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Abstract

Sparse and low-rank models have been becoming fundamental machine learning

tools and have wide applications in areas including computer vision, data mining,

bioinformatics and so on. It is of vital importance, yet of great di!culty, to develop

e!cient optimization algorithms for solving these models, especially under practical

design considerations of computational, communicational and privacy restrictions for

ever-growing larger scale problems. This thesis proposes a set of new algorithms to

improve the e!ciency of the sparse and low-rank models optimization.

First, facing a large number of data samples during training of empirical risk

minimization (ERM) with structured sparse regularization, the gradient computation

part of the optimization can be computationally expensive and becomes the bottleneck.

Therefore, I propose two gradient e!cient optimization algorithms to reduce the

total or per-iteration computational cost of the gradient evaluation step, which are

new variants of the widely used generalized conditional gradient (GCG) method and

incremental proximal gradient (PG) method, correspondingly. In detail, I propose

a novel algorithm under GCG framework that requires optimal count of gradient

evaluations as proximal gradient. I also propose a reÞned variant for a type of

gauge regularized problem, where approximation techniques are allowed to further

accelerate linear subproblem computation. Moreover, under the incremental proximal

gradient framework, I propose to approximate the composite penalty by its proximal

average under incremental gradient framework, so that a trade-o" is made between

precision and e!ciency. Theoretical analysis and empirical studies show the e!ciency

of the proposed methods.

ii



Furthermore, the large data dimension (e.g. the large frame size of high-resolution

image and video data) can lead to high per-iteration computational complexity, thus

results into poor-scalability of the optimization algorithm from practical perspective.

In particular, in spectral k-support norm regularized robust low-rank matrix and

tensor optimization, traditional proximal map based alternating direction method of

multipliers (ADMM) requires to evaluate a super-linear complexity subproblem in

each iteration. I propose a set of per-iteration computational e!cient alternatives to

reduce the cost to linear and nearly linear with respect to the input data dimension for

matrix and tensor case, correspondingly. The proposed algorithms consider the dual

objective of the original problem that can take advantage of the more computational

e!cient linear oracle of the spectral k-support norm to be evaluated. Further, by

studying the sub-gradient of the loss of the dual objective, a line-search strategy

is adopted in the algorithm to enable it to adapt to the H¬older smoothness. The

overall convergence rate is also provided. Experiments on various computer vision

and image processing applications demonstrate the superior prediction performance

and computation e!ciency of the proposed algorithm.

In addition, since machine learning datasets often contain sensitive individual

information, privacy-preserving becomes more and more important during sparse

optimization. I provide two di"erentially private optimization algorithms under

two common large-scale machine learning computing contexts, i.e., distributed and

streaming optimization, correspondingly. For the distributed setting, I develop a new

algorithm with 1) guaranteed strict di"erential privacy requirement, 2) nearly optimal

utility and 3) reduced uplink communication complexity, for a nearly unexplored

context with features partitioned among di"erent parties under privacy restriction.

For the streaming setting, I propose to improve the utility of the private algorithm by

trading the privacy of distant input instances, under the di"erential privacy restriction.

I show that the proposed method can either solve the private approximation function

by a projected gradient update for projection-friendly constraints, or by a conditional

gradient step for linear oracle-friendly constraint, both of which improve the regret
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bound to match the nonprivate optimal counterpart.
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Chapter 1

Introduction

In this chapter, the research background is introduced in Section 1.1. Then, the

motivations of this thesis are reported in Section 1.2. Section 1.3 summarizes main

contributions and organization of this thesis.

1.1 Background

Sparse and low rank modeling have become a fundamental tool in machine learn-

ing, which also Þnd wide applications in computer vision [154, 88, 87, 160], data

mining [125, 83], bioinformatics [107] and so on. For computational concern and

complexity control, we often consider their convex relaxation forms. Therefore,

the sparse and low rank modelings can often be expressed as convex composite or

constrained optimization problems. Facing large scale problems and complexity of

the penalty that are prevalent nowadays, it is of vital signiÞcance to develop e"ective

algorithms to solve such sparse and low rank optimization problems e!ciently. In

addition to computational e!ciency, there are other design restrictions, including

communication complexity in distributed optimization, privacy-protection in learning

from sensitive individual data, ensuring non-degraded utility of the optimization

results, all of which are making it ever challenging to the optimization algorithm

design.

First order methods (also known as gradient descent methods) have been widely
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used for sparse and low rank optimization due to their relatively low computation

cost and scalability to large scale problems. Typical approaches include (generalized)

conditional gradient methods and proximal/projected gradient methods.

(Generalized) Conditional Gradient Method , which have its origin date

back to [40], have regained research interest nowadays due to low per-iteration cost.

The low per-iteration complexity mainly comes from the relatively simple linear

subproblem required to solve on each iteration. This linear subproblem is derived

from the duality gap ([144]; [14]), which is related to necessary optimal condition

and is always an upper bound of the primal gap. Also, the computation cost of the

linear subproblem can be further reduced by approximation techniques ([60];[144]).

One drawback of the conditional gradient based methods is that the associated

convergence rate is often an order inferior to the optimal rate for Þrst order methods,

i.e. accelerated proximal gradient methods in the next subsection.

Proximal/Projected Gradient Methods solves a quadratic subproblem called

proximal map in each iteration. Accelerated full gradient methods ([103];[7]) can

achieve optimal convergence rate of the Þrst order methods. Facing large scale

problems, we often prefer its stochastic variant which only evaluates gradient based

on single data sample on each iteration. Examples include: SGD ([11]), which is

the most simple stochastic methods that samples one data at each iteration; RDA

([139]) averages all past gradients; accelerated stochastic gradient methods like ([43])

is the stochastic variant of optimal gradient method. However, stochastic gradient

methods often have sublinear convergence rate which is inferior to what full gradient

method is possible to achieve. Recently, new incremental gradient methods have

been proposed that possess both scalability and fast convergence property. These

methods only calculate gradients associated with a randomly picked data sample in

each iteration as stochastic gradient methods, thus have comparable low per-iteration

computation cost. More importantly, by well exploiting the Þnite sum structure

of the loss function which stochastic methods do not, these incremental methods

are able to achieve linear convergence rate as full gradient methods. For example,
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SAG ([116]) uses the average of the stored past gradients, one for each data. SVRG

([66], [140]) adopts a multi-stage scheme to progressively controls the variance of

the stochastic gradient. Both methods have linear convergence rate for strongly

convex problem. But with the theoretical convergence result for general convex loss

is unclear. SAGA ([25], [26]) has both sublinear convergence guarantee for general

convex loss and linear convergence for strongly convex loss. It is a midpoint of SAG

and SVRG by taking both update pattern from them in its iteration. There are also

other incremental methods like FINITO ([28]) and MISO ([91]), which consumes

more memory in that they not only store the gradient but also the variable. S2GD

([76]) is a method very similar to SVRG with di"erence only in stage length. SDCA

([120]) is a dual incremental method.

Due to their relatively low per-iteration computational cost, fast convergence

rate and e"ectively handling various regularization/constraints in sparse and low

rank optimization, I will focus on these two types of algorithms in this thesis and

develop better algorithms based on them to deal with the emerging computation

requirements of larger amount of training samples, growing size of data dimensions

and di"erentially private restrictions.

Di"erential Privacy: Modern machine learning models often optimizes the

model from sensitive data that are collected from individuals. To avoid breaching

the privacy of the individuals, privacy protection mechanism have been considered

to ensure that the adversary cannot infer any individual data from the output of

the learning process. Beginning with the seminal work [21], which considers private

ERM training under the formal statistical di"erential privacy notion [35], various

di"erentially private optimization algorithms have been developed for training the

model with centralized datasets [124, 72, 5, 128, 62, 68] and sample-wise distributed

datasets [57, 104, 47].
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1.2 Motivations

1.2.1 Large Scale Structured Sparse Empirical Risk Mini-

mization

When the amount of data samples for training becomes large, the gradient evaluation

becomes expensive in computation. In particular, for structured sparsity regularized

ERM optimization, GCG and PG are two popular lines of methods. For the GCG

method, recall from the previous section that the inferior iteration complexity leads

to extra amount of gradient evaluations. Although the per-iteration cost for LO

can be small enough to a"ord excess iterations, the increased demand for gradient

evaluation can raise an inevitable trade-o", especially for large scale problems. To

improve gradient evaluation e!ciency, I propose a novel algorithm that requires an

optimal count of graduate evaluations as proximal gradient. As for the PG method,

the fast incremental proximal gradient methods mentioned are only applicable to

problems regularized by simple penalty. In order to reduce per-iteration gradient

evaluation cost, I therefore propose to approximate the composite penalty by its

proximal average ([6];[146];[157]) under incremental gradient framework.

1.2.2 Robust Low Rank Matrix/Tensor Optimization

When the dimension of the input data becomes large, the high per-iteration complexity

become the bottleneck of the optimization algorithm. In particular, in robust low

rank matrix/tensor optimization, the spectral k-support norm [36, 95, 96] has been

proposed to prompt low rankness of matrix by applying the k-support norm to

the singular values of the matrix. Compared with nuclear norm, it provides tight

relaxation of the rank k matrices under unit ! 2 norm ball of its singular values

rather than inÞnite norm ball, which is often more preferred [36, 95]. Despite the

superior recovery performance compared with other convex relaxations like nuclear

norm, the spectral k-support norm is much more di!cult to be optimized, which

therefore severely limits its application domain, particularly for big data analysis.
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Although methods developed for k-support norm that relies on proximal map of the

squared k-support norm [3, 36, 80] can be migrated to the spectral k-support norm,

its computation is laborious. A major reason is the full SVD decomposition involved

in the proximal mapping computation. Furthermore, restricted by the property of

the k-support norm, e!cient approximation methods for nuclear norm (e.g. power

method and Lanczos method) that requires leading singular values only are hardly

applicable to spectral k-support norm. Further, a search operation that segments

singular values into certain groups also needs additional computation.

1.2.3 Di"erentially Private Optimization

In sparse optimization, we are often dealing with large amount of sensitive data

collected from individuals, which raises the privacy protection restriction. In addition

to the traditional centralized optimization, distributed and streaming optimizations

are two pervasive scalable computing scenarios widely encountered in sparse learning.

Distributed private sparse optimization: Beginning with the seminal work

[21], which considers private ERM training under the formal statistical di"erential

privacy notion [35], various di"erentially private optimization algorithms have been

developed for training the model with centralized datasets [124, 72, 5, 128, 62, 68] and

sample-wise distributed datasets [57, 104, 47]. However, the feature-wise distributed

dataset setting is under exploitation by existing literature. Such setting appears in

many real applications, where the information describing an individual is collected

and held by di"erent parties which can be di"erent sets of sensory systems or

di"erent organizations. For example, a personÕs medical records are sensitive personal

information that can be held by several clinics. Although privacy issue has been

considered for these vertically-partitioned datasets [148, 143, 93], it has rarely been

studied with the more restrict di"erential privacy notion. It would be ideal to make

use of all attributes kept by di"erent parties in a distributed fashion, while still

ensuring di"erential privacy.

Steaming private sparse optimization: Within convex learning, despite

5



the various o#ine DP algorithms [21] that adapt to di"erent problem structures,

e.g. private gradient descent for unconstrained function [21], private projected

gradient (PG) descent for projection-friendly constraint sets [5], or private conditional

gradient (CG) for linear oracle-friendly constraint sets [129], private COCO algorithms

[61, 130, 63] are relatively less studied. With increasing number of instances, the

existing private convex optimization with constraints accumulate regret faster than

nonprivate optimal counterparts, which inspires us the growing price of utility to

pay for privacy protection for every streaming-in individual instance over time. Also,

they rely exclusively on the projected gradient (PG) step for updating the variable

provided that the constraints are projection-friendly, regardless of the existence of

many widely applied models yet with linear oracle-friendly constraint sets, i.e. suiting

a CG step better than a PG step, see [60]; [42].

1.3 Main Contributions and Organization of this

Thesis

The remaining chapters of the thesis are organized as follows:

In Chapter 2, I provide a literature review of related work on sparse and low

rank optimization, including (generalized) conditional gradient method, incremental

gradient method, proximal/projected gradient method. I also review the robust

low rank matrix and tensor modeling techniques, including the low rank inducing

regularizers, tensor singular value decomposition (t-SVD) framework. The formal

deÞnition of di"erential privacy and its associated techniques are also reviewed.

In Chapter 3, I consider the unconstrained composite optimization task, which is

a suitable model for many sparse optimization tasks. I propose a novel algorithm

called Generalized Conditional Gradient with Gradient Sliding (GCG-GS) . GCG-GS

requires an optimal count of graduate evaluations as proximal gradient. I also propose

a reÞned variant for a type of gauge regularized problem where approximation tech-

niques are allow to further accelerate linear subproblem computation. Experiments of
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a group sparse regularized CUR-like matrix factorization problem on four real-world

datasets demonstrate the e!ciency of our method.

In Chapter 4, I focus on empirical risk minimization (ERM) regularized by a

complex composite penalty. In detail, to make proximal average (PA) an ideal

technique for optimizing ERM with composite penalties, this chapter proposes a new

PA-based algorithm called IncrePA by incorporating proximal average approximation

into an incremental gradient framework. The proposed method is a more optimal

PA-based method that features lower per-iteration cost, a faster convergence rate

for convex composite penalties, and guaranteed convergence for even nonconvex

composite penalties. Experiments on both synthetic and real datasets demonstrate

the e!cacy of the proposed method in optimizing convex and nonconvex ERM with

composite penalties.

In Chapter 5, I focus on robust low rank subspace learning, which is to recover a

low rank matrix under gross corruptions that are often modeled by another sparse

matrix. Within this learning, I investigate the spectral k-support norm, a more

appealing convex relaxation than the popular nuclear norm, as a low rank penalty

in this chapter. Despite the better recovering performance, the spectral k-support

norm entails the model di!cult to be optimized e!ciently, which severely limits its

scalability from the practical perspective. Therefore, this chapter proposes a scalable

and e!cient algorithm which considers the dual objective of the original problem that

can take advantage of the more computational e!cient linear oracle of the spectral

k-support norm to be evaluated. Further, by studying the sub-gradient of the loss

of the dual objective, a line-search strategy is adopted in the algorithm to enable

it to adapt to the H¬older smoothness. Experiments on various tasks demonstrate

the superior prediction performance and computation e!ciency of the proposed

algorithm.

In Chapter 6, I propose a new tensor norm by Þrst re-deriving the TNN based

on yet another tubal rank quantity, which uniÞes the existing two di"erent TNN

deÞnitions. For the same rank quantity but by an alternative convex relaxation, I
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then propose the new tensor spectral k-support norm (TSP-k), which interpolates

between TNN and tensor Frobenius norm. Together, the TNN phase drives minor

single values to zero to induce a low-rank tensor, while the tensor Frobenius norm

component captures more global information of the tensor for better preserving the

intrinsic structure. I consider the robust tensor minimization problems to exemplify

the usage of TSP-k for low-rank tensor regularization. I provide two optimization

algorithms for both primal and dual forms of the objective function, of which the

primal method is e"ective for medium tensors while the dual one is in essence greedy

thus scales to larger size tensors. I derive the proximal operator and polar operation

for TSP-k as two key computation components of the corresponding optimization

procedure. Experiments on synthetic, image and video datasets in medium and

large sizes, all verify the superiority of TSP-k norm and the e"ectiveness of the both

optimization methods in comparison with the existing counterparts.

In Chapter 7, I study a nearly unexplored context with features partitioned among

di"erent parties under privacy restriction. Motivated by the nearly optimal utility

guarantee achieved by centralized private Frank-Wolfe algorithm [129], I develop

a distributed variant with guaranteed privacy, utility and uplink communication

complexity. To obtain these guarantees, we provide a much generalized convergence

analysis for the block-coordinate Frank-Wolfe method underarbitrary sampling,

which greatly extends known convergence results that are only applicable to two

speciÞc block sampling distributions. I also design an active feature sharing scheme

by utilizing private Johnson-Lindenstrauss transform, which is key to updating local

partial gradients in a di"erentially private and communication e!cient manner.

In Chapter 8, I focus on di"erentially private restricted streaming machine

learning and data mining problems, where individual data are collected and revealed

consecutively. These problems can often be modeled and solved under the Constrained

Online Convex Optimization (COCO) algorithmic framework. The ever-growing

amount of sensitive individual data is posing greater challenge to the contradictory

goals of privacy protection and reasonable model usability. In this chapter, I formally

8



investigate whether we can improve the utility of the private COCO by trading the

privacy of distant input instances, under the statistical notion of di"erential privacy

(DP). My method protects decayed privacy by adapting a window tree mechanism

for maintaining a private gradient summation, which is then used to construct an

approximation function for updating the new response variable at each timestamp. I

then show that we can either solve the private approximation function by a projected

gradient (PG) update for projection-friendly constraints, or by a conditional gradient

(CG) step for linear oracle-friendly constraint, both of which improve the regret

bound to O(ln T) with respect to sequence lengthT, matching the nonprivate optimal

regret. In particular, the CG-based variant is the Þrst known private COCO designed

for problems with LO-friendly constraint sets, and thus broadens the applicability of

COCO with privacy guarantee.

