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Abstract

Sparse and low-rank models have been becoming fundamental machine learning
tools and have wide applications in areas including computer vision, data mining,
bioinformatics and so on. It is of vital importance, yet of great difficulty, to develop
efficient optimization algorithms for solving these models, especially under practical
design considerations of computational, communicational and privacy restrictions for
ever-growing larger scale problems. This thesis proposes a set of new algorithms to

improve the efficiency of the sparse and low-rank models optimization.

First, facing a large number of data samples during training of empirical risk
minimization (ERM) with structured sparse regularization, the gradient computation
part of the optimization can be computationally expensive and becomes the bottleneck.
Therefore, I propose two gradient efficient optimization algorithms to reduce the
total or per-iteration computational cost of the gradient evaluation step, which are
new variants of the widely used generalized conditional gradient (GCG) method and
incremental proximal gradient (PG) method, correspondingly. In detail, I propose
a novel algorithm under GCG framework that requires optimal count of gradient
evaluations as proximal gradient. I also propose a refined variant for a type of
gauge regularized problem, where approximation techniques are allowed to further
accelerate linear subproblem computation. Moreover, under the incremental proximal
gradient framework, I propose to approximate the composite penalty by its proximal
average under incremental gradient framework, so that a trade-off is made between
precision and efficiency. Theoretical analysis and empirical studies show the efficiency

of the proposed methods.
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Furthermore, the large data dimension (e.g. the large frame size of high-resolution
image and video data) can lead to high per-iteration computational complexity, thus
results into poor-scalability of the optimization algorithm from practical perspective.
In particular, in spectral k-support norm regularized robust low-rank matrix and
tensor optimization, traditional proximal map based alternating direction method of
multipliers (ADMM) requires to evaluate a super-linear complexity subproblem in
each iteration. I propose a set of per-iteration computational efficient alternatives to
reduce the cost to linear and nearly linear with respect to the input data dimension for
matrix and tensor case, correspondingly. The proposed algorithms consider the dual
objective of the original problem that can take advantage of the more computational
efficient linear oracle of the spectral k-support norm to be evaluated. Further, by
studying the sub-gradient of the loss of the dual objective, a line-search strategy
is adopted in the algorithm to enable it to adapt to the Holder smoothness. The
overall convergence rate is also provided. Experiments on various computer vision
and image processing applications demonstrate the superior prediction performance

and computation efficiency of the proposed algorithm.

In addition, since machine learning datasets often contain sensitive individual
information, privacy-preserving becomes more and more important during sparse
optimization. I provide two differentially private optimization algorithms under
two common large-scale machine learning computing contexts, i.e., distributed and
streaming optimization, correspondingly. For the distributed setting, I develop a new
algorithm with 1) guaranteed strict differential privacy requirement, 2) nearly optimal
utility and 3) reduced uplink communication complexity, for a nearly unexplored
context with features partitioned among different parties under privacy restriction.
For the streaming setting, I propose to improve the utility of the private algorithm by
trading the privacy of distant input instances, under the differential privacy restriction.
I show that the proposed method can either solve the private approximation function
by a projected gradient update for projection-friendly constraints, or by a conditional

gradient step for linear oracle-friendly constraint, both of which improve the regret
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bound to match the nonprivate optimal counterpart.
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