation studies. In

what follows, we summarize some useful findings of the comparison results and also

provide some practical guidelines for scientists.

The diagonal estimator, DE, is the simplest method for estimating the determi-

nant of high-dimensional covariance matrix. However, it assumes that all covariates

are independent. IDE, which is an unbiased estimator of log |diag(Σ)|, has the best

performance if the number of samples is moderate and the assumption of indepen-

dence is satisfied. Once the correlation becomes strong, there are many other methods

that have better performances. Therefore, if we have prior information that most of

the covariates are independent or weakly correlated, IDE can be recommended for

estimating the determinant of high-dimensional covariance matrix.

In general, the shrinkage estimators perform well for small sample sizes. For the

shrinkage estimation, different choices of the target matrix and shrinkage parameter

result in different performances for the estimation. First, we observed that USIE

and CSIE tend to perform better for weakly correlated covariates, and USDE and

CSDE tend to perform better for highly correlated covariates. Therefore, we suggest

to adopt the identity matrix as the target matrix when estimating the determinant

of weakly correlated covariance matrix, and the diagonal sample covariance matrix

as the target matrix when the covariates are highly correlated. Second, we observed

that for a common target matrix, USIE and USDE tend to have better performances

than CSIE and CSDE, respectively. This indicates that when the sample size is very

small, the unbiased estimators are better choices for estimating θ.

For the sparse estimators, we observed that they perform well when the sample size
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is moderate and the correlations are strong. We also noted that the performances

of HTE and ATE are always similar to each other. In practice, if we have prior

information that most of the covariates are weakly correlated and the sample size

is not small, then the sparse estimators can be recommended for estimating the

determinant of high-dimensional covariance matrix.

As a factor model estimation, POCTE is very attractive for strong correlated data

sets. Fan et al. (2013) assumed that the data are weakly correlated after extracting the

common factors which can result in high levels of dependence among the covariates.

Hence POCTE has better performance if the data are strong correlated. Note also

that POCTE can select Q = 0 automatically if the true covariance matrix is sparse.

Then consequently, their method will degenerate to the sparse estimation in such

cases. In addition, the superiority of POCTE can be seen in our simulation studies

when the true covariance matrix is non-positive definite.

Overall, there is no single method that dominates other methods under all con-

sidered circumstances. In general, the sample size and the correlation of the data

sets have a great impact on the accuracy of estimation. Consequently, we may select

appropriate estimation methods according to the sample size and the prior informa-

tion on the correlation structure of the covariates. In the situations, however, when

such prior information is not available, we recommend to use POCTE to estimate

the determinant of high-dimensional covariance matrix.

Finally, it is noteworthy that the comparison study in this chapter also serves as

a proxy to assess the performance of the covariance matrix estimation. Specifically,

from a perspective of the loss function, if we define the loss function as

L(Σ̂,Σ) = (log |Σ̂| − log |Σ|)2 or L(Σ̂,Σ) = (|Σ̂| − |Σ|)2,

then the conducted simulations in Section 4.3 provide exactly a comparison for the

nine methods for estimating Σ rather than θ. Of course, we do not intend to claim

that the above loss function should be consistently recommended. In contrast, for

evaluating the covariance matrix estimation, other commonly used loss functions are

also available. For instance, we may also consider the following loss functions:
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• Loss function in Karoui (2008), Rothman et al. (2009) and Fan et al. (2011):

L(Σ̂,Σ) = ∥Σ̂ − Σ∥2 =

√
λmax{(Σ̂− Σ)T (Σ̂− Σ)}, where λmax(·) denotes the

maximum eigenvalue.

• Loss function in Cai and Liu (2011) and Fan et al. (2013): L(Σ̂,Σ) = ∥Σ̂ −

Σ∥F =
√∑

i,j(σ̂ij − σij)2, where Σ = (σij)p×p, Σ̂ = (σ̂ij)p×p.

• Loss function in Fan et al. (2013): L(Σ̂,Σ) = ∥Σ̂− Σ∥max = maxi,j |σ̂ij − σij|.

Further research is needed to investigate which loss function provides to be the best

candidate for evaluating the estimation methods for the covariance matrix.

4.5 Proofs

4.5.1 Proof of Theorem 13

(1) From s2j = σ2
jχ

2
ν,j/ν, we have log s2j = log σ2

j + log (χ2
ν,j/ν). Then,

p∑
j=1

log s2j =

p∑
j=1

log σ2
j + p logχ2

ν,j − p log ν.