Finally, Chapter 9 draws a conclusion for this thesis and discusses some potential

directions of future work. Proofs of the theoretical results and the related publication

list can be found in appendix.

9



Chapter 2

Related Work

2.1 Conditional Gradient Algorithms

2.1.1 Basic Conditional Gradient Algorithm

The classic CG method is designed to solve constrained convex optimization problems.

This method is generally composed of (sub)gradient evaluation, linear oracle (LO)

evaluation, variable update and additional reÞnement based on the geometry of

the constrained set or some other local improvement. The constrained convex

optimization is as follows,

min
x

l(x), s.t x " C , (2.1.1)

wherel(x) is often called the loss function andC is the constrained set.

The most basic CG algorithm under convenient assumptions likel(x) is L-smooth,

which is presented in Algorithm (1). We use standard notation unless otherwise

stated.
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Algorithm 1 Basic FW method for smooth l(x) constrained on closed convex setC
Input: x0, " t

1: for t = 0, 1, ..., T # 1 do

2: Evaluate Gradient $ l(xt );

3: Evaluate Linear Oracle:st = arg mins"C %s,$ l(xt )&;

4: Update by step size" t = 2
t+1 : xt+1 = (1 # " t )xt + " tst ;

5: end for

Output: xK

This method converges withO( 1
T ) for general convexl(x). It converges slower than

projection or proximal mapping based Þrst order algorithms under same condition.

However, due to the lower cost LO step, for some constraint setC we can expect a

tradeo" between per-iteration cost and iteration complexity. Also, the FW method

shows better scalability for large scale problems, thanks to the lower per-iteration

cost. According to Algorithm (1), we can summarize the main steps of the FW

algorithm into three main parts: gradient evaluation (line 2), linear oracle evaluation

(line 3), updating x with proper step size" (line 4). Also, some additional local

reÞnement can be adopted to improve its e!ciency.

By exploiting the structure of some particular problems, some authors[149] [99]

also propose to integrate the FW method with other type of methods, e.g. mirror

proximal method [52], Universal Primal-Dual method [102], Proximal Gradient

Method. The resulting algorithms make full advantage of the scalability of the FW

type method (especially the low cost LO oracle), as well as the e!ciency gain by

exploiting the problem structure.

2.1.2 Generalized Conditional Gradient

Generalized conditional gradient method (GCG) is suitable for the unconstrained

composite optimization problems of the form

min
x"X

F (x) = l(x) + r (x), (2.1.2)
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wherel(x) is a smooth convex loss function, and r(x) stands for a nonsmooth convex

regularizer,X is a general vector space equipped with inner product (i.e.Rd).

GCG is a generalization to classic conditional gradient method (CG) [40], which

solves constraint problem on a subset ofX , i.e. convex compact set [60]. Also, to

keep the nonsmooth part intact, it deÞnes the following alternative duality gap at

iteration k ([144]; [14]),

G(xk) = l(xk) + r (xk) # inf
x"X

{ (l(xk)

+ %x # xk, $ l(xk)&+ r (x))} ,

= r (xk) # inf
x"X

{ r (x) + %x # xk, $ l(xk)&}

= sup
x"X

{ r (xk) # r (x) # %x # xk, $ l(xk)&},

(2.1.3)

instead of taking the sub-di"erential of nonsmoothr (x) as some CG methods

proposed [60]. The duality gap is essential for constructing the linear operator,

because it is related to the optimal necessary condition and is always an upper bound

approximation to the primal gap F (x) # F (x#), as detailed in the following lemma.

Lemma 2.1.1. ([144], Proposition 4)

For problem 2.1.2 with anyx " X , the duality gapG(x) ' 0 and G(x) = 0 i! x

satisÞes the necessary optimal condition1. Also, the duality gap is always an upper

bound of the primal gap thatG(x) ' F (x) # F (x#), where x# denotes the global

optimal point.

Hence, GCG solves problem (2.1.2) by minimizing the duality gap on each

iteration, which amounts to evaluating a linear operator (LO),

dk = arg max
x"X

r (xk) # r (x) # %x # xk, $ l(xk)&,

( dk = arg min
x"X

%x, $ l(xk)&+ r (x)
(2.1.4)

Note that additional assumptions should be made toF (x), otherwise the above

linear subproblem may diverge. To avoid introducing additional complexity, in this

thesis we adopt the assumption that the solution sequencesdk and xk (also at and

1We say x satisÞes the necessary optimal condition if 0" $ l(x) + !r (x).
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ut to be introduced later) are Þnite whose maximum distance between each other is

upper bounded by a positive constantDs. This assumption is same as Assumption 3

in [144], where more sophisticated equivalent assumptions were also discussed (see

Proposition 3 in [144]).

Then the next stepxk+1 can be obtained by

xk+1 = (1 # #k)xk + #kdk, (2.1.5)

where the step size#k can be set to deterministic sequence for example of orderO( 1
k )

or choosing by optimizing the following problem,

#k = arg min
! " [0,1]

F ((1 # #)xk + #dk). (2.1.6)

GCG method hasO( 1
K ) convergence rate for problem (3.1.1), whereK is the total

number of iterations. Or equivalently speaking, it needsO( 1
" ) iterations to Þnd an $

accurate solution.2 Apparently, this incurs additional count of gradient evaluation

than their PG counterpart based on this one gradient evaluation per-iteration scheme.

2.1.3 Approximate Linear Operator Evaluation

The linear operator (2.1.4) admits low per-iteration cost that allows them to a"ord

excess count of iterations, which is the major motivation for adopting GCG method

rather than PG method for some tasks. This evaluation admits various approximation

techniques. SpeciÞcally we consider the case whenr (x) is the so called generalized

gauge function [144] deÞned as

r (x) = h(%(x)), (2.1.7)

where h(á) is a convex increasing function and%(x) is a gauge function (convex,

positively homogeneous) satisfying

%(a) = inf { &: a " &C}. (2.1.8)

2The " accurate solution refers to a solutionx having the primal gap no larger than ".
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The convex compact subsetC is the unit ball of the gauge%(x), namely

C = { a " X : %(a) ) 1} . (2.1.9)

This formal deÞnition ofr (x) is a little complicated, indeed one can simply take it

as a generalized norm function.

The key idea to accelerate LO evaluation is to circumvent direct computation of

%(x) by approximation techniques. We Þrst prepare ourselves with some conversion

following [144]. Convert (2.1.4) to a constrained form, it gives

dk = arg min
x:r (x)$ #

%x, $ l(xk)&. (2.1.10)

To avoid estimating ' , it derives dk by direction and scalar separately. For estimating

the direction ak, it follows

ak = arg min
a:$(a)$ 1

%a,$ l(xk)&= arg min
a"C

%a,$ l(xk)&. (2.1.11)

We leave the derivation of scalar later when used.

The approximation for accelerating the evaluation of LO lies in two parts. The

Þrst is to allow dk or ak to be approximately calculated, namelyak is relaxed to

satisfy,

%ak, $ l(xk)& ) $k + min
a"C

%a,$ l(xk)&. (2.1.12)

This approximation can further reduce the per-iteration cost of LO evaluation

and reduction of overall runtime is observed practically [60]. However, with such

approximation, the iteration complexity guarantee is weakened by a factor associated

with the degree of approximation allowed [59]. As a result, the count of gradient

evaluations is increased which leads to an inevitable trade-o" between the time

increase of gradient evaluation and the decrease of LO evaluation, especially for large

scale problems whose gradient is expensive to compute.

The other approximation is related to the constraint set. WhenC is a convex

hull of atomic domain A , (2.1.11) can be equivalently solved onmathcalA,

min
a"C

%a,$ l(xk)&= min
a"A

%a,$ l(xk)&= # %o(#$ l(xk)) , (2.1.13)

14



where in the last equation we have used the notation%o(#$ l(xk)) = maxa"A %a,#$ l(xk)&

called polar operator [152]. Hence, the evaluation of LO is converted to the evaluation

of the polar operator, which is more e!cient to deal with than %(x) itself and is the

actual form adopted practically. A simple example of this polar operator is when

%(x) being a norm, then we can immediately Þnd the associated%o(g) is its dual

norm.

2.2 E!cient Proximal Gradient Algorithms

This section gives an overview of PA technique and incremental gradient framework.

2.2.1 Proximal Average

PA [6, 146] has been recently introduced to deal with composite regularizers. It

admits a compact calculation when each single component satisÞes Assumption 4.2.4.

PA only requires each component ofr (x) has simple proximal map, even when it is

computationally expensive forr (x) itself. The following deÞnition describes the PA

ör (x) of r (x).

DeÞnition 2.2.1. (PA [ 6], [146]) The PA of r is the unique semicontinuous convex

function ör (x) such thatM %
ör (x) =

! K
k=1 #kM %

r k
. The corresponding proximal map of

the PA ör (x) is

P%
ör (x) =

K"

k=1

#kP%
r k

(x). (2.2.14)

Therefore, once approximatingr (x) by ör (x), we can obtain the proximal map

of ör (x) by simply averaging the proximal map of each constituent regularizerr k(x).

The next lemma shows that the approximation oför (x) can be controlled arbitrarily

close tor (x) by the step size( .

Lemma 2.2.2. ([146]) Under Assumption 4.2.4, we have0 ) r (x) # ör (x) ) %øM 2

2 ,

where øM 2 =
! K

k=1 #kM 2
k .
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In fact, although [146] veriÞes the above lemma provided thatr k(x) is convex,

GD-PAN shows that it actually applies to nonconvex cases as long as Assumption 2

holds.

2.2.2 Incremental Gradient Descent Methods

The incremental gradient methods proposed recently make an improvement on

stochastic gradient methods provided that the training data is Þnite. Generally, at

each iteration, these methods approximate the full gradient by a combination of

a random gradient evaluated at the latest variable with past gradients. There are

several types of incremental gradient methods. For example, SAG utilizes a gradient

table to record past gradients for each data sample index. SVRG uses a single full

gradient evaluated periodically. Both of the methods have linear convergence for

strongly convex and smooth problem. SAGA shares part of update pattern from

both SAG and SVRG, and has theoretical guarantee for both general convex and

strongly convex problem.

Denote the variable table at iterationt by ) t , which containsN vectors recording

the iterate xt in a randomly-select-and-replace strategy. That is, the algorithm

randomly selects an indexi t from 1 to N and then replaces thei t+1 -th column of ) t

by the latest iterate xt , i.e.

) t+1
i =

#
$$%

$$&

$ xt , i = i t (Replace)

$ ) t
i , i *= i t (Unchanged).

(2.2.15)

Let $ li () t
i )( i = 1, 2, ..., N ) be the gradient table. SAGA, like SAG, updates the

random i t -th gradient with $ li t (xt ) while keeping other terms unchanged:

$ li () t+1
i ) =

#
$$%

$$&

$ li (xt ), i = i t (Replace)

$ li () t
i ), i *= i (Unchanged).

(2.2.16)

Hence, we only need to evaluate the gradient related to thei t data sample by com-

puting $ li t (xt ). Also, the variable table) t is introduced for notational convenience

and thus need not be explicitly stored.
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Based on the stored gradient table, SAG proposes to construct a variance reduced

gradient estimation by averaging the gradient table, i.e.Gt = 1
N

! N
i = i $ l i () t

i ). On the

contrary, SVRG proposes to use the unbiased estimationGt = $ li t (xt ) # $ li t (÷xs) +

1
n

! N
i =1 $ li ( ÷xs), where 1

n

! N
i =1 $ li (÷xs) is the batch gradient evaluated periodically

on ÷xs (e.g. every 2N iterations). SAGA propose to approximate the gradient for

iteration t:

Gt = $ li t () t+1
i ) # $ li t () t

i ) +
1
n

N"

i =1

$ li () t
i ). (2.2.17)

SAGA shows that this gradient estimation strategy actually stands in middle of that

used by SAG and SVRG. Also, conditioned on information up to thet-th iteration,

Gt is an unbiased estimation of the full gradient in expectation. According to ([66],

[140]), such approximate gradients have the reduced variance, which would lead

to speed up over stochastic methods. SAGA admits iteration schemes involving

proximal mapping, but only for simple penalty functions equipping closed-form

update and is incapable to handle the more complex composite penalties.

2.3 Robust Low Rank Matrix Learning

2.3.1 Notation for Matrix

For a matrix X , ||X ||1, ||X ||2,1, ||X ||F , ||X ||# denote its ! 1, ! 2,1 (sum of ! 2 norm of

each column), Frobenius and nuclear norm (sum of singular values) correspondingly.

For a particular singular value decomposition (SVD) of matrixX " Rm,n , we denote

it as X = Udiag(* )V T , where* = ( * 1, ..., * min( m,n ) ) is the vector formed by singular

values arranged in nonincreasing order anddiag(* ) is the diagonal matrix with its

i-th diagonal element being* i . For a function f , we use$ f ($) to denote its gradient

or one of its subgradient at $, and use+f ($) to denote the set of subgradient at $.

The superscript (á)T denotes the transpose for a matrix or the adjoint operation for

a linear map.
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2.3.2 Robust Low Rank Subspace Learning

In general, robust subspace learning methods seek a low rank componentL plus a

sparse componentS capturing grossly corrupted outliers.L and S, together with a

constant matrix M , are related by a linear constraint with constant linear mapB,

which can be summarized into the following nonsmooth linear constraint problem,

arg min
L,S

||L ||r + , ||S||s, s.t. B(M # L) = S, (2.3.18)

where the penalty|| á ||r is used to promote low rankness ofL, which is chosen as

the spectral k-support norm|| á ||sp,k [95],[96] in Chapter 5 of this thesis. The second

term || á ||s is the sparsity inducing penalty which can be! 1 or ! 2,1 norm [147]. , is a

constant parameter used to balance low rankness and sparsity.

In Chapter 5 of this thesis, we focus on the RPCA [16] as a practical application,

where M is the input data matrix D and B is identity matrix. With spectral

k-support norm and! 1 norm, the RPCA problem can be formulated as

arg min
L,S

||L ||sp,k + ||S||1, s.t. D # L = S (RPCA) . (2.3.19)

2.3.3 Spectral k-Support Norm

We Þrst recall the k-support norm, which is introduced by [3] as a convex surrogate

of the nonconvex cardinality function (a.k.a.! 0 norm) for sparsity vector prediction.

[3] observes that the most popular! 1 norm is the convex hull of! 0 norm on unit ! %

ball which assumes each entry to be bounded,

conv(x " Rd
'
' ||x||0 ) k, ||x||% ) 1). (2.3.20)

However, in many cases, we prefer the! 2 norm of x to be bounded, i.e.

conv(x " Rd
'
' ||x||0 ) k, ||x||2 ) 1), (2.3.21)

which can help improve robustness and generalization. In this perspective, [3]

proposes the k-support norm which can be calculated as follows,

||x||sp,k =
( k& t& 1"

i =1

(xi )2 +
1

t + 1

( d"

i = k& t

xi

) 2) 1
2
, (2.3.22)
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wheret is an index satisfying the following relationship,

xk& t& 1 >
1

t + 1

d"

i = k& t

xi ' xk& t . (2.3.23)

[95],[96] then extend the k-support norm to low rank promoting purpose for matrices.

Similar to the deÞnition of nuclear norm, the spectral k-support norm (we use the

same notation||á ||sp,k as the spectral form when the variable is matrix) is also deÞned

in terms of the matrix singular values and is thus unitary invariant. In detail, for a

matrix Z " Rm' n and denoting a particular singular value decomposition (SVD) as

Z = Udiag(* )V T , the spectral k-support norm can be computed by

||Z ||sp,k =
( k& t& 1"

i =1

(* i )2 +
1

t + 1

( min { m,n }"

i = k& t

* i

) 2) 1
2

(2.3.24)

where indext " { 0, 1, ..., k# 1} is searched to satisfy* k& t& 1 > 1
t+1

! min { m,n }
i = k& t * i ' * k& t .

Apparently, the unit ball of spectral k-support norm is deÞned in terms of its singular

values and can be expressed as the convex hull of vectors with at mostk cardinality

lying within the ! 2 norm ball, i.e.

D = conv(A), where (2.3.25)

A = { A " R(m,n )
'
' A = Udiag(* )V T , ||* ||0 ) k, ||* ||2 ) 1} . (2.3.26)

When k = 1, the spectral k-support norm becomes nuclear norm, and when

k = min{ m, n} , it coincides with Frobenius norm. Intuitively, it penalizes the largest

k # t # 1 singular values with! 2 norm while penalizing smallert + 1 singular values

with ! 1 norm. The k-support norm and spectral k-support norm are indeed norm

functions [3, 95]. Also, denoting the dual norm by|| á ||#sp,k, for any matrix Z with a

particular SVD of Z = Udiag(* )V T , we have

||Z ||#sp,k =

*+
+
,

k"

i =1

* 2
i . (2.3.27)

It is obvious that the dual norm can be more e!cient to compute because: 1) it only

requires the Þrstk singular values; 2) it avoids search for indext.
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[96] also generalizes the spectral k-support norm to the so-called spectral (k,p)-

support norm by using! p unit norm ball constraint in eq.(2.3.24) instead of the! 2

unit norm ball. This extension can be denoted by||á||sp,(k,p) , under which the spectral

k-support norm is || á ||sp,(k,2). [96] shows that by varyingp, the generalized spectral

(k,p)-norm can capture the decay of singular values of the desired low rank matrix in

a low rank matrix completion task. Most computation of the spectral (k,p)-support

norm is similar with spectral k-support norm. For example, to calculate the dual

norm, we simply change 2 withq by

||Z ||#sp,(k,p) = (
k"

i =1

* q
i )

1
q , where

1
p

+
1
q

= 1. (2.3.28)

.

2.4 Robust Low Rank Tensor Learning

2.4.1 Notation for Tensor

We denote tensors by boldface Euler letters, e.g.A . For a third order tensor

A " Rn1' n2 ' n3 , we use the MATLAB notation A (:, :, i ),A (:, i, :), A (i, :, :), to denote

the i -th frontal, lateral and horizontal correspondingly. For brevity, we also denote the

i -th frontal slice by A (i ) and the (i, j, k )-th entry by A ijk . Let D = min{ n1, n2} án3.

2.4.2 Tensor Singular Value Decomposition (t-SVD) Alge-

braic Framework

We begin the introduction of the t-SVD algebraic framework with the following

tensor-tensor product deÞnition:

DeÞnition 2.4.1. (Tensor Product (t-Product)[73]) The t-Product between

tensor A " Rn1' n2 ' n3 and B " Rn2' n4 ' n3 is deÞned asA +B = C " Rn1' n4 ' n3 with

the (i, j )-th tubeûcij of C computed as

ûcij = C(i, j, :) =
n2"

k=1

A (i, k, :) +B (k, j, :), (2.4.29)
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where+ denotes the circular convolution between two tubes of same size.

From the preceding deÞnition, the t-Product can be seen as a generalization of

the matrix product betweenn1 ! n2 and n2 ! n4 matrices by replacing the scalar to

scalar multiplication (i.e. the áin Cij =
! n2

k=1 A (i, k ) áB(k, j )) with Þber to Þber

circulant convolution (i.e. the + in Eq.(2.4.29)). We then replicate four additional

deÞnitions based on the t-Product from [73] in the following.

DeÞnition 2.4.2. (Tensor Conjugate Transpose [73]) The conjugate transpose

of a tensorA of sizen1 ! n2 ! n3 is the n2 ! n1 ! n3 tensor A ! obtained by conjugate

transposing each of the frontal slice and then reversing the order of transposed frontal

slices2 through n3.

DeÞnition 2.4.3. (Identity Tensor [73]) A tensor J " Rn' n' n3 is called identity

tensor if its Þrst frontal sliceJ(1) is the n ! n identity matrix and all its other frontal

slices, i.e. J(i ) for i = 2, ..., n3, are zero matrices.

DeÞnition 2.4.4. (Orthogonal Tensor [73]) A tensor Q " Rn' n' n3 is called

orthogonal if the following condition holds,

Q! +Q = Q +Q! = J, (2.4.30)

whereJ " Rn' n' n3 is an identity tensor as in DeÞnition 2.4.3 and+ is the t-Product

as in DeÞnition 2.4.1.

DeÞnition 2.4.5. (f-Diagonal Tensor [73]) For a tensor A , if all its frontal

slicesA (i ) , i = 1, ..., n3 are diagonal matrices, then it is deÞned to be an f-diagonal

tensor.

Finally, the t-SVD deÞnition is formalized in DeÞnition 2.4.6 and Fig. 2.1 gives

an illustration of the t-SVD on an n1 ! n2 ! n3 tensor.

DeÞnition 2.4.6. (Tensor Singular Value Decomposition (t-SVD) [73])

For A " Rn1' n2 ' n3 , the t-SVD of A is given by

A = U +S +V! , (2.4.31)
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Figure 2.1: Illustration of the t-SVD in Eq.(2.4.31) ([73, 154]). Tensors from

left to right are A , U, S and V! .

where U " Rn1' n1 ' n3 and V " Rn2' n2 ' n3 are orthogonal tensors as in DeÞnition

2.4.4. S " Rn1' n2 ' n3 is a f-diagonal tensor as in DeÞnition 2.4.5, whose entries are

called singular tubes ofA . Recall that the+ here is the t-product as in DeÞnition

2.4.1.

Algorithm 2 t-SVD: (U, S, V) = tsvd (A )
Input: A " Rn1' n2 ' n3

-A = fft (A , [ ], i );

for i = 1, 2, ..., n3 do

[U , S, V ] = svd( -A
(i )

)

-U
(i )

= U ; -S
(i )

= S; -V
(i )

= V ;

end for

U = ifft ( -U, [ ], i ); S = ifft (-S, [ ], i );

V = ifft ( -V, [ ], i );

Output: U, S, V

Considering the equivalence between the t-Production (essentially circulant con-

volution) in the original domain and the matrices multiplication in the Fourier

domain, it is more convenient to carry out the t-SVD related computation in the

Fourier domain. For a tensorA , the following introduces the notation for the Fourier

transformed tensor -A and a block diagonal matrix organized from-A .

DeÞnition 2.4.7. (Block Diagonal Matrix of Third Order Tensor [154])

For a third order tensor A " Rn1' n2 ' n3 , let -A denote the Discrete Fourier trans-
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formation (DFT) of A , which can be computed by Matlab commandfft as -A =

fft (A , [ ], 3). DeÞne the block diagonal operation byblockdiag and denote the

computed block diagonal matrix by-A , which are detailed as follows,

-A := blockdiag ( -A )

:=

.

/
/
/
/
/
/
/
0

-A
(1)

-A
(2)

. . .

-A
(n3)

1

2
2
2
2
2
2
2
3

" Cn1n3 ' n2n3 .
(2.4.32)

Algorithm 2 shows the algorithm for computing the t-SVD ofA , which is mainly

based on the matrix SVD of-A
(1)

to -A
(n3)

in Eq.(2.4.32). In addition, spectral norm

and Frobenius norm can be extended to tensor and are related to the matrix norms

of -A , as detailed in the next two deÞnitions.

DeÞnition 2.4.8. (Tensor Spectral Norm [153]) For a tensor A " Rn1' n2 ' n3 ,

the tensor spectral norm, A , 2 is deÞned to be the spectral norm of-A , i.e. , A , 2 :=

, -A , 2.

DeÞnition 2.4.9. (Tensor Frobenius Norm [153]) For a tensorA " Rn1' n2 ' n3 ,

the tensor Frobenius norm is denoted by, A , F , i.e. , A , F := %A , A &
1
2 = 1(

n3
, -A , F =

1(
n3

, -A , F =
4 !

i

!
j

!
k A 2

ijk .

2.4.3 Tensor Tubal Rank DeÞnition and Tensor Nuclear Norm

t-SVD arises the following tensor tubal rank deÞnitions.

DeÞnition 2.4.10. (Tensor tubal multi-rank, tubal rank and average of

tubal multi-rank, sum of tubal multi-rank) For a third order tensor A , let

-A = fft (A , [ ], 3) and -A = blockdiag ( -A ) = blockdiag ( -A
(1)

, ..., -A
(n3)

). Let the

t-SVD be A = U +S +V! . DeÞne the following terms:

¥ Tubal multi-rank: r (A ) := ( r1, ..., r i , ...rn3 ), wherer i = rank ( -A
(i )

);

¥ Tubal rank: rank t (A ) := # { i : S(i, i, :) *= 0} = max i r i ;
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¥ Average of tubal multi-rank: rankavg(A ) := 1
n3

! n3
i =1 r i ;

¥ Sum of tubal multi-rank: ranksum (A ) :=
! n3

i =1 r i .

The tensor nuclear norm (TNN) seeks a convex surrogate to the tensor tubal-

related rank. There are two existing deÞnitions of TNN, which are based on di"erent

convex relaxation and result into di"erent deÞnitions of TNN.

DeÞnition 2.4.11. (Averaged Tensor Nuclear Norm [88, 64]) For a tensor

A " Rn1' n2 ' n3 , the averaged tensor nuclear norm, A , t# is deÞned to be the average

of nuclear norm of all the frontal slices of-A ,

, A , t#,avg =
1
n3

n3"

i =1

, -A (i ) , #. (2.4.33)

DeÞnition 2.4.12. (Summed Tensor Nuclear Norm [118, 154, 153]) For

a tensor A " Rn1' n2 ' n3 , the summed tensor nuclear norm, A , t# is deÞned to be the

sum of nuclear norm of all the frontal slices of-A ,

, A , t#,sum =
n3"

i =1

, -A (i ) , #. (2.4.34)

The averaged TNN is based on average of tubal multi-rank, while the summed

TNN is based on tubal multi-rank. They di"er with a 1
n3

factor, which is important

because without it, TNN and the tensor spectral norm are not dual to each other,

which leads to inconsistency when reduced to the matrix case.

2.5 Di"erentially Private Learning

The formal deÞnition of di"erential privacy for a randomized algorithmALG with

parameter$ and - is as follows.

DeÞnition 2.5.1. (($, -)-Di!erential Privacy ( ($, -)-DP)) A randomized algorithm

ALG is ($, -)-di!erentially private if, for all neighboring data setsD and D), which

di!er in only one data sample and for all outputsO we havePr(ALG (D) " O ) )

e"P r(ALG (D)) " O ) + -.
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2.5.1 Di"erentially Private Optimization for Feature-wise

Distributed Dataset

Feature-wise distributed private learning

Feature-wise distributed data is more challenging than sample-wise distributed

dataset under privacy restriction. For the latter setting, each user node has enough

information to take local update (e.g. user can compute the local gradient based on

local data samples) and only the decision variables are needed to be communicated.

However, for feature-wise distributed data, apart from the decision variable, additional

information is required to be shared to perform local update (e.g. compute local

partial block-wise gradient). In general, more information sent by the user node, more

likely sensitive individual privacy is at risk, which makes the privacy protection design

more challenging. As a largely unexplored setting, to the best of our knowledge, the

very recent [53] is the only exiting work that has considered the same di"erentially

private ERM learning task with disjoint features held by di"erent parties. They

propose to add privacy protection during preprocessing by communicating perturbed

sketched features [70]. Although the uplink communication is one-shot during

the preprocessing and its sketching step partially relieves the high communication

complexity in terms of the feature dimensiond, its complexity is still linearly

dependent on the sample sizen (i.e. O(n)). In comparison, our method only

communicates active features indicated by the optimization procedure, featuring

a Òshare-at-needÓ strategy. As a result, to achieve the nearly optimal utility, the

overall uplink complexity of our method isO(n
2
3 log(n1/ 3), which is more uplink

communication e!cient.

Private conditional gradient algorithm

[129] proposes a centralized private conditional gradient algorithm for ERM problem

constrained by atomic norm. In each iteration, the FW algorithm greedily selects

a linear oracle from the atomic norm setA (has Þnite number of atomic norm)
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by picking the one with the largest duality gap. [129] selects the iterative linear

oracle by Report-Noisy-Max mechanism [35] (a special variant of the more general

exponential mechanism), which ensures the di"erential privacy. For the LASSO

task, [129] is proved to provide nearly optimal utility guarantee. Since the utility

guarantee is based on the convergence analysis, the adaptation of the method to

distributed setting is non-trivial due to the missing convergence result for BCFW-AS

3. Furthermore, with features distributed among user nodes, apart from the linear

oracle evaluation, the gradient computation also requires additional perturbation for

privacy protection, whose e"ect on utility demands careful quantization and further

analysis.

2.5.2 Di"erentially Private Streaming Convex Optimization

Given a streaming sequence of loss functionsI = [ f 1, f 2, ..., f t , ...f T ] arriving one

at a time, the COCO algorithm is required to responsext from the constraint set

C, which is a bounded convex set. After each response, it will su"er a convex loss

f t (xt ). In machine learning, depending on the task, the functionf t can have various

choices, for example logistic loss or hinge loss for classiÞcation, square function for

linear regression. We measure the utility by regret, a common notion used in online

algorithms, deÞned as:

DeÞnition 2.5.2. (Regret) Denote the private release of the algorithm byx1, x2, ..., xt , ..., xT ,

then the regret with sequence lengthT is Regret(T) =
! T

t=1 f t (xt )# minx"C
! T

t=1 f t (x).

It is common to consider a relaxed di"erential privacy in the streaming setting,

which is based on the simple yet practical privacy expiration assumption. In detail,

the window di"erential privacy deÞnition only delivers privacy protection for recent

instances inside a sliding window [9]. That is, only the changes of output caused by

the latest W individual entries are counted into the privacy loss, while the changes

3As most existing conditional gradient methods are referred by Frank-Wolfe algorithm in the

coordinate descent variants, we will use the term Frank-Wolfe algorithm for coordinate descent

variants of conditional gradient algorithms
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of the output caused from distant inputs are not concerned. The following deÞnition

formalizes the window di"erential privacy, which is adapted from [9] to our COCO

setting.

DeÞnition 2.5.3. (Window Di!erential Privacy (WDP)) Let A be a random algo-

rithm. With a particular sequence lengthT, for any input convex function sequences

I and a neighboring sequenceI ), the output sequence spaceO, A is window($, -)-

di!erential privacy with the window sizeW if the following condition holds,

P[A ([f 1, f 2, ..., f t , ..., f T ]) " O ] ) ew(T & t)"P[A ([f 1, f 2, ..., f )
t , ..., f T ]) " O ] + -,

(2.5.35)

wherew(i ) = 1 for i < W , w(i ) = - for i ' W. We say the algorithm is window

$-di!erentially private with W if - = 0.
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Chapter 3

E!cient Generalized Conditional

Gradient with Gradient Sliding for

Composite Optimization

3.1 Introduction

This chapter studies unconstrained composite optimization problems of the form

min
x"X

F (x) = l(x) + r (x), (3.1.1)

whereX is a general vector space equipped with inner product (e.g.Rd equipped with

! 2 norm). l(x) is a smooth convex loss function, i.e. it is continuously di"erentiable

with L-Lipschitz continuous gradient:

||$ l(x) # $ l(y)|| )
L
2

||x # y||, . x, y " X . (3.1.2)

r(x) stands for the regularizer which is a nonsmooth closed proper convex function.

Problem (3.1.1) is of vital importance in machine learning because many sparse

estimation problems Þt into this model. For example, in convex relaxed low rank

matrix completion problem [17], l(x) is the Frobenius norm between the observed

matrix and the low rank estimation matrix, and r (x) is the trace norm of the low

rank estimation matrix. In regularized empirical risk minimization problem,l(x) can
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be logistic loss or least square loss, andr (x) can vary from simple ones like! 1 norm

[131] to very complex form such as graph-guided lasso [74] and group lasso [147] for

inducing structured sparsity.

Many di"erent lines of methods exist for solving such sparse optimization problems,

among them is the popular proximal gradient (PG) based approach ([7]; [101]). This

kind of methods can achieve the optimal rate of convergence under certain problem

settings, hence it enjoys low iteration complexity. The per-iteration cost mainly

comes from gradient evaluation and a proximal map (PM) related to the type of the

regularizer. On the one hand, due to the optimal iteration complexity, the number of

gradient evaluations is optimal for PG method. On the other hand, the proximal map

itself is a quadratic optimization problem composed byr (x) and a quadratic term.

For particular regularizers, it admits e!cient evaluation. For example, the proximal

map related to the lasso regularizer is simply the soft-thresholding. However, in some

cases, evaluating the proximal map can be quite computational demanding. For

instance, to solve the proximal map related the trace norm regularizer, it requires

a full singular value decomposition (SVD) in each iteration [17]. As a result, the

high per-iteration cost raised by the proximal map becomes the bottleneck of the

PG method for those problems.