Hence

E

(
p∑

j=1

log s2j

)
=

p∑
j=1

log σ2
j + pE(logχ2

ν,j)− p log ν

=

p∑
j=1

log σ2
j + p {log 2 + ψ(ν/2)} − p log ν.

This leads to

E
{
θ̂(1) + C0

}
= E

(
p∑

j=1

log s2j

)
− p {log 2 + ψ(ν/2)}+ p log ν

=

p∑
j=1

log σ2
j

= log |diag(Σ)|.

This proves that θ̂(1) + C0 is an unbiased estimator of log |diag(Σ)|.
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(2) For E(log σ2
1) <∞, we have

1

p

p∑
j=1

log σ2
j

a.s.−→ E(log σ2
1) as p→ ∞.

Since E(log s21) = E{E(log s21|σ2
1)} = E(log σ2

1) + log (2/ν) + ψ(ν/2), we have

1

p

p∑
j=1

log s2j − log (2/ν)− ψ(ν/2)
a.s.−→ E(log σ2

1) as p→ ∞.

Hence

1

p

p∑
j=1

log s2j − log (2/ν)− ψ(ν/2)− 1

p

p∑
j=1

log σ2
j

a.s.−→ 0 as p→ ∞.

Finally, we have

1

p

{
θ̂(1) + C0 − log |diag(Σ)|

}
=

1

p

p∑
j=1

log s2j − log (2/ν)− ψ(ν/2)− 1

p

p∑
j=1

log σ2
j

a.s.−→ 0 as p→ ∞.
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Figure 4.1: MSEs for Setup I and p=50. The sample size ranges from 4 to 50. In all

figures, “1” to “9” represent Methods 1 to 9, respectively.
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Figure 4.2: MSEs for Setup I and p=300. The sample size ranges from 4 to 100.
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Figure 4.3: MSEs for Setup II and p=50. The sample size ranges from 4 to 50.
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Figure 4.4: MSEs for Setup II and p=300. The sample size ranges from 4 to 100.
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Figure 4.5: MSEs for Setup II and p=50 with different ρ ranging from 0.1 to 0.9.
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Figure 4.6: MSEs for Setup III and p=50. The sample size ranges from 4 to 50.
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Chapter 5

NBLDA: Negative Binomial Linear

Discriminant Analysis for

RNA-Seq Data

5.1 Introduction

RNA-sequencing (RNA-Seq) is a revolutionary technology that uses the capabilities

of next-generation sequencing to quantify gene expression levels (Mardis; 2008; Wang

et al.; 2009; Morozova et al.; 2009). Compared to microarray technology, RNA-Seq

has many advantages including the detection of novel transcripts, low background

signal, and the increased specificity and sensitivity. Due to reduced sequencing cost,

RNA-Seq has been widely used in biomedical research in recent years (Lorenz et al.;

2014). In real-world applications, the gene expression profile of biopsy or serum

sample from an individual can be used to test whether this individual has a disease

and/or a specific type of disease, which is essentially a classification problem. Differ-

ent from the microarray technology that measures the level of gene expression on a

continuous scale, RNA-Seq counts the number of reads that are mapped to one gene

and measures the level of gene expression with nonnegative integers. As a result,

popular tools that assume a Gaussian distribution in microrray data analysis, such

as linear discriminant analysis, may not perform as well as those methods that adopt
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appropriate discrete distributions for RNA-Seq data.

For RNA-Seq data, the Poisson distribution and negative binomial distribution

are two common distributions considered in the expression detection and classifica-

tion. Many methods have been proposed to detect differentially expressed genes,

including edgeR (Robinson and Smyth; 2008; Robinson et al.; 2010), DESeq (Anders

and Huber; 2010), baySeq (Hardcastle and Kelly; 2010), BBSeq (Zhou et al.; 2011),

SAMseq (Li and Tibshirani; 2013), DSS (Wu et al.; 2013), AMAP (Si and Liu; 2013),

sSeq (Yu et al.; 2013), and LFCseq (Lin et al.; 2014). However, there is less progress

on the classification using RNA-Seq data until recently. Witten (2011) proposed a

Poisson linear discriminant analysis (PLDA) which assumes that RNA-Seq data fol-

low the Poisson distribution. Tan et al. (2014) further discussed many methods, such

as logistic regression and partial least squares, and showed that PLDA is a compara-

ble method. The Poisson distribution is suitable for modeling RNA-Seq data when

biological replicates are not available. However, if biological replicates are available,

the Poisson distribution may not be a proper choice owing to the overdispersion issue,

where the variances of such data are likely to exceed their means (Anders and Huber;

2010; Si and Liu; 2013). The overdispersion issue can have a significant effect on

classification accuracies. In real-world applications, biological replicates can provide

more convincing results than technical replicates. Therefore, it is necessary to look

for some solutions to take the overdispersion issue into consideration.