To address the high per-iteration cost raised by the PM, generalized conditional

gradient method (GCG) ([60]; [144]; [59]; [24]), has been receiving increasing research

interest. It only requires to evaluate a linear operator (LO) in each iteration,

which is intuitively much easier to solve than the quadratic subproblem of PM. In

fact, this intuition is elaborated by many structured sparse regularizer, e.g. LO

requiring spectral norm versus PM requiring full SVD for trace norm regularized

problem, in which the former is much more computational e!cient [144]. As a

result, although the iteration complexity of GCG based methods are inferior to

their PG counterpart [31], some studies have found that the low per-iteration cost

can sometimes compensate for the extra iterations leading to less overall execution

time than PG. Nevertheless, the inferior iteration complexity leads to extra gradient
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evaluations. Although the per-iteration cost for LO can be small enough to a"ord

excess iterations, the increased demand for gradient evaluation can raise an inevitable

trade-o", especially for large scale problems. In addition, the convergence results

become weaker when approximation techniques are introduced to solve LO. As a

result, these approximation techniques also bring about an increased count of gradient

evaluations, which can counteract the e!ciency gained from the accelerated LO

evaluations.

In this chapter, we therefore propose a novel algorithm called Generalized Condi-

tional Gradient with Gradient Sliding (GCG-GS) and its reÞned variant for gauge

regularized problems. We Þrst extend a recent optimization scheme called gradient

sliding to general unconstrained composite convex optimization problems. Instead

of evaluating gradient on each iteration, we skip it from time to time, which can

be viewed as many LO evaluations sharing the same gradient value. For gauge

regularized problem ([60]; [144]), where e!cient approximation techniques exist for

handling r (x), we present an improved variant of the general GCG-GS algorithm to

incorporate these techniques to further accelerate the algorithm. As a result, our

algorithm has optimal count of gradient evaluations as their PG counterpart, and

more importantly, it allows e!cient approximation techniques to be used without

increasing the optimal count of gradient evaluation. Experiments of CUR-like matrix

factorization problem with group lasso penalty on four real-world datasets have

demonstrated the e!ciency of the proposed method.

3.2 Preliminary

3.2.1 Conditional Gradient Sliding Algorithm (CGS)

Paper [81] has proposed a gradient sliding technique for constraint smooth objective

function to reduce gradient evaluations of CG algorithm. Under CG framework,

although the requirement for solving linear operator is stillO( 1
" ), gradient evaluations

can be surprisingly reduced to match the iteration complexity of PG counterpart
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under the same problem settings.

The CGS separates into outer and inner iteration. On each outer iteration,

two additional sequences are maintained. It can be seen as a variant to NesterovÕs

optimal gradient method [101], with the modiÞcation of the step (3.2.5) calling a

CG subroutine rather than a gradient descent or proximal mapping procedure for

PG, as shown in the following:

zk+1 = (1 # " k)yk + " kxk; (3.2.3)

gk = $ F (zk+1 ); (3.2.4)

xk+1 = CG(gk, xk, . k , ( k); (3.2.5)

yk+1 = (1 # " k)yk + " kxk+1 . (3.2.6)

The inner loop, namely the CG subroutine, applies the classic CG algorithm to

optimize the following subproblem:

) (v) = %v, gk&+
. k

2
||v # xk||2. (3.2.7)

According to CG method, on each inner iteration, it optimizes the duality gap:

vt = arg max
v"D

G(ut , v) = arg max
v"D

%ut # v,$ ) (ut )&, (3.2.8)

whereut is the solution sequence of the inner loop subroutine1, and D is the constraint

set of the problem [81] considers. Here, we have slightly extended the notation of

the duality gap to incorporate the additional variablev. The subprocess returns the

latest ut once the duality gap is less than( k. That is, it returns utk when

G(utk , vtk ) ) ( k . (3.2.9)

As a result, it can be viewed as if many LO evaluations can share the same gradient

to maintain the same convergence rate, instead of updating the gradient for each LO

evaluation. Algorithm 3 is the conditional gradient sliding algorithm. In step 3 it

evaluates the gradient ofF (x) at zk+1 . It can be viewed as a variant of NesterovÕs

accelerated gradient method, with step 4 changed to a sub-routine call CG instead

1We usek to represent sequences related to outer loop andt for inner loop in this chapter.
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of directly evaluating the linear operator usinggk. Algorithm 4 is the CG subroutine.

It applies the classic CG algorithm on) (x) until its duality gap is smaller than the

predeÞned( .

Algorithm 3 Conditional Gradient Sliding (CGS) algorithm
Input: x0, K, " k , . k , ( k

1: for k = 0, 1, ..., K # 1 do

2: zk+1 = (1 # " k)yk + " kxk;

3: gk = $ F (zk+1 );

4: xk+1 = CG(gk, xk, . k , ( k);

5: yk+1 = (1 # " k)yk + " kxk+1 ;

6: end for

Output: yK

Algorithm 4 CGS subroutine for inner iteration
Input: g, u, ., (

1: let ) (x) = %g, x&+ &
2 ||x # u||2, u0 = u;

2: for t = 0, 1, ..., do

3: G(ut , v) = %ut # v,$ ) (ut )&;

4: vt = arg maxv"D G(ut , v);

5: if G(ut , vt ) ) ( then

6: break ;

7: end if

8: #t = arg min ! " [0,1] ) ((1 # #)ut + #vt );

9: ut+1 = (1 # #t )ut + #tvt ;

10: end for

11: Return: u+ = ut ;

Moreover, with F (x) not only smooth but also strongly convex, [81] calls CGS

algorithm stage-wisely, where the output of the last stage is used to warm start the

current stage. In this scheme, the precision( k of inner subroutine is also modiÞed to

be not only related tok but also to s. Algorithm details this restart scheme.
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Algorithm 5 Restart CGS for Strongly Convex Problem
Input: x0

1: for s = 0, 1, ..., do

2: ps+1 = CGS(ps,K ,( s);

3: end for

Output: ps

3.3 The Proposed Algorithm

In this section, we propose our novel algorithm for Problem (3.1.1), called Generalized

Conditional Gradient with Gradient Sliding (GCG-GS). We Þrst present the GCG-GS

for general regularizer. Our algorithm is related to [81], but it can suit to more

general composite optimization problems with the unconstrained domain. Although

for some problems it can be equivalently transformed between regularization and

constraint form by Lagrangian duality, the regularization form we consider here

allows additional heuristic local optimization, which is hardly known for constraint

form. More importantly, we will propose a reÞned GCG-GS algorithm, which admits

various approximation techniques for further accelerating the LO evaluation. When

the approximation techniques are involved, neither [81] nor our general GCG-GS are

applicable. This issue is mainly because the stopping criteria of Eq.(3.2.9) is either

no longer computable, or computationally expensive to obtain. Our reÞned GCG-GS

will handle this issue.

3.3.1 General GCG-GS

Algorithm Description:

To involve the gradient sliding scheme, our algorithm also separates into outer

and inner loops. In the outer loop, we evaluate the gradient of the smooth part

gk = $ l(zk+1 ). Then the subroutine is called. As for the subroutine, we consider %(v)

composed of) (v) = %v, g&+ &
2 ||v # u||2 and nonsmoothr (v), i.e. %(v) = ) (v) + r (v).
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We use a di"erent deÞnition ofG(ut , v) according to Eq.(2.1.3), which is to be

optimized as follows:

G(ut , vt ) = max
v"X

{ r (ut ) # r (v) # %v # ut , $ ) (ut )&}. (3.3.10)

Note that G(ut , vt ) is the duality gap of %(v) at ut . Thus, the subroutine actually

solves the minimization problem of %(v) by GCG algorithm until certain duality gap

is obtained. In addition, #t can be optimally chosen by solving

#t = arg min
! " [0,1]

) ((1 # #)ut + #vt ) + r ((1 # #)ut + #vt ). (3.3.11)

Finally, the next variable is obtained by

ut+1 = (1 # #t )ut + #tvt . (3.3.12)

For clarity, we summarize the general GCG-GS in Algorithm (6) and Algorithm

(7).

Algorithm 6 General-GCG-GS
Input: x0, K, " k , . k , ( k

1: for k = 0, 1, ..., K # 1 do

2: zk+1 = (1 # " k)yk + " kxk;

3: gk = $ l(zk+1 );

4: xk+1 = GCG(gk, xk, . k , ( k);

5: yk+1 = (1 # " k)yk + " kxk+1 ;

6: end for

Output: yK
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Algorithm 7 GCG: General-GCG-GS subroutine
Input: g, u, ., (

1: let ) (x) = %g, x&+ &
2 ||x # u||2, u0 = u;

2: for t = 0, 1, ..., do

3: G(ut , v) = r (ut ) # r (v) # %v # ut , $ ) (ut )&;

4: vt = arg maxv"X G(ut , v);

5: if G(ut , vt ) ) ( then

6: break ;

7: end if

8: #t = arg min ! " [0,1] ) ((1 # #)ut + #vt ) + r ((1 # #)ut + #vt );

9: ut+1 = (1 # #t )ut + #tvt ;

10: end for

11: Return: u+ = ut ;

Convergence Analysis:

For the general GCG-GS algorithm, we have the following convergence guarantee.

We Þrst introduce the following notation:

$0 = 1; $ k = & k
i =1 (1 # " i ), k = 1, 2, ... (3.3.13)

Theorem 3.3.1. Under Þnite solution sequence assumptions, apply GCG-GS to

Problem (3.1.1),

a) for any x, the output yK satisÞes,

F (yK ) # F (x) ) $K & 1(1 # " 0)(F (y0) # F (x))

+
K & 1"

k=0

$K & 1" k. k

2$k
(||xk # x||2 # || xk+1 # x||2)

+
K & 1"

k=0

$K & 1" k( k

$k
;

(3.3.14)

b) consider the inner loop, namely the LO evaluations, for a particular stagek,

denote. = . k, the duality gap satisÞes,

t
min
i =0

G(ui , vi ) )
6.D s

t + 2
, (3.3.15)
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whereDs is the upper bound of the solution sequence.

Corollary 3.3.2. With the sequences setting as. k = 2L
k+1 , " k = 2

k+2 , ( k = 2LD 0
K (k+1)

and denotingD0 = ||x0 # x||2, we have:

a)

F (yK ) # F (x) )
6LD 0

K (K + 1)
. (3.3.16)

For Þnding an$ solution, we get:

K =

5
6LD 0

$
. (3.3.17)

b) the total number of inner LO evaluations is

TK =
6Ds

D0
K 2 + K. (3.3.18)

For Þnding an$ solution, we have:

TK =
36LD s

$
+

5
6LD 0

$
. (3.3.19)

The proof can be found in the Appendix A.

Discussion:

There are various assignment of sequence, please see [81]. For the particular sequence

we adopt here, it is apparent that our number of gradient evaluations for Þnding an

$ solution is O(
4

1
" ), which is the same as those optimal complexity of PG methods

for Problem (3.1.1). In addition, in terms of the total number of LO evaluationsTK ,

the proposed method maintains the same order of complexity as those plain GCG

methods which is also optimal for GCG.

However, the above algorithm is only conceptual in some sense. Note that both the

Subproblems (3.3.10) and (3.3.11) can be di!cult to solve for somer (x). Also, even

they were solvable, we often prefer avoiding directly computingr (x) by considering

more e!cient substitution such as polar operator in Section 2.1.3. Inspired by this,

we will propose the reÞned GCG-GS algorithm in the next subsection to allow more

e!cient inner loop execution.
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3.3.2 ReÞned GCG-GS for Gauge Regularized Problem

In this subsection, we follow the assumption as in Section 2.1.3, where the regularizer

is a generalized gauge function deÞned by Eq.(2.1.7). Note that most practically

used sparsity inducing and rank minimization regularizers can be seen as generalized

gauge function.

E!cient Approximation Techniques:

Essentially, we apply the e!cient approximation techniques introduced in Section

2.1.3 to minimize %(v). To e!ciently minimize Eq.(3.3.10), we Þrst convert it to

constraint form:

vt " arg min
v:h($(v)) $ #

%v,$ ) (ut )&. (3.3.20)

Then we updatevt by solving the direction and scalar separately, namely#tvt / / tat

(/ t denotes the approximate scalar). The direction is updated by

at " arg min
a:$(a)$ 1

%a,$ ) (ut )&. (3.3.21)

Incorporating the approximation Eq.(2.1.12) and solving it on atomic domainA , we

can obtain at more e!ciently by

%at , $ ) (ut )& ) $t + min
a"A

%a,$ ) (ut )&= $t # %o(#$ ) (ut )) . (3.3.22)

The scalar, denoted as/ t , would be originally chosen as

/ t = arg min
'

) ((1 # #t )ut + /a t ) + h(%((1 # #t )ut + /a t )) , (3.3.23)

where#t is a deterministic sequence to be speciÞed in our next theorem. Again, to

avoid direct evaluation of%(ut ), an upper substitution &t is used as in [144]. This

is achieved by choosing&0 ' %(u0) and the update scheme&t+1 = (1 # #t )&t + / t .

Then &t ' %(ut ) can be held iteratively, see [144]. Thus, by alternatively using h(&t )

provided that h(á) is increasing convex and%(á) is convex,/ t can be obtained by

/ t = arg min
'

) ((1 # #t )ut + /a t ) + (1 # #t )h(&t ) + #th(
/
#t

). (3.3.24)
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Finally, an additional local heuristic optimization can be adopted to further improve

the practical performance, which is another motivation for using the regularized form

rather than constrained form. Denoting such re-optimization byImprove , we adopt

the following conceptual requirement for it, which isRelaxed assumption according

to [144]:
#
$$$$$%

$$$$$&

) (ut+1 ) + h(&t+1 ) ) ) (ut ) + %÷ut+1 # ut , $ ) (ut )&

+
.
2

||÷ut+1 # ut ||2 + (1 # #t )h(&t ) + #th(
/ t

#t
))

;

&t+1 ' %(ut+1 ).

(3.3.25)

Weighted Average as Return Value:

An important issue with the above approximation is that the duality gap Eq.(3.3.10)

is either no longer computable, or even when we can compute it, it is unreasonable

for us to directly evaluate it because we do all the above approximations to avoid

computing %(v) directly. As a result, the stopping criteria in general GCG-GS

algorithm (also CGS algorithm) cannot be used. Furthermore, the choice of return

value becomes a problem because the previous bound on duality gap only guarantees

the minimum one. Again, as we cannot directly compute the duality gap, it also

becomes unknown that on which particularut the duality gap is small enough.

To solve the above stopping criteria problem, we propose a simple alternative by

estimating a maximum iteration countm of the inner LO evaluation loop. As shown

in our convergence analysis, di"erent outer loops can share the samem.

As for the choice of return value, instead of returning a particularut , we propose

using the weighted average ofut as the returned value. We show such averaged

øum can guaranteeG(øum, x) to be smaller than the desired( as long as the proper

approximated m is used. In detail, the return value to the outer loop is

øum =
m& 1"

t=0

0tut , 0t =
2

m(m + 1)
(t + 1) . (3.3.26)

Intuitively, variables of later iterations gain more weights. This intuition is compatible

to the analysis in [59], where the one achieving the smallest duality gap lies in the
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last third iterations. This average scheme is by observing the special construct of) ,

namely, the correspondingG(ut , x) is convex inut for arbitrary yet Þxed x. Note

that it also allows an online updateøut+1 = (1 # 2
t+2 )øut + 2

t+2 ut , which is exactly what

has been shown in the algorithm. We note that [77] has used the same weighted

average as an update option in block coordinate conditional gradient method. To

summarize together, Algorithm (8) and Algorithm (9) show the implementation

details of the ReÞned-GCG-GS.

Algorithm 8 ReÞned-GCG-GS
Input: x0, m, . k , " k

1: for k = 0, 1, ..., K # 1 do

2: zk+1 = (1 # " k)yk + " kxk;

3: gk = $ l(zk+1 );

4: xk+1 = Re-GCG(gk, xk, . k , m);

5: yk+1 = (1 # " k)yk + " kxk+1 ;

6: end for

Output: yK

Algorithm 9 Re-GCG:ReÞned-GCG-GS subroutine
Input: Input from outer loop: g, u, ., m ; Sequence#t

1: let ) (x) = %g, x&+ &
2 ||x # u||22, u0 = u;

2: for t = 0, 1, ..., m # 1 do

3: chooseat satisfy %at , $ ) (ut )& ) $t # %o(#$ ) (ut ));

4: / t = arg min ' ) ((1 # #t )ut + /a t ) + (1 # #t )h(&t ) + #th( '
! t

));

5: ÷ut+1 = (1 # #t )ut + / tat ;

6: ÷&t+1 = (1 # #t )&t + / t ;

7: (ut+1 , &t+1 ) = Improve (÷ut+1 , ÷&t+1 , ), r );

8: øut+1 = (1 # 2
t+2 )øut + 2

t+2 ut+1 ;

9: end for

10: Return: u+ = øum;
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Convergence Analysis:

Theorem 3.3.3. Let the sequence settings be. k = 2L
k+1 , " k = 2

k+2 , #t = 2
t+2 and the

inner loop count m =
6

6K
7

D s + ($ (x)
8

D 0

9
, whereDs is an upper bound on the distance

of the solution path,D0 is the distance betweenx0 and x, - is the constant satisÞes

$t ) (&k ! t
2 . Then the following results hold for the above algorithm for anyx in X .

a) After K outer loops, the outputyK satisÞes

F (yK ) # F (x) )
6LD 0

K (K + 1)
; (3.3.27)

for Þnding an$ solution, and the number of FO evaluation requires

K =

5
6LD 0

$
. (3.3.28)

b) The total number of LO evaluationTK for Þnding an$ solution requires

TK =
36L(Ds + -%(x))

$
+

5
6LD 0

$
. (3.3.29)

Proof can be found in Appendix.

Discussion:

The outer loop complexity in this subsection is exactly the same as the one in the

previous subsection, despite all the approximation we make to e!ciently evaluate

LO. As a result, the count of gradient evaluation keeps unchanged. As a sharp

comparison, the convergence rate of [59] is degenerated by a factor of 2 whendk is

evaluated approximately. Apparently, the approximations made to the LO lead to

the increasing count of evaluations of gradient.

We point out that, by properly restarting GCG-GS, this algorithm can also

obtain optimal count of gradient evaluation for strongly convex problem [81]. In

this chapter, we only discuss the problem under convex assumption due to space

limitation. In fact, the extension to strongly convex case is straightforward in some

sense.
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3.4 Experiment

In this section, we demonstrate the e!ciency of the proposed algorithm by a CUR-

like matrix factorization task ([90]; [92]) regularized by group lasso penalty. This

experiment was conducted by using MATLAB on a laptop computer of Intel Core i7

2.7GHz processor with 8 GB RAM.

Experiment Setup:

We consider the following CUR-like matrix factorization problem [92].

min
X

1
2

||D # DXD ||2F + , (
"

i

||X i :||% +
"

j

||X :j ||% ), (3.4.30)

whereD is the input data matrix, X i : and X :j denote the row vectors and column

vectors, respectively, and|| á ||% is the max norm. We set, = 5 ! 10& 4 in our

experiment. We utilized the following four real datasets as used in [144]: SRBCT,

Brain Tumor 2, 9 Tumor and Leukemia2, which are of sizes 83! 2308, 50! 10367,

60! 5762, and 72! 11225, respectively. For comparison, we utilized GCGTUM

algorithm in [144] 3. For our GCG-GS algorithm, we implemented the outer loop

routine, which then called the same polar operator of GCGTUM for inner loop

subroutine. Hence, the improved performance is gained purely from the gradient

sliding scheme. We set our inner loop estimationm to 3 for all four datasets. Other

input sequences were assigned exactly as the theoretical part. Note that we did not

compare with PG based methods because they have already been shown to be less

e!cient than GCG TUM in [144].

Result:

Figure 3.4 shows the experimental results, where three sets of plots are drawn:

objective function value versus total running time, versus polar operator evaluation

time only and versus gradient evaluation time only. We sampled every 30 iterations

2Download from http://www.gems-system.org.
3Download from http://users.cecs.anu.edu.au/0 xzhang/GCG.
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Figure 3.1: Objective function value versus total running time, polar operator

time only, and gradient time only.

for GCG TUM and every 10 outer loop iterations for GCG-GS. In general, our

algorithm is much faster than GCGTUM algorithm in terms of convergence speed,

as illustrated by the curve of objective function value versus total running time.

Also, our algorithm requires much less time on gradient evaluation to achieve certain

decrease of objective function value on all four datasets. Finally, the time requirements

for polar operator evaluation of our algorithm are similar to GCGTUM on Brain

Tumor 2 and SRBCT, superior than GCGTUM on Leucamia and inferior than

GCG TUM on 9 Tumor.

Choice of Inner Iteration Count m:

In this subsection, we study the e"ect of di"erent estimates ofm. We run the GCG-

GS algorithm with 400 outer loops on the four datasets, while vary the maximum

inner iteration from 2 to 7. Figure 3.4 plots the objective function value versus
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Figure 3.2: Objective function value versus number of outer iterations for

different choice of inner loop count m.

number of iterations. With the di"erent inner iteration number, the algorithm

actually converges at similar outer loop count. To be speciÞc, all lines begin to

converge around 50 numbers of outer iteration. Although the algorithm converges

to di"erent objective function value with di"erent m, the di"erence is below 0.005.

In addition, we observed thatm = 3 always yields relatively superior performance.

Hence,m is not hard to tune practically.

3.5 Summary

In this chapter, we have proposed a new algorithm under GCG framework. Our

algorithm has optimal count of gradient evaluations as those PG method, which is

an order superior than plain GCG methods. Also, it admits the incorporation of

e!cient approximation techniques for accelerating the evaluation of linear operator

that CGS lacks. Meanwhile, this count of gradient requirement remains unchanged.
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Experiment on a CUR-like matrix factorization task with group lasso penalty on

four real datasets have demonstrated the e!ciency of the proposed method.
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Chapter 4

Proximal Average Approximated

Incremental Gradient Method for

Composite Penalty Regularized

Empirical Risk Minimization

4.1 Introduction

Empirical risk minimization (ERM) is a fundamental machine learning method that

learns the model by minimizing the average loss taken from the training data. To

induce better prediction performance and introduce prior knowledge about the model,

the empirical loss is often regularized by a penalty function. Based on the speciÞc

task, the penalty functions can vary from smooth functions like! 2-norm to nonsmooth

simple functions like! 1-norm. Composite nonsmooth functions, recognized their

ability to inducing structured sparsity model, have been intensively applied in

bioinformatics and text mining tasks. However, it is di!cult to e!ciently optimize

such composite penalty regularized ERM problems, especially when confronted with

very large datasets.

In general, nonsmooth composite penalties, like overlapping group lasso or graph-
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guided lasso, are hard to deal with. One fact is that the proximal gradient method

[7, 103], which is an e"ective approach to simple nonsmooth penalties, is not applied

in this case because its crucial proximal mapping step is di!cult to solve. That

is, existing simple methods cannot be directly applied when engaging with these

complex structured penalties. A splitting method called alternating direction method

of multipliers (ADMM) [ 13], with its variants like stochastic ADMM and incremental

ADMM with better scalability, has been extensively studied. Stochastic ADMM

methods [108] utilize stochastic gradient updating strategies to reduce per-iteration

computation cost. For example, RDA-ADMM [126] incorporates RDA method

with ADMM; SADMM and optimal-SADMM in [ 4] utilize nonuniform averaging of

iterative variable [78, 121] and accelerated stochastic gradient method ([43]) to further

accelerate the stochastic ADMM method. Incremental ADMM methods [158, 127]

can achieve faster convergence rate than that of stochastic ADMM by utilizing the

incremental gradient updating strategy. In particular, SA-ADMM [158] and SDCA-

ADMM [ 127] are two recently proposed ADMM methods incorporating two di"erent

incremental gradient methods: SAG [116] and SDCA [120] correspondingly. However,

despite the above e"ort for better e!ciency and scalability, a remaining major

drawback of ADMM-based methods is the complex implementation and convergence

analysis, which are brought about by the additional variables introduced and the

alternating updating scheme.

Recently, an alternative to ADMM called proximal average (PA) [146] has been

introduced to e!ciently handle composite penalties. It approximates the original

composite penalty when each constituent regularizer admits simple proximal map.

The resulting proximal average approximation then enjoys simple proximal map

by averaging the proximal map of its components. What make the PA technique

be interesting are that the approximation can be controlled arbitrarily close to

the original composite regularizer and be strictly better than smoothing technique.

Compared with ADMM, [157] points out that ADMM is also a proximal method by

duplicating variables. Apparently, proximal average is much simpler to implement
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and also much easier to make analysis, which will be introduced later. Along this

line, pioneer work includes the one in [146], which introduces proximal average with

accelerated full gradient method FISTA [7]. [157] incorporates proximal average

technique with the stochastic variant of optimal gradient method. It has provable

superiority over smoothing technique which is also shared by [146]. Despite the

simplicity advantage in terms of implementation and analysis, when compared

to incremental ADMM methods (e.g. SA-ADMM and SDCA-ADMM), existing

PA-based approaches either converge slowly (e.g. PA-ASGD) or su"er from high

per-iteration cost (e.g. PA-APG).

Incremental gradient methods featuring both scalability and fast convergence

property have been receiving considerable attention as an e!cient approach to miti-

gating the ever growing dataset problem. As these methods only calculate gradients

associated with a randomly picked data sample in each iteration as stochastic gradient

methods [11, 139, 43], they have comparable low per-iteration computation cost.

More importantly, by well exploiting the Þnite sum structure of the loss function

which stochastic methods do not have, these incremental methods are able to achieve

linear convergence rate as full gradient methods [103]. For example, SAG [116]

utilizes the average of the stored past gradients, one for each data. SVRG [66, 140]

adopts a multi-stage scheme to progressively control the variance of the stochastic

gradient. Both methods have linear convergence rate for strongly convex problem,

but the theoretical convergence result for general convex loss is still unclear by now.

SAGA ([25], [26]) has both sublinear convergence guarantee for general convex loss

and linear convergence for strongly convex loss. It is a midpoint of SAG and SVRG

by taking both update pattern from them in its iteration. There are also other

incremental methods like FINITO [27] and MISO [91], which consume more memory

because they not only store the gradient, but also the variable. S2GD [76] is a

method very similar to SVRG with the di"erence only in stage length. SDCA [120]

is a dual incremental method.

The above-mentioned methods mainly focus on convex composite penalties.
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Nonconvex composite penalties, although leading to an even more di!cult problem,

can have better prediction performance by avoiding the over-penalization problems

of their convex correspondences. For structured sparsity inducing tasks, there have

been some research incorporating structured sparsity regularizers with nonconvex

and showing their improved prediction performance [122], [138]. For optimizing

such nonconvex composite penalties, general nonconvex solvers like concave-convex

procedure (CCCP) [151] and sequential convex program (SCP) [89] proceed in a

multi-stage convexify scheme that solves a convex relaxation in each stage up to

certain approximation and then constructs a convex surrogate for the next stage.

[159] has recently proposed a proximal average based gradient descent method

called GD-PAN for such penalty. It has been shown that it is still possible to

approximate the nonconvex composite function with proximal average for some

common nonconvex penalties. Also, by solving such surrogate, it is more e!cient

than multi-stage methods like CCCP and SCP, because the proximal map of the

proximal gradient descent can be easily computed for the surrogate. However, GD-

PAN that is essentially a batch gradient method su"ers from the scalability problem.

In this chapter, we also propose an incremental proximal average method for solving

nonconvex composite penalty problems.

In this chapter, we shall investigate the potential to incorporate incremental

gradient methods with proximal average technique. For the convex composite

penalties, we will show that, by solving a surrogate problem, the proposed method

can achieve linear convergence when the loss function is strongly convex and sublinear

convergence rate when the loss is general convex. By contrast, ADMM-based methods

cannot provide both. For example, SDCA-ADMM only has convergence results for

strongly convex loss, while the convergence analysis of SAG-ADMM only applies

when the loss is general convex. Furthermore, we also extend the incremental PA

technique to solve nonconvex penalty problems, which have better scalability than

that of batch method GD-PAN [159]. In this setting, we will show that the proposed

method converges to asymptotic stationary point of the surrogate problem.
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The remainder of this chapter is organized as follows: Section 4.2 introduces

notations and assumptions used in this chapter. Section?? conducts an overview

of PA and incremental gradient descent methods. In Section 4.3, we propose our

method for convex composite penalties with strongly convex loss and general convex

loss, and establish the corresponding convergence rate. Section 4.4 proposes an

incremental proximal average algorithm for solving nonconvex composite penalty

problems. Section 4.5 shows the experimental results for both convex composite

penalty problems and nonconvex composite penalty problems on synthetic and real

datasets. Finally, Section 4.6 sumarizes the chapter.

4.2 Preliminaries

In this section, we Þrstly introduce the notations used in this chapter. Then, we

formally deÞne the problem to be optimized. Also, we will describe the assumptions

for these problems.

Additional Notations In the following, we denote by%$li (x), y&the inner product

of $ li (x) and y. The superscript (á)T stands for the transpose of (á). We denote the

t-th iteration of x by xt . We assume the dataset is indexed as 1, 2, ..., N , and the

subscript i like xi is related to the i -th data sample. We denote thek-th component

of the composite penalty function by the subscriptk in r k.

We consider the following ERM with composite penalty problem:

min
x" Rd

F (x) = l(x) + r (x) =
1
n

n"

i =1

l i (x) +
K"

k=1

#kr k(x), (4.2.1)

K"

k=1

#k = 1, #k ' 0, (4.2.2)

which is commonly applied to learn the model deÞned by variablex from training

data set { 1i , yi } i = 1, ..., n. 1i is the data vector, andyi is its label. In eq. (4.2.1),

l i (x) is the loss taken at data sample (1i , yi ) with index i . The function r (x) is the

composite penalty for regularization purpose, which is composed byK constituent

regularizers. We hide the constant balancing the loss and the regularizer in the loss
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as [146] and [157], so that r (x) is a convex combination of theK componentsrk(x).

In this chapter, we allow bothl(x) and r (x) to be either convex or nonconvex.

Smooth loss function: In this chapter, we assumeli (x) to be smooth with L

Lipschitz continuous gradient, so that we can take the gradient for gradient descent

and also we are able to construct a local majorization surrogate. Formally, an

L-smooth loss functionli satisÞes the following inequality,

Assumption 4.2.1. The loss function isL-smooth, . x, y,

l i (y) # li (x) # %$li (x), y # x& )
L
2

||y # x||22. (4.2.3)

If we further assumeli (x) is general convex,l i also satisÞes the following inequality:

Assumption 4.2.2. l i (x) is convex if . x, y,

l i (y) # li (x) # %$li (x), y # x& ' 0. (4.2.4)

Examples of the general convex smooth loss functions include least square loss,

logistic loss, and smooth hinge loss, all of which will be used in Section 4.5. In

addition, l i (x) can be strongly convex provided that the following assumption is held:

Assumption 4.2.3. l i (x) is strongly convex if there is aµ > 0 such that. x, y,

l i (y) # li (x) # %$li (x), y # x& '
µ
2

||y # x||22. (4.2.5)

For example, when combining the above general convex loss with a large margin

inducing penalty )
2 ||x||2, it becomes a, -strongly convex loss.

Composite Penalty: We focus on composite penalty in this chapter, i.e.r (x) is

an average ofK simple non-smooth penaltiesrk(x). We assume thatr k is Lipschitz

continuous with the constantMk, i.e.

Assumption 4.2.4. r k is Mk Lipschitz continuous,. x, y,

|r k(x) # rk(y)| ) Mr k ||x # y||2. (4.2.6)
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Also, the proximal update step of eachrk should be simple. Please note that the

proximal map of r (x) itself can be very complex and computationally expensive. In

addition, we introduce the notations related to proximal step:

M %
r k

(x) = min
y

1
2(

||x # y||22 + rk(y), (4.2.7)

and

P%
r k

(x) = arg min
y

1
2(

||x # y||22 + rk(y). (4.2.8)

4.3 Accelerated Proximal Average Approximated

Incremental Gradient for ERM with Convex

Composite Penalty

In this section, we present the proposed incremental gradient descent proximal

average method for convex composite penalty regularized ERM problems, which is

termed as IncrePA-cvx. We Þrst illustrate the convex composite penalty functions

with two types of structured sparsity inducing penalties as examples, i.e. overlap

group lasso and graph-guided lasso. We then describe the proposed method provided

with the convergence rate for convex composite penalties with general convex and

strongly convex loss.

4.3.1 Overlapping Group Lasso and Graph-guided Fused

Lasso

In the following, we describe two convex composite regularizers for inducing structured

sparsity among features in sparsity estimation tasks.

Overlapping group lasso: [58] introduces overlapping group lasso

r (x) =
K"

k=1

2kr k(x) =
K"

k=1

1
K

||xgk ||2, (4.3.9)
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wheregk indicates the index group of features, andxgk is a copy ofx with the values

of those that are not in the index subsetgk being set at 0. Apparently, the proximal

map of each individual||xgk || is simple to compute, while the proximal map ofr (x)

is di!cult due to the coupled nature of overlapping groups of indices.

Graph-guided fused lasso: [74] induces structured sparsity according to the

graph E,

r (x) =
K"

k=1

2kr k(x) =
K"

k=1

2k|xk1 # xk2 |, (4.3.10)

where{ k1, k2} " E . Again, the proximal map ofr (x) is not easy to compute even

though rk(x) is.

4.3.2 Incremental Gradient Proximal Average for Convex

Composite Penalty Regularized ERM

The proposed method proceeds with proximal gradient style iterative scheme. With

the estimated gradient utilized in iteration t denoted byGt and step size by( , the

algorithm updates:

xt+1 = arg min
x

1
2(

||x # (xt # (G t )||22 + r (x), (4.3.11)

which can be denoted byxt+1 = P%
r (xt # (G t ) (recall that the proximal map corre-

sponding to penalty functionr (x) is denoted byP%
r (á), as shown in eq. (4.2.8)). The

gradient Gt is estimated by incremental gradient strategy, in particular SAGA [25],

which consumes low per-iteration cost and fast convergence by reducing the variance

of the estimated gradient.