We note that Witten (2011) has considered this problem and pointed out that

the classification accuracy can be further improved for overdispersed data by extend-

ing the Poisson model to the negative binomial model. However, to construct an

appropriate negative binomial classifier for practical use, two major issues remain to

be solved. The first issue is that the probability density function (pdf) of the nega-

tive binomial distribution is more complicated than that of the Poisson distribution,

which gives rise to a more complicated classifier. The second issue is that the nega-

tive binomial distribution contains a dispersion parameter, which controls how much

its variance exceeds its mean. To construct the classifier using the negative binomial

model, we need to estimate the dispersion parameter. To avoid fitting the compli-
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cated negative binomial model, Witten (2011) proposed a transformation method for

the overdispersed data and found that this method works well if the overdispersion

is mild.

In light of the importance of the dispersion in modelling RNA-Seq data with the

negative binomial distribution, some dispersion estimation methods have been pro-

posed recently in the literature. For example, Wu et al. (2013) proposed a dispersion

estimator using empirical Bayes method and applied it to find differentially expressed

genes. Yu et al. (2013) proposed a shrinkage estimator of dispersion which shrinks

the estimates obtained by the method of moments towards a target value, and also

applied it to detect differentially expressed genes. These new methods on estimating

the dispersion parameter make it possible to construct a negative binomial classifier

to achieve better classification accuracy on RNA-Seq data.

In this chapter, we propose a negative binomial linear discriminant analysis (NBLDA)

for RNA-Seq data. The main contributions of this chapter are in, but not limited to,

the following two aspects:

1. We extend Witten (2011) to build a new classifier based on the negative bi-

nomial model. Under the assumption of independent genes, we define the dis-

criminant score by Bayes’ rule and propose some plug-in rules for estimating

the unknown parameters in the classifier.

2. We further explore the relationship between NBLDA and PLDA. A numerical

comparison is conducted to explore how the dispersion changes the discriminant

score. The comparison results will provide some guidelines for scientists to

decide which method should be used in the discriminant analysis of RNA-Seq

data.

To demonstrate the performance of our proposed method, we conduct several sim-

ulation studies under different numbers of genes, sample sizes, and proportions of

differentially expressed genes. Simulation results show that the proposed NBLDA

outperforms existing methods in many settings. Four real RNA-Seq data sets are

also analyzed to demonstrate the advantage of NBLDA. Specifically, we propose the
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negative binomial classifier study, the relationship between NBLDA and PLDA, and

present the parameter estimation in Section 5.2. Simulation studies and real data

analysis are conducted in Sections 5.3 and 5.4. We conclude this chapter with some

discussions in Section 5.5.

5.2 Negative Binomial Linear Discriminant Anal-

ysis

Let Xig denote the numbers of reads mapped to gene g in sample i, i = 1, . . . , n

and g = 1, . . . , G. Our goal is to identify which class a new observation belongs

to. Witten (2011) proposed a PLDA for classifying RNA-Seq data. When biological

replicates are available, however, overdispersion occurs for RNA-Seq data and hence

the Poisson distribution may no longer be appropriate. In this section, we propose

a new discriminant analysis for RNA-Seq data by assuming that the data follow the

negative binomial distribution.

5.2.1 Methodology

Consider the following negative binomial distribution for RNA-Seq data:

Xig ∼ NB(µig, ϕg), µig = siλg, (5.1)

where si is the size factor which is used to scale gene counts for the ith sample due

to different sequencing depth, λg is the total number of reads per gene, and ϕg ≥ 0 is

the dispersion parameter. We have E(Xig) = µig and Var(Xig) = µig + µ2
igϕg. Note

that the variance is larger than the mean for the negative binomial distribution.

Let K be the total number of classes and Ck ∈ {1, . . . , n} the indices of samples

in class k for k = 1, . . . , K. Then the class-specific model for RNA-Seq data is given

by

(Xig|yi = k) ∼ NB(µigdkg, ϕg), (5.2)
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where dkg represents the differences among K classes, and yi = k ∈ {1, . . . , K} rep-

resents the label of sample i. We also follow the independence assumption in Witten

(2011) that all genes are independent of each other. Note that the independence

assumption is frequently assumed in microarray data analysis.