In general, the proximal map corresponding to composite penaltiesr (x) is not

easy to compute. Popular approaches propose to deal with composite penalty

functions based in splitting method ADMM. When coupled with incremental gradient

estimation strategies, ADMM-based methods are di!cult to be analyzed. For

example, SA-ADMM (based on SAG and linearized ADMM) only has convergence

results when the loss function is general convex, while SDCA-ADMM only has
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convergence results when the loss function is locally strongly convex. Most recently,

SVRG-ADMM [155] is able to provide the convergence analysis for both general and

strongly convex losses, but they require di"erent iteration design under di"erent

convexity assumption. Hence, to develop a general algorithm that is capable to

cover both general and strongly loss function case with uniÞed iteration scheme,

we propose to approximater (x) with proximal average approximationör (x). The

iteration becomes

xt+1 = P%
ör (xt # (G t ), (4.3.12)

which can be simply computed according to the proximal average property as shown

in eq. (2.2.14) by

xt+1 =
K"

k=1

#kP%
r k

(xt # (G t ), (4.3.13)

whereP%
r k

(á) is the proximal mapping with respect to simple constituent function

rk. By utilizing the proximal average update technique, we are actually solving the

surrogate problem öf (x) = l(x) + ör (x), which can be controlled arbitrarily close to

the original problem F (x) according to lemma (2.2.2). We summarize the closeness

property by the following lemma.

Lemma 4.3.1. For r (x) with Mk-Lipschitz continuous rk(x)(k = 1, ..., K ) and

denote øM 2

=
! K

k=1 #kM 2
k as in lemma (2.2.2), we haveF (x) # öf (x) ) $ for any x, when we

set ( ) 2"
øM 2 .

The proposed incremental gradient PA for ERM with convex composite penalty

is summarized in Algorithm 10.

53



Algorithm 10 IncrePA-cvx
Input: ( (step size);x0 (initial value); $ li () 0

i ), ) 0
i = x0, i = 1, ..., n (initial table of

gradients).

1: for t = 0, 1, 2, ... do

2: Randomly pick i t " { 1, 2, ..., n} ;

3: Update the derivative table as in equation (2.2.16);

4: Calculate Gt by equation (2.2.17);

5: wt+1 = xt # (G t ;

6: xt+1 =
! K

k=1 #kP%
r k

(wt+1 );

7: end for

4.3.3 Analysis of IncrePA-cvx

The proposed method is general in the sense that it is provided with convergence

analysis covering both general convex loss and strongly convex loss functions cases

with the uniÞed iteration design. We describe them as follows.

A: Convergence Analysis for General Convex Objectives: In this para-

graph, we establish the convergence rate of IncrePA when applied to general convex

objectives. Recall the notation of the surrogate functionöf (x) = l(x) + ör (x) implicitly

solved by IncrePA. The following theorem summarizes the sublinear convergence

rate:

Theorem 4.3.2. Under Assumption 4.2.1 (i.e. l i is smooth) with li (x) general

convex and Assumption 4.2.4 (i.e.r k is simple and Lipschitz continuous), letöx# be

the optimal point of the surrogate problem. DenoteQt as

Qt =
1
N

n"

i =1

l i () t
i ) # l(öx#) #

1
N

N"

i =1

%$li (öx#), ) t
i # öx#&. (4.3.14)

Then, after t ' 1
c2"

(
Q0 +

7
c1 + c2

2%

8
||x0 # öx#||22

)
iterations, we have

E
:
F (øxt ) # F (öx#)

;
) 2$, (4.3.15)
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whereøxt = 1
t

! t
i =1 xi . In addition, possible choices of the parametersc1, c2, ( appeared

in the proof are as follows:( < min( 1
2L , 2"

øM 2 ), c1 = 1
2%N, c2 = 1

2N

(
1

2%L& # 1
)

.

B. Convergence Analysis for Strongly Convex Objectives: If we further

have the strongly convexity of the loss function, the proposed method can achieve

linear convergence as shown in Theorem 4.3.3.

Theorem 4.3.3. Under Assumption 4.2.1 (i.e. l i is smooth) with li (x) µ-strongly

convex and Assumption 4.2.4 (i.e.r k is simple and Lipschitz continuous), letöx# be

the optimal point of the surrogate problem. Denote a Lyapunov functionTt as:

Tt = Qt +
7
c1 +

c2

(

8
||xt # öx#||22 + c2

7öf (xt ) # öf (öx#)
8
, (4.3.16)

Qt =
1
n

n"

i =1

l i () t
i ) # l(öx#) #

1
N

n"

i =1

%$li (öx#), ) t
i # öx#&, (4.3.17)

wheret is the iteration number. After (1 # 1
$ )(log T 0

" ) iterations, we then have

E
<
F (xt ) # F (öx#)

=
) 2$. (4.3.18)

In addition, there exits some. ' 1 and possible choices of the parametersc1, c2, %, (

appeared in the proof are as follows:( < min( 1
2L , 2"

øM 2 , 1
2Nµ ), c1 = 1

2%N
L

L & µ , c2 =

c1(
(

1
2%L& # 1

)
, 1

$ = 2%µ
1+ 1

2!L
.

The detailed mathematical proof of Theorem 4.3.2 and Theorem 4.3.3 is given in

Appendix.

4.3.4 Discussion

We have the following three remarks to discuss about the above two convergence

guarantees.

Remarks 1: First we point out the specialties of the step size parameter( . One

can Þnd that we represent all parameters by the step size( in the above convergence

analysis because it controls the approximation by Lemma 2.2.2. The convergence rate

of strongly convex case is related to1$ , i.e. it converges faster when1$ is larger, which
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depends onL, µ and $as given the data sizen. Please note that, for an ill-conditioned

problem whereL
u = N , 1

2Nµ can be converted to 1
2L . Thus, the convergence speed is

related to L and $. The convergence speed for the general convex case depends onc2,

i.e. the largerc2 is, the faster it converges. Given the dataset size, the convergence

speed is again related toL and $.

Remarks 2: Like the other incremental methods, the above convergence only

reßects training loss ([127], [158], [117]). The generalization performance is unknown

partly because of the assumption of the Þnite training set size. Our experiments on

testing loss show empirical results of the generalization performance.

Remarks 3: Furthermore, our algorithm will converge to the optimal point of

the surrogate function. We show the convergence rate by measuring the loss with

respect to the objective function value atöx# (F (öx#)), which is di"erent from usual

convention that measures withF (x#). Nevertheless, considering the over-Þtting issue,

a relative good approximation is potentially able to achieve satisfactory generalization

performance. As a good approximation to the original problem, it is expected that

the proposed method will have satisfactory generalization performance. Indeed, the

experimental results in Section 4.5 have veriÞed this in terms of classiÞcation error

and test loss on the test set of two real datasets.

4.4 Incremental Proximal Average for Nonconvex

Composite Penalty Regularized ERM

In this section, we extend the incremental gradient with proximal average algorithm to

nonconvex composite penalty regularized ERM problems. We Þrst describe example

nonconvex composite penalties utilized in structured sparsity estimation tasks, which

replace the convex! 1 norm with tighter nonconvex surrogate functions of the! 0 norm.

After recalling existing approaches for this type of problems, we present a more

scalable method by extending the IncrePA-cvx in the previous section to nonconvex
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composite penalty case, termed as IncprePA-ncvx.

4.4.1 Two Examples of Nonconvex Composite Penalties in

Structured Sparse Estimation

Nonconvex composite penalties appear in nonconvex structured sparsity estimation

applications. The nonconvex surrogate penalties like capped! 1 norm, smoothly

clipped absolute deviation (SCAD) and minimax concave penalty (MCP), are able

to address the biasness of the convex! 1 norm, thus are considered better relaxations

of the ! 0 norm for promoting sparsity. Inspired by this, papers [122, 138, 159]

have proposed nonconvex structured sparsity inducing counterparts by wrapping

the convex composite functions with the nonconvex functions. That is, the penalty

function r (x) takes the composite form as an average ofK nonconvex composite

penalties as

r (x) =
K"

k=1

2kr k(x). (4.4.19)

In this nonconvex composite penalty case, eachrk takes the following form:

rk(x) = &(hk(x)), (4.4.20)

where&(á) is the nonconvex sparsity-inducing function.

In this structured case, compared with traditional non-structured nonconvex

relaxations of lasso, it is wrapped outside each constituent convex regularizers rather

than each indices ofx. We elaborate eq. (4.4.19) with Capped-! 1 overlapping

group-lasso and MCP graph-guided fused Lasso as two concrete examples.

Capped- ! 1 overlapping group-lasso: This is a hybrid nonconvex composite

penalty of Capped-! 1 norm and overlapped group-lasso, which wraps each group

indiceshk(x) = ||xgk ||2 with Capped-! 1 norm [151]:

r (x) =
K"

k=1

2kr k(x) =
K"

k=1

2k&(||xgk ||2) =
K"

k=1

2k min{|| xgk ||2, / } , (4.4.21)

where/ is a constant deÞning the! 1 norm.
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MCP graph-guided fused Lasso: This nonconvex composite penalty combines

MCP [150] with graph-guided fused lasso.

r (x) =
K"

k=1

2kr k(x) =
K"

k=1

2k&(|xk1 # xk2 |), (4.4.22)

where{ k1, k2} " E , |E| = K and &(á) takes the following form based on MCP norm:

&(u) =

#
$$%

$$&

, |u| # u2

2a , |u| ) a,,

a) 2

2 , |u| > a,,
(4.4.23)

where, and a are constants.

4.4.2 Related Work

Such composite form and nonconvexity make the problem even more di!cult to solve.

Some existing approaches are proposed with ine!ciency or scalability issues. DC

programming-based methods like concave-convex procedure (CCCP) [151] progress

by stages that solve a convex surrogate in each stage by approximating nonconvex

r (x) with a convex function. This multistage style can be ine!cient. General iterative

shrinkage and thresholding (GIST) [45] and sequential convex program (SCP) [89]

can be e!cient for regularizers with simple proximal update. However, since the

proximal step is very di!cult for eq. (4.4.19), these methods are also not e!cient

enough. Recently, GD-PAN [159] has extended proximal average for nonconvex eq.

(4.4.19) and approximatesr with proximal average in the GIST algorithm to obtain

a proximal update e!cient algorithm. However, GD-PAN is intrinsically a batch

gradient algorithm with poor scalability towards large-scale problems. Apparently,

a PA-based method with better scalability is more attractive and useful from a

practical perspective.

4.4.3 Nonconvex Extension of Incremental Gradient with

PA

We aim to extend the incremental gradient PA method to solve these nonconvex

structured problems, termed as IncrePA-ncvx. [159] also approximates the nonconvex
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composite regularizer with PA, and then solves the approximate problem based on

[45] iteration scheme, which is a batch gradient method. Our method improves upon

[45] with incremental gradient strategy that results into better scalability.

In this nonconvex case, we also approximater (x) with its PA approximation ör (x),

which is similar to convex case. For convenience, we denote the PA approximated

objective as

arg min
x

öf (x) = arg min
x

1
N

N"

i =1

öf i (x) = arg min
x

1
N

N"

i =1

[l i (x) + ör (x)], (4.4.24)

where each component functionöf i (x) = li (x) + ör (x) corresponds to thei -th data

sample. The PA approximated functionöf (x) is not guaranteed to be convex. Hence,

directly applying incremental proximal gradient decent method toöf i (x) can hardly

ensure convergence. In this regard, we further approximateöf (x) iteratively with the

Þrst-order surrogate oföf (x) by following [91], which is a particular majorization by

taking the smoothness ofl i (x) into consideration. Again, as an incremental method,

we keep a variable table and a gradient table, in which we denote them again by

) t
i and $ li () t

i ) correspondingly for thei -th sample at iteration t, by the random

choose-and-replace strategy as in the previous section. At iterationt, with the latest

variable table and gradient table, a majorization approximationgt
i (x) of öf t

i (x) is

constructed as

gt
i (x) = li () t

i ) + %$li () t
i ), x # ) t

i &+
1
2(

||x # ) t
i ||

2
2 + ör (x), (4.4.25)

where ( is the step size and satisÞes1% ' L. By the smoothness assumption of

the loss functionli (x) (assumption (4.2.3)), functiongt
i (x) upper bounds öf i (x) (i.e.

gt
i (x) ' öf i (x)). Then, in each iteration, the majorization function is minimized with

xt+1 = arg min
x

øgt (x) = arg min
x

1
N

N"

i =1

gt
i (x)

= arg min
x

1
N

N"

i =1

<
li () t

i ) + %$li () t
i ), x # ) t

i &+
1
2(

||x # ) t
i ||

2
2 + ör (x)

=
,

(4.4.26)

which is an incremental majorization-minimization iteration by choosing the majoriza-

tion function as the so-called Þrst-order surrogate [91]. With such surrogates during
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iteration, we need to extra memory to explicitly store the variable table as compared

with convex incremental gradient PA method, where the variable table is introduced

only for notational convenience and need not be kept. However, this overhead in

memory seems indispensable, because the per-iteration problem evaluated in the

previous section cannot be guaranteed to be majorization oföf (x), which is obvious

when we rewrite the iterate scheme of Algorithm 10 in the same style as eq. (4.4.26),

xt+1 = arg min
x

1
N

N"

i =1

<
li (xt ) + %$li () t

i ), x # xt&+
1
2(

||x # xt ||22 + ör (x)
=
. (4.4.27)

Then, eq. (4.4.26) can be further simpliÞed toxt+1 = arg minx
1

2%||x# ( 1
N

! N
i =1 ) t

i #

(G t )||22 + ör (x), whereGt = 1
N

!
$ li () t

i ). By the property of the PA approximation

function ör (x) and the proximal mapping notation as in eq. (2.2.14), we then have

xt+1 =
K"

k=1

#kP%
r k

(
1
N

N"

i =1

) t
i # (G t ). (4.4.28)

We summarize the above iteration scheme by IncrePA-ncvx as shown in Algorithm

11.

Algorithm 11 IncrePA-ncvx
Input: ( (step size);x0 (initial variable); $ li () 0

i ), i = 1, ..., n (initial table of gradi-

ents); ) 0
i , i = 1, ..., n (initial table of iterate x).

1: for t = 0, 1, 2, ... do

2: Randomly pick i t " { 1, 2, ..., n} ;

3: Update the derivative table as in eq. (2.2.16);

4: Update the variable table as in eq. (2.2.15);

5: Calculate Gt by averaging the gradient table;

6: wt+1 = 1
N

! N
i =1 ) t

i # (G t ;

7: xt+1 =
! K

k=1 #kP%
r k

(wt+1 );

8: end for

4.4.4 Analysis of IncrePA-ncvx

The main per-iteration computational cost comes from: i) step 5 evaluates a stochastic

gradient and ii) step 7 computes the proximal mapping with respect toK simple
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regularizers and takes the average. Hence, compared to the PA-based method GD-

PAN, the proposed method provides better scalability when the dataset size grows

because the per-iteration computational cost is irrelevant to the number of data

points.

For nonconvex problems, it is generally impossible to guarantee global optimum or

derive convergence rate as those for convex and strongly convex problems. Following

[91], we only provide the convergence of IncrePA-ncvx in the sense that the PA

approximation [ öf (xt )] is almost sure convergence and the sequence [xt ] satisÞes the

so-called asymptotic stationary point condition (for more details, see [10]).

DeÞnition 4.4.1. Asymptotic stationary point: Denote the directional derivative of

function f at xt as $ f (xt , x # xt ) (see subsection 2.1 in [10] for detailed deÞnition),

under the assumption thatf is bounded below and for allx, x t , the directional

derivative $ f (x, x # xt ) of f at xt in the direction x # xt exists, the sequence

[xt ]t=1 ,2,... satisÞes the asymptotic stationary point condition if

lim
k*

inf
+ %

inf
x"X

$ f (xt , x # xt )
||x # xt ||2

' 0. (4.4.29)

We rely on the convergence result from [91], through which we have the following

lemma:

Lemma 4.4.2. Supposef (x) =
! N

i =1 f i (x) is bounded below and the directional

derivative exits. Withgt
i t (x) being Þrst-order surrogates and incremental majorization-

minimization scheme,f (xt ) is almost sure convergence andxt satisÞes the asymptotic

stationary point condition with probability one.

Based on Lemma (4.4.2)), we have the convergence result for our IncrePA-ncvx

as summarized in the following Theorem (4.4.3)).

Theorem 4.4.3. Algorithm IncrePA-ncvx is almost sure convergence and the iterates

xt of converges to the asymptotic stationary point of the surrogate problemöf (x) with

probability one.

Proof. To utilize Lemma 4.4.2, we Þrst observe that our surrogate functiongt
i (x) in

eq. (4.4.25) is the so-called Þrst-order surrogate of the PA approximation function
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öf t
i (x) in eq. (4.4.24). Namely, i)gt

i (x) majorizes öf t
i (x), i.e. gt

i (x) ' öf t
i (x); ii) Denote

the approximation error by ht
i (x) = gt

i (x) # öf t
i (x) = l t

i ()
t
i ) # l(x) + %$l t

i ()
t
i ), x #

) t
i &+ 1

2%||x # ) t
i ||

2
2, then ht

i (x) is smooth andht
i ()

t
i ) = 0, $ ht

i ()
t
i ) = 0. Hence, with

the Þrst-order surrogate adopted in IncrePA-ncvx and the incremental majorization-

minimization scheme, we can apply Lemma 4.4.2 for the sequenceöf (xt ) and xt to

conclude that IncrePA-ncvx is almost sure convergent to the asymptotic stationary

point of proximal approximation function öf (x) with probability one.

4.5 Experiments

In this section, we evaluated the empirical performance of IncrePA for both convex

composite penalty and nonconvex composite penalty. We implemented the proposed

method and all other methods for comparison in MATLAB. All experiments were

conducted on single core of a laptop and 2.6-GHz Intel CPU with 16 GB of RAM. We

used both synthetic datasets and four real datasets1 in the experiment on the task

basis. The real datasets are summarized in Table 4.1. We randomly sampled 80% of

the data as training set and the rest as testing set. We used four di"erent tasks to

demonstrate the performance of the proposed method according to the convexity or

nonconvexity of the composite penalty and general or strongly convexity of the loss

function. As a result, we provided empirical evidence for all kinds of combinations of

loss functions and penalties, to which the proposed IncrePA has provided theoretical

convergence results in the previous sections. In the following, we have:

¥ Subsection 6.1 considers general convex loss with convex composite penalty by

solving smooth hinge loss with graph-guided lasso task on four real datasets;

¥ Subsection 6.2 considers strongly convex loss with convex composite penalty by

solving logistic loss with large margin graph-guided lasso on four real datasets;

¥ Subsection 6.3 considers nonconvex composite penalty of capped! 1 norm

1Ôa9aÕ and ÔcovtypeÕ are from LIBSVM archive; ÔproteinÕ is from KDD CUP 2004; Ô20 newsgroupÕ

is from http://www.cs.nyu.edu/ ~roweis/data.html
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overlapping group lasso on synthetic datasets with the di"erent number of

groups and data points.

¥ Subsection 6.4 considers nonconvex composite penalty of capped! 1 norm

graph-guided lasso on four real datasets.

Table 4.1: Summary of four real datasets

Data set Data points Dimensionality

20 newsgroup 12,995 100

a9a 32,561 123

covtype 581,012 54

protein 145,751 74

4.5.1 Experiment 1: Solving general convex loss function

with convex composite penalty

In this and the next subsections, we evaluated the performance of IncrePA on

convex composite penalties in comparison with two incremental gradient ADMM:

SA-ADMM [ 158] and SDCA-ADMM [127] along with a PA-based stochastic gradient

PA-ASGD ([157]). We do not consider the batch gradient PA method for comparison

because [157] has already shown that it is less e!cient than PA-ASGD. Also, we do

not explicitly compare the proposed algorithm with the stochastic ADMM methods

because the latter is slower than the incremental ADMM methods as demonstrated

in [158] and [127].

In this subsection, we considered the general convex loss problem by using the

smoothed hinge loss:

l i (u) =

#
$$$%

$$$&

0, yi u ' 1

1
2 # yi u, yi u ) 0

1
2(1 # yi u)2, otherwise,

(4.5.30)
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Figure 4.1: General convex loss with convex composite penalty: Empirical risk

on training data versus effective passes of smooth hinge loss with graph-guided

lasso on four real datasets.

whereu = 1T
i x, (1i , yi ) is the i-th data sample. We utilized the graph-guided fused

lasso

,
7
||x||1 +

"

{ i,j }" E

|xi # xj |
8

(4.5.31)

as the convex composite regularizer. We constructed the graph by sparse inverse

covariance matrix as used in [127] and set, at 0.001. The proximal map for||x||1 is

simply soft thresholding. The proximal map for|xi # xj | is

[P%
r k

]s =

#
$$%

$$&

xs # sign(xi # xj ) min{ (, |x i & xj |
2 } , s " { i, j }

xs, otherwise
(4.5.32)

as given in [146, 157]. For the training performance, we reported the empirical

risk, which is the training loss, against the number of iterations for all datasets in

Figure 4.1. As for the generalization performance, we reported the classiÞcation
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Figure 4.2: General convex loss with convex composite penalty: Classification

error on testing data versus effective passes and CPU time of smooth hinge loss

with graph-guided lasso on two real datasets.

error measured on testing set against the number of iterations and CPU time for the

Ô20 newsgroupÕ and Ôa9aÕ, which are depicted in Figure 4.2.

As shown in Figure 4.1, in terms of reducing the empirical loss, the performance

of the proposed method is the best on Ô20 newsgroupÕ and ÔproteinÕ, and only falls

to SDCA-ADMM on ÔcovtypeÕ and is only inferior to SA-ADMM on Ôa9aÕ. On

all datasets, IncrePA is more e!cient than another PA-based method: PA-ASGD.

Therefore, in this task, IncrePA performs almost the same as the other two ADMM-

based incremental gradient methods and is a much faster PA-based method compared

with the PA-ASGD. Figure 2 demonstrates the generalization performance. When

compared against the iteration numbers, IncrePA performs similar with SA-ADMM,

which is better than PA-ASGD, although both are a bit inferior to SDCA-ADMM.

When compared against CPU time, the proposed method performs relatively better
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Figure 4.3: Strongly convex loss with convex composite penalty: Empirical

risk on training data versus effective passes of logistic loss with large margin

graph-guided lasso on four real datasets.

than the other methods on both datasets. As a conclusion, IncrePA has the similar

generalization performance in terms of classiÞcation error on both dataset with

SA-ADMM and SDCA-ADMM and is more e!cient than PA-ASGD. Also, the

classiÞcation error on both testing sets indicate that our solution obtained by the

surrogate to regularizer is able to achieve satisfactory generalization performance.

4.5.2 Experiment 2: Solving strongly convex loss function

with convex composite penalty

For strongly convex case, we utilized the logistic loss with the large margin graph-

guided lasso regularizer as in ([157]), i.e.

,
7
||x||22 +

"

{ i,j }" E

|xi # xj |
8
. (4.5.33)
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Figure 4.4: General convex loss with convex composite penalty: Test loss on

testing data versus effective passes and CPU time of logistic loss with large

margin graph-guided lasso on two real datasets.

We proceeded the logistic loss and thel2 norm together to ensure the strong convexity

of the loss part. Note that, in this case, thel2 norm term can neither be incorporated

into li (1T
i x), nor into ||Ax ||1 form in the dual form, thus SDCA-ADMM is unable to

handle this case because the dual problem does not Þt ADMM structure. We only

compared with the other two methods. We reported the training loss on four real

datasets, and testing loss versus iteration number and CPU time, respectively, for

this case on Ô20 NewsgroupÕ and Ôa9aÕ datasets.

According to Figure 3, our method performs relatively better on Ô20 newsgroupÕ

and Ôa9aÕ, and is similar with SA-ADMM on ÔcovtypeÕ and ÔproteinÕ in training. As for

the generalization performance, Figure 4 shows the decrease of test loss over iteration

number and CPU time. IncrePA performs better than the other two methods on

Ôa0newsÕ in terms of both number of iterations and CPU time. IncrePA is the best on
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Ôa9aÕ in terms of CPU time, while falls behind SA-ADMM in terms of the number of

iterations. Therefore, we conclude that IncrePA works comparable to ADMM-based

incremental methods and is much better than PA-based PA-ASGD method.

Before proceeding to the nonconvex composite penalty experiments, we would like

to point out that, for the convex composite penalty, as a PA method, the proposed

method has generally better performance than stochastic gradient-based method:

PA-ASGD, in terms of all performance metrics we have tried so far. As an incremental

gradient-based method, the proposed method has comparable performance with

SDCA-ADMM and SA-ADMM, but the merit of the proposed method is two-fold:

(1) The convergence analysis of SDCA-ADMM relies on the local strongly convexity

of the loss function. In addition, SDCA-ADMM requires that the dual problem

should be in structure for ADMM to be applied to, which causes a stricter problem

format and therefore limits its application domain. For example, in the above case,

SDCA-ADMM cannot work at all because the dual parts do not Þt into the structure

for ADMM to be applied to when being put together, despite each dual of their

primal correspondences is easy to take. By contrast, the proposed method has given

the convergence analysis for both of general convex loss and strongly convex loss

problems. Further, the format of objective function in the proposed method is more

general than SDCA-ADMM; (2) SA-ADMM lacks convergence analysis for strongly

convex loss problem, but the proposed one does.

4.5.3 Experiment 3: Solving nonconvex composite penalty

of capped ! 1 overlapping croup lasso

This subsection studies the e!ciency of IncrePA by comparing it with the other two

algorithms, i.e. GD-PAN and CCCP, for such nonconvex composite penalty.

In this experiment, we considered capped-! 1 norm coupled nonconvex overlapping

group lasso:

min
x" Rd

1
2n

||y # Sx||22 + ,
K"

k=1

min{|| xgk ||, / } . (4.5.34)

We used a synthetic data generated in the same way as [146]. SpeciÞcally, the datasi
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Figure 4.5: Nonconvex composite penalty: Empirical risk on training data versus

CPU time of least square loss with capped #1 norm overlapping group lasso on

synthetic datasets.

was generated independently and identically distributed from the normal distribution

N (0, 1). The ground truth parameter x# was generated asx#
j = ( # 1)j exp(# j & 1

100 ).

Therefore the dimension wasd = 90K + 10 features. We setyi = ( x#)T si + 3i , where

3i = 10N (0, 1). We used the following pairs of (K, N ) with both growing dimension

and data number: (5, 500), (10, 1000), (20, 2000), (30, 3000), (30, 5000), (30, 6000). We

also Þxed the dimension toK = 30 and increased the data number withN =

4000, 5000, 6000, 8000. We compared the proposed algorithm with GDPAN and

CCCP. For the GD PAN method, we used the step size as suggested in [159]. We

Þxed the parameters for all di"erent methods to be (,, / ) = ( K/ 10, 0.1). For the

proposed method, we chose the step size to obtain the largest descent in one pass

over 5% of the data as suggested in [91]. We ran each algorithm 10 times. The

performance of the three algorithms is shown in Figure 4.5 by plotting the objective

value over CPU time. When the dataset is small, e.g. (K, N ) = (5 , 500), (10, 1000),

GD PAN actually works better than the proposed method. However, when the

dataset becomes large, the proposed method is much better, which indicates that

the proposed method has better scalability.
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Figure 4.6: Empirical risk on training data versus effective passes with

Nonconvex Graph-guided Lasso on four real datasets.

4.5.4 Experiment 4: Solving nonconvex composite penalty

of capped ! 1 graph-guided lasso

In this subsection, we considered nonconvex composite penalty by implementing the

capped! 1-norm with graph-guided lasso penalty on four real datasets (see Table

4.1). The graph is again constructed by sparse inverse covariance matrix. Again, we

compared the proposed algorithm with GD-PAN and CCCP. We reported the training

e!ciency in terms of training loss (objective value) over the e"ective pass of data

in Figure 4.6. It can be seen that the proposed method is consistently better than

GD-PAN and CCCP in terms of training. For the Ô20 newsgroupÕ, Ôa9aÕ and ÔproteinÕ

datasets, the proposed method is much faster than the other two methods, while

these three methods perform closely on the ÔcovtypeÕ. We also reported test loss over

the e"ective passes to show the generalization performance of the learned variable
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Figure 4.7: Test loss on testing data versus effective passes with Nonconvex

Graph-guided Lasso on four real datasets.

in Figure 4.7. It can be seen that the proposed algorithm is more advantageous

compared with both GD-PAN and CCCP on Ô20 newsgroupÕ, Ôa9aÕ and ÔproteinÕ

datasets, while all of them perform similar on ÔcovtypeÕ dataset. To sum up, the

proposed method is more e!cient than GD-PAN and CCCP in both training and

testing.

4.6 Summary

In this chapter, we have proposed a new incremental gradient method for empirical risk

minimization regularized by composite regularizer. As a PA technique-based method,

it is more e!cient and faster than its existing batch and stochastic counterpart.

When applied to convex composite penalties, compared with popular ADMM-based

incremental gradient, it has comparable performance, yet enjoys more compact
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update form and simpler theoretical analysis by virtue of the PA technique. Also,

we have proposed a variant for nonconvex composite penalties, which has better

scalability than the existing PA-based methods. Experimental results on four real

datasets have shown its e!ciency and satisfactory generalization performance for

convex composite penalties. Further, experiments on both synthetic and real datasets

has demonstrated its better scalability and improved e!ciency for the nonconvex

composite penalties.
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Chapter 5

Scalable Spectral k-Support Norm

Regularization for Ro- bust

low-rank Subspace Learning

5.1 Introduction

Recovering low rank matrix from gross corruptions has been a fundamental problem

in machine learning, data mining and computer vision. Representative applications

include collaborative Þltering [136], background modeling [16], face clustering [86],

among others. The gross corruption, also known as outliers, is often modeled by a

sparse noise matrix. The robust low rank subspace learning tasks then aim to learn the

low rank matrix with simultaneously minimizing the sparse noise matrix. In general,

the low rank matrix and sparse matrix are required to satisfy certain linear constraints.

With di"erent designs of linear map, various tasks can be formulated by this linear

constraint joint low rank and sparse matrix minimization problem, including robust

principal component analysis (RPCA) [16] and low rank representation (LRR) [86].

Regarding the NP-hard rank minimization, nuclear norm is the most popular

convex relaxation. As pointed out by [36], nuclear norm is actually the tightest

convex relaxation of the nonconvex cardinality function (i.e.! 0 norm function) of
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its singular values [36] under unit inÞnite norm ball. Recently, k-support norm [3],

which seeks the tightest convex relaxation of the! 0 norm (being value k) under unit

! 2-norm ball rather than inÞnite norm ball, has been studied. It has been shown that

k-support norm outperforms the other convex relaxations such as! 1 norm [131] and

elastic net [161] for sparsity estimation, both theoretically and practically. Motivated

by the success of k-support norm, spectral k-support norm [36, 95, 96] has been

proposed to prompt low rankness of matrix by applying the k-support norm to

the singular values of the matrix. Compared with nuclear norm, it provides tight

relaxation of the rank k matrices under unit! 2 norm ball of its singular values rather

than inÞnite norm ball, which is often more preferred [36, 95]. Papers [95] and [96]

have studied the spectral k-support norm in low rank matrix completion task and

have reported the performance against the other convex penalties. [95] also shows

the link of the spectral k-support norm between cluster norm used in the multi-task

learning context. Furthermore, [96] extends it to spectral (k, p)-support norm to

capture the decay of singular values of the underlying low rank matrix. Despite the

superior recovery performance compared with other convex relaxations like nuclear

norm, the spectral k-support norm is much more di!cult to be optimized, which

therefore severely limits its application domain, particularly for big data analysis.

Although methods developed for k-support norm that relies on proximal map of the

squared k-support norm [3, 36, 80] can be migrated to spectral k-support norm, its

computation is laborious. A major reason is the full SVD decomposition involved

in the proximal mapping computation. Furthermore, restricted by the property of

the k-support norm, e!cient approximation methods for nuclear norm (e.g. power

method and Lanczos method) that requires leading singular values only are hardly

applicable to spectral k-support norm. Further, a search operation that segments

singular values into certain groups also needs additional computation.

In this chapter, we will study the spectral k-support norm for robust low rank

subspace learning task. Regarding optimization, it is apparently more challenging

to design an e!cient and scalable algorithm than the previous research focusing on
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matrix completion [95, 96], given the additional linear constraint. We propose two

variants for utilizing the spectral k-support norm, of which one uses the squared

form as previous methods do. In the other variant, we show that we can also directly

design an optimization algorithm for the original spectral k-support norm, which

is hardly possible for most existing proximal gradient-based methods. We Þrst

follow the common practice to get rid of the linear constraint by Lagrangian dual.