Let x∗ = (X∗
1 , . . . , X

∗
G)

T be a test sample with s∗ the size factor and y∗ the class

label. By Bayes’ rule, we have

P (y∗ = k|x∗) ∝ fk(x
∗)πk, (5.3)

where fk is the pdf of the sample in class k, and πk is the prior probability that one

sample comes from class k. The pdf of Xig = xig in model (5.2) is

P (Xig = xig|yi = k) =
Γ(xig + ϕ−1

g )

xig!Γ(ϕ−1
g )

(
siλgdkgϕg

1 + siλgdkgϕg

)xig

(
1

1 + siλgdkgϕg

)ϕ−1
g

. (5.4)

By (5.3) and (5.4), we have the following discriminant score for NBLDA:

logP (y∗ = k|x∗) =
G∑

g=1

X∗
g [log dkg − log(1 + s∗λgdkgϕg)]

−
G∑

g=1

ϕ−1
g log(1 + s∗λgdkgϕg)

+ log πk + C, (5.5)

where C is a constant independent of k. We then assign the new observation x∗ to

class k that maximizes the quantity (5.5). Throughout this chapter, we estimate the

prior probability πk by nk/n, where nk is the sample size in class k. For balanced data,

the prior probability is simplified as πk = 1/K for all k = 1, . . . , K. For gene g, the

total number of reads is λg =
∑n

i=1Xig, and the class difference dkg can be estimated

by (
∑

i∈Ck
Xig+1)/(

∑
i∈Ck

siλg+1). Estimation of the unknown parameters including

si and ϕg will be discussed in Section 5.2.2.

To explore the relationship between the proposed NBLDA and the PLDA in

Witten (2011), we assume that s∗λgdkg are bounded. When ϕg → 0, we have log(1+

s∗λgdkgϕg) → 0 and ϕ−1
g log(1+ s∗λgdkgϕg) = log(1+ s∗λgdkgϕg)

ϕ−1
g → s∗λgdkg. Then
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consequently,

logP (y∗ = k|x∗) ≈
G∑

g=1

X∗
g log dkg −

G∑
g=1

s∗λgdkg

+ log πk + C, (5.6)

where the right hand of (5.6) is the discriminant score of PLDA. That is, the NBLDA

classifier reduces to the PLDA classifier when there is little dispersion in the data.

From this point of view, the proposed NBLDA can be treated as a generalized version

of PLDA.

Since NBLDA contains the dispersion parameter which PLDA does not have, in

what follows, we investigate how the dispersion changes their discriminant scores.

We conduct a numerical comparison between NBLDA and PLDA. Two cases are

considered in this chapter. The first case is that all genes have a common dispersion,

and the second is that genes have different dispersions. Note that the classifiers (5.5)

and (5.6) have the same terms: log πk and C. Without loss of generality, we compute

the discriminant scores only using the first two terms in (5.5) and (5.6), respectively.

In the comparison study, we fix X∗
g = 10, dkg = 1.5, s∗ = 1, λg = 10 and G = 500. For

the case of common dispersion, we set the dispersion ranging from 0 to 20. For the

case of different dispersions, we let ϕg be i.i.d. random variables from a chi-squared

distribution with the degrees of freedom ranging from 0.1 to 5.

Figure 5.1 exhibits the comparison results. The left panel shows the results for

the case of common dispersion. Note that the discriminant score of PLDA is in-

dependent of the dispersion parameter and hence is a constant. For NBLDA, its

discriminant score is a curve, and the slope is large for low dispersions and small for

high dispersions. We discover that the discriminant score of NBLDA is sensitive to

the dispersion. Even when the dispersion is very small, the difference between the

two discriminant scores is significant. The right panel in Figure 5.1 shows the results

for the case of different dispersions. The pattern of the right panel is similar to the

left one except that the curve of NBLDA is not smooth. This suggests that when we

analyze real data, we should first compute its average dispersion and then use such

information to determine which classifier to use.
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Figure 5.1: Numerical comparisons between NBLDA and PLDA. The left panel shows

the results with a common dispersion ϕ. The right panel shows the results with

different gene-specific dispersions ϕg which are i.i.d. random variables from a chi-

squared distribution with r degrees of freedom. We compute the discriminant scores

of NBLDA and PLDA for different ϕ and r.
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5.2.2 Parameter Estimation

Note that the discriminant score in (5.5) involves two unknown parameters, size factor

s∗ and dispersion parameter ϕg.

Size factor estimation

Due to different sequencing depths, samples have different total numbers of reads.

Hence a normalization of the read counts through a size factor is a necessary step for

analyzing RNA-Seq data (Bullard et al.; 2010; Dillies et al.; 2013). To estimate the

size factor si for the training data and the size factor s∗ for the test data, we consider

the following three procedures:

• Total count: Witten (2011) divided the total read counts of sample i by the

total read counts of all samples to estimate the size factor of sample i. That is,

ŝ∗ =

∑G
g=1X

∗
g∑n

i=1

∑G
g=1Xig

,

ŝi =

∑G
g=1Xig∑n

i=1

∑G
g=1Xig

.

• DESeq: Anders and Huber (2010) first divided the read counts of sample i by

the geometric mean of all samples’ read counts, and then estimated the size

factor by computing the median of those G values. Specifically, the size factors

are estimated by

ŝ∗ = mediang

X∗
g

(
∏n

i=1Xig)1/n
,

ŝi = mediang
Xig

(
∏n

l=1Xlg)1/n
.

• Upper quartile: Bullard et al. (2010) proposed a robust method that uses the

upper quartile of the read counts to estimate the size factors. Specifically, the

size factors are estimated by

ŝ∗ =
q∗∑n
i=1 qi

,

ŝi =
qi∑n
i=1 qi

,

97



where q∗ and qi are the upper quartiles for the test data and sample i in the

training data, respectively.

In our simulation studies, we find that the three methods provide little difference in

the performance of classification. Hence, for brevity, we only report in the remainder

of this chapter the simulation results based on the total count method.

Dispersion parameter estimation

Various methods for estimating the dispersion parameter ϕg have been proposed in

the literature (Robinson and Smyth; 2008; Robinson et al.; 2010; Anders and Huber;

2010; Hardcastle and Kelly; 2010). A comparative study is also available in Landau

and Liu (2013) where the authors investigated the influence of different dispersion

parameter estimates on detecting differentially expressed genes in RNA-Seq data.

More recently, Yu et al. (2013) proposed a shrinkage estimator for ϕg that shrinks the

gene-specific estimation towards a target value. Specifically, the dispersion estimator

is estimated by

ϕ̂g = δξ + (1− δ)ϕ̃g, (5.7)

where δ is a weight defined as

δ =

∑G
g=1

{
ϕ̃g − (1/G)

∑G
g=1 ϕ̃g

}2

/(G− 1)∑G
g=1

(
ϕ̃g − ξ

)2
/(G− 2)

,

ϕ̃g are the initial dispersion estimates obtained by the method of moments, and ξ

is the target value calculated by minimizing the average squared difference between

ϕ̃g and ϕ̂g. In this chapter, we use the estimator (5.7) to estimate the dispersion

parameter.

5.3 Simulation Studies

In this section, we evaluate and compare the following classification methods:

• NBLDA,
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• PLDA,

• Support vector machines (SVM),

• K-nearest neighbors (KNN).

For PLDA, we use the R package “PoiClaClu” provided in Witten (2011). For SVM,

we use the R package “e1071” and choose the radial basis kernel in our simulation

studies. For KNN, we choose k = 1, 3 and 5.

5.3.1 Simulation Design

We generate the data from the following negative binomial distribution:

(Xig|yi = k) ∼ NB(siλgdkg, ϕ). (5.8)

The total number of classes is K = 2, and both the training data and test data have

n samples. In all G genes, the proportions of differentially expressed genes are 0.2,

0.4, 0.6, 0.8 and 1.0, which represents that 20%, 40%, 60%, 80% and 100% genes

are differentially expressed, respectively. For the differentially expressed genes, we

set log dkg = zkg, where zkg are i.i.d. random variables from the normal distribution

N(0, σ2). For the constant genes, we set dkg = 1. The size factors si are i.i.d. random

variables from the uniform distribution on [0.2, 2.2]. The λg values are i.i.d. random

variables from the exponential distribution with rate 0.04. Note that, for the sake of

fairness, we have essentially followed the same simulation settings as those in Witten

(2011). For the values of G, n, ϕ and σ, we specify them in Figures 5.2, 5.3 and 5.4.

To compare these methods, we compute the mean misclassification rates as fol-

lows: for each simulation, we generate n test samples and compute the following

misclassification rate:

the number of misclassified samples

n
.

We run 1,000 simulations, compute its mean, and then obtain the mean misclassifi-

cation rate.
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Figure 5.2: Mean misclassification rates for all four methods with ϕ = 20 and σ = 5.

The x-axis represents the proportion of differentially expressed genes. 20%, 40%, 60%,

80% and 100% differentially expressed genes are considered, respectively. These plots

investigate the effect of proportion of differentially expressed genes.
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Figure 5.3: Mean misclassification rates for all four methods with ϕ = 20 and σ = 5.

“80% DE” means 80% genes are differentially expressed, and the same to “40% DE”.

This plot investigates the effect of numbers of genes.
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Figure 5.4: Mean misclassification rates for all four methods with σ = 5. “80% DE”

means 80% genes are differentially expressed, and the same to “40% DE”. This plot

investigates the effect of overdispersion.
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5.3.2 Simulation Results

Figure 5.2 investigates the effect of the proportion of differentially expressed genes on

the mean misclassification rate. In general, with an increasing number of differentially

expressed genes, both methods have decreased mean classification rates. NBLDA

always outperforms the other three methods. In particular, when the sample size is

small (n = 8), NBLDA has a significant improvement over the other approaches.

Figure 5.3 investigates the impact of the number of genes on the mean misclas-

sification rate. We consider G = 20, 30, 50, and 100 for this investigation. From

Figure 5.3, we observe that an increasing number of genes will lead to a lower mis-

classification rate. NBLDA shows its superiority over the other three methods, and

the improvement is more significant when the sample size and the number of genes

are smaller.

Figure 5.4 investigates the effect of overdispersion on the mean misclassification

rate. We consider ϕ = 1, 5, 10, 20 and 30 for this investigation. Figure 5.4 shows that

a larger dispersion will result in a higher mean misclassification rate. Both NBLDA

and PLDA perform better than SVM and KNN. When the overdispersion is not very

high, NBLDA and PLDA have similar performance, with NBLDA slightly better

than PLDA. When the overdispersion is high, however, the performance of NBLDA

is much better than PLDA.

For real biomedical research in which RNA-Seq technology is used, it is common

that thousands or tens of thousands of genes are measured simultaneously. We per-

form a gene selection procedure to screen the informative genes before applying a

classification rule to RNA-Seq data. By doing gene selection, we rule out the noise

as much as possible so that the variance of the discriminant score is reduced, and

consequently we have an increased interpretability. For more details, see Section 5.4.

5.4 Real Data Analysis

We first describe four data sets. The first three are RNA-Seq data and the last one

is a chromatin immunoprecipitation (ChIP) sequencing data set.
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• Liver and kidney data (Marioni et al.; 2008). There are two classes in this data

set. One class contains 7 technical replicates which come from a liver sample.

The other class contains 7 technical replicates which come from a kidney sample.

A total of 22,925 genes are measured in this data set. The data set is available

as a Supplementary File in Marioni et al. (2008).

• Yeast data (Nagalakshmi et al.; 2008). The data set contains two library prepa-

rations: random haxamer (RH) and oligo (dT), which are treated as two classes

in this paper. In each class, three samples are included: one original sample,

its technical replicate, and its biological replicate. A total of 6,874 genes are

quantified in this data set. The data set is available as a Supplementary File

in Anders and Huber (2010).

• Cervical cancer data (Witten et al.; 2010). Two groups of samples are contained

in this data set. One is the nontumor group which includes 29 samples, and

the other one is the tumor group which includes 29 samples. There are 714

microRNAs in this data set. This data set is available in Gene Expression

Omnibus (GEO) Datasets with access number GSE20592.

• Transcription factor binding data (Kasowski et al.; 2010). This data set contains

10 classes with a total of 39 samples. 19,061 binding regions are included in

this data set and those regions are treated as distinct features. This data set is

available as a Supplementary File in Anders and Huber (2010).

5.4.1 Gene Selection

The BSS/WSS method, which is proposed by Dudoit et al. (2002), is a common

gene selection method and has been widely used in the literature (Lee et al.; 2005b;

Pang et al.; 2009; Huang et al.; 2010). This method computes the ratio of the sum

of squares between groups to the sum of squares within groups for each gene, and

selects genes whose ratios are in the top. However, this method assumes the data to

be normally distributed so that it may not be suitable for RNA-Seq data.
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Figure 5.5: Mean misclassification rates for Cervical cancer data and Transcription

factor binding data.

Witten (2011) proposed a screening method to select genes for RNA-Seq data.

Since gene g will be deleted from the classification rule, dkg = 1, they shrink the

estimate of dkg towards 1 by using soft-thresholding to perform the gene selection

procedure. However, this method can not be applied to our discriminant analysis

because the dispersion is involved in our discriminant rule. For the negative binomial

distribution, edgeR (Robinson and Smyth; 2008; Robinson et al.; 2010) has been pro-

posed to detect differentially expressed genes in RNA-Seq data. This method first

estimates the gene-wise dispersions by maximizing the combination of gene-specific

conditional likelihood and common conditional likelihood, and then replaces the hy-

pergeometric distribution in Fisher’s exact test by the negative binomial distribution

to construct an exact test. In this chapter, we use edgeR to perform the gene selection

procedure, which is available in Bioconductor (www.bioconductor.org).
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5.4.2 Results

We first conduct the gene selection procedure using edgeR and obtain G genes for

further analysis. We then randomly split the sample into two sets: the training set

and the test set. The training set is used to construct the classifier and the test set

is used to compute the misclassification rate. We repeat the whole procedure 1,000

times and compute the mean misclassification rate for the four methods, NBLDA,

PLDA, SVM, and KNN, respectively.

The comparison results are shown in Figure 5.5. Because the mean misclassifica-

tion rates of the four methods are all zeros for Liver and kidney data and Yeast data,

we only show the results for other two data sets in Figure 5.5. For Cervical cancer

data, 52 samples are assigned to the training set and 6 samples to the test set. A total

of 20, 30, 50, 100, 200 and 500 genes are selected, respectively. Among all approaches

we consider in this chapter, our proposed NBLDA has the lowest misclassification

rate. A big improvement over the other approaches can be observed when more than

50 genes are selected. For Transcription factor binding data, to conduct the binary

classification, we randomly assign 30 samples to the training set and the remaining

9 samples to the test set. We choose 20, 50, 100, 500 and 1,000 genes, respectively

for this data set. In Figure 5.5, we observe that NBLDA also outperforms PLDA

for Transcription factor binding data. Expect when the number of genes is small,

NBLDA has a better or comparable performance than the other three methods.

Finally, we estimate the average dispersion of the two data sets to check if it also

supports our comparison results made in the previous paragraph. The simplest way

for estimating the dispersion is to use the method of moments. However, this estimate

may not be reliable (sometimes is a negative value) when the sample size is small.

Landau and Liu (2013) and Yu et al. (2013) recently reviewed several dispersion

estimation methods. For Cervical cancer data and Transcription factor binding data,

we compute their average dispersions using the method in Yu et al. (2013) and present

the estimates in Table 5.1. We note that both data sets possess a considerably high

average dispersion when the number of selected genes is not very large. This, together

with the numerical comparison in Figure 5.1, explains why NBLDA provides a better
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performance than PLDA for these two data sets.

Table 5.1: The average dispersions for Cervical cancer data and Transcription factor

binding data, where ”G” represents the number of top genes selected by edgeR.

Data sets G=20 G=50 G=100 G=500

Cervical cancer 25.71 24.42 19.02 11.03

Transcription factor binding 8.12 5.71 4.48 2.86

5.5 Discussion

Next generation sequencing technology has been widely applied in biomedical research

and RNA-Seq begins to replace the microarray technology gradually in recent years.

Since RNA-Seq data are nonnegative integers, differing from that of microarray data,

it is necessary to develop methods that are well suited for RNA-Seq data. Two dis-

crete distributions, the Poisson distribution and negative binomial distribution, are

commonly used in the literature to model RNA-Seq data. Compared to the Poisson

distribution, the negative binomial distribution allows its variance to exceed its mean

and is more suitable for the situations when biological replicates are available. Nev-

ertheless, the negative binomial model is more complicated than the Poisson model

as the additional dispersion parameter also needs to be estimated.

In this chapter, we have proposed an NBLDA classifier using the negative bino-

mial model. Our simulation results show that our proposed NBLDA has a better

performance than PLDA in the presence of moderate or high dispersions. When

there is little dispersion in the data, NBLDA is also comparable to PLDA. We have

further explored the relationship between NBLDA and PLDA, and investigated the

impact of dispersion on the discriminant score of NBLDA by conducting a numerical

comparison. It is worth noting that even for a small dispersion, the two discriminant

scores can be rather different. This suggests that for real RNA-Seq data with mod-

erate or high dispersion, NBLDA may be a more appropriate method than PLDA.

107



Note that the true dispersions are unlikely to be known in practice. Therefore, we

propose to first estimate the average dispersion using some novel estimation methods

in the recent literature. Second, if the estimated average dispersion is small, we use

PLDA; and otherwise we use NBLDA.

We note that the independence assumption in Witten (2011) and in this chapter is

very restrictive. For real gene expression data sets, it may not be realistic to assume

that all genes are independent of each other. In our future study, we would like to

incorporate the network information of pathways or gene sets to further improve the

performance of classification. The clustering of sequencing data is also an important

issue in biomedical research. Hence, another possible future work is to extend the

clustering method in Witten (2011) to follow the negative binomial model. To con-

clude, our proposed method is general and can be applied to other next generation

sequencing data sets including ChIP-Seq data.
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Chapter 6

Summary

In this thesis, we considered estimating the high-dimensional covariance matrix and

its determinant. And we applied high-dimensional covariance matrix estimation to

Hotelling’s tests. Besides, we considered the linear discriminant analysis for RNA-

Sequencing data.

In Chapter 2, we proposed an optimal shrinkage estimation of the covariance

matrices. This method estimated many covariance matrices simultaneously and to

estimate one covariance matrix we shrink its sample covariance matrix towards the

pooled sample covariance matrix through a shrinkage parameter. Some properties of

the optimal shrinkage parameter and its estimation method were given. Simulation

studies and real data analysis are conducted to investigate the performance of our

methods.

In Chapter 3, we proposed a shrinkage-based diagonal Hotelling’s test for both

one-sample and two-sample cases. For high-dimensional small sample size data, the

diagonal Hotelling’s tests are better than the unscaled Hotelling’s tests and the regu-

larized Hotelling’s tests. However, sample variance is an unreliable variance estimator

for limited observations. Therefore, we used optimal shrinkage variance estimations

to improve the performance of the diagonal Hotelling’s test. The improvements were

shown in our simulation studies. Consequently, we suggested using shrinkage-based

diagonal Hotelling’s tests to test the significance of gene sets with small sample sizes.

Furthermore, if the number of genes in the gene sets is not large, the scaled chi-
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squared null distribution is recommended.

In Chapter 4, we compared a total of nine methods for estimating the log-

determinant, or equivalently the determinant, of high-dimensional covariance matrix.

Three types of covariance structures were considered in our simulation studies. Over-

all, there is no single method that dominates other methods under all considered

circumstances. In general, the sample size and the correlation of the data sets have a

great impact on the accuracy of estimation. Consequently, we may select appropriate

estimation methods according to the sample size and the prior information on the

correlation structure of the covariates. In the situations, however, when such prior in-

formation is not available, we recommend to use POCTE to estimate the determinant

of high-dimensional covariance matrix.

In Chapter 5, we proposed an NBLDA classifier using the negative binomial model.

Our simulation results showed that our proposed NBLDA has a better performance

than PLDA in the presence of moderate or high dispersions. When there is little

dispersion in the data, NBLDA is also comparable to PLDA. We further explored the

relationship between NBLDA and PLDA, and investigated the impact of dispersion

on the discriminant score of NBLDA by conducting a numerical comparison. It is

worth noting that even for a small dispersion, the two discriminant scores can be

rather different. This suggests that for real RNA-Seq data with moderate or high

dispersion, NBLDA may be a more appropriate method than PLDA. Note that the

true dispersions are unlikely to be known in practice. Therefore, we proposed to first

estimate the average dispersion using some novel estimation methods in the recent

literature. Second, if the estimated average dispersion is small, we use PLDA; and

otherwise we use NBLDA.

In the future, some work needs to be further studied. For instance, in Chapter

2, some structure assumptions, such as sparsity and conditional sparsity, can be

added to the covariance matrices, and the consistency of the estimators is worthy of

investigating. The assumption of normal population in Chapter 3 is restrictive and

the non-normal distributions can be considered. The simulations in Chapter 4 can

be seen as a comparison for covariance matrix estimation and which loss function

110



provides to be the best candidate for evaluating the estimation methods for the

covariance matrix can be investigated. In Chapter 5, we can consider to incorporate

the network information of pathways or gene sets to further improve the performance

of classification.
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