Next, instead of directly optimizing the Lagrangian dual alternatively as common

ADM-based methods do, we further convert the problem by Fenchel conjugation

[149]. The optimization of the resultant dual objective can then be solved via

accelerated proximal gradient method (APG) [101], which only requires to evaluate

the polar operator of spectral k-support norm, plus the proximal mapping related

to inÞnity norm. Both of them are more computational e!cient than the proximal

map related to spectral k-support norm, in which the per-iteration cost is linear

instead of superlinear. In principal, we follow the recently proposed primal-dual

framework [102, 149] and recover the primal low rank variable along the dual APG

iterations [149] By studying the (sub)gradient set of the loss function of the dual

objective, we also incorporate the line-search strategy [149] that can adapt to the

smoothness of the dual objective in the sense of H¬older continuity. Also, please note

that line-search is possible in our method because the dual norm of the spectral

k-support norm is more e!cient to compute than itself, which is another advantage

brought about by our dual conversion. Per-iteration complexity analysis shows that

the time complexity of our method is linear with respect to the size of low rank

matrix, whereas ADM-based methods would involve super-linear complexity.

In summary, we propose a polar operator-based algorithm featuring the following

merits:

1. The proposed algorithm costs only linear per-iteration complexity rather than

super-linear if proximal ADM method is adopted;

2. Our method is ßexible to deal with both squared k-spectral norm and itself,

whereas most of previous methods are conÞned with the former form; Also, our
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method is general so that it can be adapted to various choices of linear map,

constant matrix and sparse norm to suit di"erent model;

3. Our method converts to an equivalent dual form that deals with the dual

spectral k-support norm, which is easier to compute than the primal norm.

This further enables us to incorporate a line-search strategy to adapt to the

degree and constant of the smoothness of the dual objective in the sense of

H¬older smoothness.

5.2 Preliminary: Scalable Algorithm with Spec-

tral k-Support Norm

With the spectral k-support norm, the robust low rank subspace learning problem

in eq.(2.3.18), featuring a nonsmooth and linear constraint optimization problem,

is di!cult to be solved in a scalable way, which severely limits the application of

the spectral k-support norm from the practical perspective. In this subsection, we

will explain that popular approaches to scaling nuclear norm regularization under

this model is not applicable to spectral k-support norm. Specially, for nuclear

norm, matrix factorization-based methods and ADM-type methods are both e"ective

algorithms for solving eq.(2.3.18) e!ciently, but none of them can be applied to solve

spectral k-support norm regularized problem e!ciently. The matrix factorization-

based methods crucially rely on the following property of nuclear norm:||Z ||# =

minP,Q
1
2||P||2F + 1

2||Q||2F , s.t.Z = PQ, which is not applicable to spectral k-support

norm. For the ADM-type methods, we argue that the proximal operator-based ADM

method and its variants cannot optimize the spectralk-support norm regularized

robust subspace learning problem in a scalable way by brießy deriving such an

algorithm based on a particular linearized ADMM scheme [85] as follows:

||L ||sp,k + , ||S||1 + %$, BL + S # M& +
&
2

||BL + S # B M ||2F . (5.2.1)
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Then, it will update L, S, $ in an alternate fashion. In particular, to optimizeL, we

linearize the squared Frobenius norm term

arg min
L

||L ||sp,k + %BT $t , L&+ &BT (%BLt + St # B M, L &)

+
(
2

||L # L t ||2F .
(5.2.2)

This will require the proximal operator related to|| á ||sp,k,

L t+1 = arg min
L

||L ||2sp,k +
(
2

||L # Ct ||2F . (5.2.3)

Please note that eq.(5.2.3) uses the squared spectral k-support norm instead, which

has yet to know whether a closed-form solution exits for this norm in the literature.

Actually, all existing methods resort to the squared k-support norm, which has

closed-form solution. It is not di!cult to adapt the proximal operators for the

squared k-support norm [3, 80, 36] for spectral k-support norm. However, all existing

proximal mappings cannot be computed in a scalable way. The main bottleneck is

that proximal mapping would require a full SVD decomposition plus a searching

step to segment the singular values into three di"erent groups for di"erent types of

computation. [80] improves upon [3] by using binary search instead of the exhaustive

search, and [36] proposes to solve the proximal mapping of the spectral k-support

norm by computing the proximal mapping of its dual norm. However, none of

these methods are able to avoid the full SVD because the search step and the

subsequent computation both rely on all of the singular values. Nuclear norm-based

ADM method is able to avoid such full SVD by an approximation technique that

only requires to compute a few leading singular values, which is, unfortunately, not

applicable here for spectral k-support norm. As a result, such ADM-based method

would incur super-linear per-iteration cost that severely limits the scalability of

spectral k-support normÕs utilization under this model.

5.3 The Proposed Method

In this section, we present our proposed method for learning robust low rank subspace

with spectral k-support norm regularization in an e!cient way. We begin with two
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reformulations and derive the corresponding equivalent problem based on Fenchel

dual, one of which uses the squared spectral k-support norm and the other uses the

original spectral k-support norm. The reformulated equivalent problems, referred

as dual objectives, allow more e!cient computation, in which the per-iteration cost

hinges on solving a linear subproblem, referred as linear oracle evaluation of the

spectral k-support norm. The linear oracle evaluation only needs to compute the

leading k-singular value decomposition (SVD), avoiding the full SVD computation

otherwise required by proximal mapping-based ADM methods, is known to be more

e!cient to compute, especially with Lanczos method or power method techniques.

Also, our method does not require the search step of the proximal mapping of spectral

k-support norm. In addition, we study the smoothness of our loss function of the dual

objective and incorporate a line-search strategy that can adapt to the smoothness

change in the sense of H¬older continuity to further accelerate the algorithm.

5.3.1 Formulation I: Usage with Squared Spectral k-Support

Norm

In our Þrst formulation, we utilize the squared spectral k-support norm, which is

adopted by almost all proximal mapping-based methods [3, 80, 36]. Let L denote

the target low rank variable, we are solving the following constraint form of robust

low rank subspace model:

min
L

1
2

||L ||2sp,k, s.t. ||S||s ) 4, B(M # L) = S. (5.3.4)

The above formulation amounts to the constraint||B(M # L)||s, which is considered

more natural than regularization formulation because it directly signiÞes the tolerance

on the misÞt [2]. With a proper choice of4, it is equivalent to the regularized form

in eq.(2.3.18). Denoting the dual variable by $, by using the Lagrangian dual to

handle the linear constraintB(M # L) = S, we also get the following Lagrangian

formulation,

max
!

min
S,L, ||S||s $ *

<1
2

||L ||2sp,k + %$, BL + S # B M &
=
. (5.3.5)
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However, instead of performing alternative updating strategy which would incur the

usage of the expensive proximal map of the square form of the spectral k-support

norm, we further convert eq.(5.3.5) by Fenchel conjugation, as summarized in the

following proposition.

Proposition 5.3.1. To solve the maximization problem in

eq.(5.3.5), it is equivalent to solve the following minimization problem w.r.t the

Lagrangian dual variable$,

min
!

f ($) + r ($) , where (5.3.6)

f ($) =
1
2

(|| # B T $||#sp,k)2 + %$, BM &, (5.3.7)

r ($) = 4|| # $||#s. (5.3.8)

In eq.(5.3.8),|| á ||#s denotes the dual norm of|| á ||s, e.g. || á ||% for || á ||1 norm and

|| á ||2,% for || á ||2,1 norm. Proposition 5.3.1 converts the optimization of eq.(5.3.5) to

eq.(5.3.6) that is referred as dual objective in the sequel. To solve eq.(5.3.5) with

respect to Lagrangian dual variable $, we can apply the proximal gradient descent

algorithm [101]. The proximal map is now related to|| á ||#s, which is essentially

equivalent to projection onto|| á ||#s unit ball and is not expensive [30, 133]. Hence

another major per-iteration cost would be the gradient evaluation off ($). Before

proceeding to the computation of the gradient, we give a brief proof of Proposition

5.3.1, which would reveal a particular choice of (sub)gradient of the loss function

f ($).

Proof. To prove Proposition 5.3.1, we begin with the following sequence of equivalence
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relations:

max
!

min
S,L, ||S||s $ *

<1
2

||L ||2sp,k + %$, BL + S # B M &
=

12 max
!

<
min

L

71
2

||L ||2sp,k + %$, BL&
8

# %$, BM &

+ min
||S||s $ *

7
%$, S&

8=

12 max
!

<
min

L
#

7
%#BT $, L& #

1
2

||L ||2sp,k

8
# %$, BM &

+ min
||S||s $ *

#
7
%#$, S&

8=

12 max
!

#
<

max
L

7
%#BT $, L& #

1
2

||L ||2sp,k

8
+ %$, BM &

+ max
||S||s $ *

7
%#$, S&

8=
.

(5.3.9)

The Þrst and the second term in the square bracket can be combined and converted

as follows:

max
L

7
%#BT $, L& #

1
2

||L ||2sp,k

8
+ %$, BM &

=
1
2

(|| # B T $||#sp,k)2 + %$, BM &:= f ($)
(5.3.10)

The third term in the square bracket can be rewritten based on the deÞnition of dual

norm of || á ||s, i.e.

max
||S||s $ *

%#$, S&= max
||S/* ||s $ 1

7
%#4$, S/4&

8
= 4|| # $||#s := r ($) . (5.3.11)

By combining the above derivation together, we can solve the right-hand side problem

to equivalently solve the original Lagrangian dual problem on the left-hand side of

the following equation:

max
!

min
S,L, ||S||s $ *

<1
2

||L ||2sp,k + %$, BL + S # B M &
=

(5.3.12)

12 # min
!

7
f ($) + r ($)) . (5.3.13)

Based on eq.(5.3.10) (i.e. taking the derivative of the Þrst line in eq.(5.3.10) w.r.t.

$), we have a particular choice of the (sub)gradient of the dual loss functionf ($),

as shown in the following corollary.
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Corollary 5.3.2. Denote a particular subgradient of+f ($) by g($) , then it can be

computed as

g($) = #B L# + BM, where L# = arg max
||A ||sp,k $ 1

%#BT $, A&. (5.3.14)

According to Proposition (5.3.2), the computation of computing the (sub)gradient

of the dual objective comes from computingL# , which requires to solve a linear

problem arg max||A ||sp,k $ 1%#BT $, A&. The spectral k-support norm, as an gauge

function [41] (i.e. nonnegative, positively homogeneous convex functions vanishing at

the origin), allows the linear subproblem to be equivalently solved by the following

polar operator:

arg max
A"A

%#BT $, A&. (5.3.15)

Recall that A is the set of ÒatomsÓ of the spectral k-support norm deÞned in

eq.(2.3.26) and also note that the structure of theA " A constraint set is much

simpler to deal with than ||A||sp,k ) 1. In fact, the polar operator has closed-form

solution which only computes top k-SVD of matrixBT $ in eq.(5.3.14), as shown in

the following lemma from [96]:

Lemma 5.3.3. Denote a particular SVD of an arbitrary matrix X " R(m,n ) by

X = Udiag(* )V T . Then the polar operator of the spectral (k,p)-support norm, i.e.

L# = arg supA"A %X, A &(recall that A is the ÒatomicÓ set in eq.(2.3.26)), admits the

closed-form solution asL# = Udiag(s)V T , where

si =

#
$$%

$$&

( +i
||+||!

sp, ( k,p )
)

1
p" 1 , i = 1, ..., k

0, i = k + 1, ... min{ m, n} .
(5.3.16)

Recall that ||* ||#sp,(k,p) is the dual spectral (k,p) support norm ofX in eq.(2.3.28)

and simply setp = q = 2 for spectral k-support norm. According to Lemma (5.3.3),

the computation of the polar operator, and thus the gradient of the dual objective,

only involves the top k-SVD, which is more e!cient to evaluate than full SVD,

especially with Lanczos [82] or perhaps power method [46] techniques. Please note

that although [96] also utilizes the polar operator, their methods are based on vanilla
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Frank-Wolfe algorithm, which is not applicable when additional linear constraint is

involved.

5.3.2 Formulation II: Usage with Spectral

k-Support Norm

In this subsection, we propose our second formulation that utilizes the spectral

k-support norm itself, which is impossible for proximal mapping-based approach

due to the lack of known closed-form proximal mapping. Again, we begin with the

following constraint formulation:

min
L

||L ||sp,k, s.t. ||S||s ) 4, B(M # L) = S. (5.3.17)

Before converting it to Lagrangian dual form to get rid of the equality constraint,

we introduce an auxiliary variablevl with:

min
vl

vl , s.t. ||S||1 ) 4, B(M # L) = S, ||L ||sp,k ) vl ) Ql , (5.3.18)

whereQl is a constant estimation of the upper bound of||L ||sp,k. This technique

has been previously introduced by [48] and later also adopted by [99] for extending

Frank-Wolfe algorithms [60] to norm regularization problem. Again, denoting the

Lagrangian dual variable by $, we have

max
!

min
L,v l ,S

:
vl + %$, BL + S # B M &

'
'
' ||L ||sp,k ) vl ) Ql , ||S||s ) 4

;
. (5.3.19)

We then further transform the above formulation by Fenchel conjugation summarized

by the following proposition.

Proposition 5.3.4. To solve the maximization problem in eq.(5.3.19), it is equivalent

to solve the following minimization problem with respect to the Lagrangian dual

variable $:

min
!

f ($) + r ($) , where (5.3.20)

f ($) = max { 0, (Ql || # B T $||#sp.k # 1)} + %$, BM &, (5.3.21)

r ($) = 4|| # $||#s. (5.3.22)
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Proof. To prove Proposition 5.3.4, we begin with the following equivalent relationship,

which is related to the low rank componentL and vl :

min
vl ,L

<
vl + %$, BL&

'
'
' |L ||sp,k ) vl ) Ql

=

= min
vl ,A

<
vl

7
1 + %BT $, A&

8'
'
' ||A||sp,k ) 1, 0 ) vl ) Ql

=

= min
0$ vl $ Ql

<
vl

7
1 # max

A"A
%#BT $, A&

8=

= # max
0$ vl $ Ql

<
vl (|| # B T $||#sp,k # 1)

=
.

(5.3.23)

If l ($) := ( || # B T $||#sp,k # 1) > 0, max0$ vl $ Ql

:
vl l ($)

;
= Ql l($) because the optimal

v#
l = Ql ; Otherwise,

max0$ vl $ Ql

:
vl l ($)

;
= 0 because the optimalv#

l = 0. That is,

min
vl ,L

<
vl + %$, BL&

'
'
' |L ||sp,k ) vl ) Ql

=
= # max{ 0, Ql l($) } . (5.3.24)

As for the sparse componentS, we can obtain the reformulation similar to

Formulation I in the previous subsection, i.e.

min
||S||s $ *

%$, S&= # max
||S||s $ *

%#$, S&= # 4|| # $||#s := # r ($) . (5.3.25)

Combining the above together, we have the following dual problem:

max
!

#
<

max{ 0, Ql l($) } + %$, BM &+ r ($)
=

= # min
!

<
max{ 0, Ql l($) } + %$, BM &+ r ($)

=
.

(5.3.26)

Therefore, we can equivalently solve

min
!

<7
max{ 0, Ql l($) } + %$, BM &

8
+ r ($)

=
:= min

!
f ($) + r ($) . (5.3.27)

The next corollary shows a particular choice of (sub)gra-

dient for f ($).

Corollary 5.3.5. A particular choice of the (sub)gradient forf ($) is given byg($) :
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g($) =

#
$$$$$%

$$$$$&

BM # QlBL# , (|| # B T $||#sp,k # 1) > 0

BM # conv{ 0, QlBL# } , (|| # B T $||#sp,k # 1) = 0

BM, (|| # B T $||#sp,k # 1) < 0

, (5.3.28)

whereL# = arg maxA"A %#BT $, A&can be computed according to Lemma 5.3.3.

Corollary 5.3.5 shows that the major computational cost of the (sub)gradient

for f ($) depends again on the linear optimization problem of evaluating the polar

operator of spectral k-support norm. Compared with Formulation I in the previous

subsection, to learn with the spectral k-support norm itself, we need to tune one

more parameterQl , which is used in eq.(5.3.23).

5.3.3 Algorithm

APG for the Dual Objective

Following [102, 149], we can then solve the converted dual objective with the acceler-

ated proximal gradient descent

(APG) [ 7, 101]. The gradient of each step can be evaluated according to Corollary

5.3.2 and Corollary 5.3.5. In detail, we keep two interpolation sequencesö$t and $t ,

which is typical for APG-type methods. SpeciÞcally, in each iteration, the algorithm

updates the dual variable $t by,

$t+1 = arg min
!

f (ö$t ) + %g(ö$t ), $ # ö$t&+
Ht+1

2
||$ # ö$t ||2F

+ r ($);
(5.3.29)

ö$t+1 = $ t+1 +
, t # 1
, t+1

($ t+1 # $t ), (5.3.30)

where, t is a scalar sequence updated iteratively as, t+1 = 1+
(

1+4 ) t
2

2 with the initial

value 1. Ht is the reciprocal of the step size. Also, recall thatg(ö$t ) is the gradient of

f at ö$t which can be evaluated by eq.(5.3.14) and eq.(5.3.28).

The subproblem eq.(5.3.29) is actually the proximal mapping related to the dual

norm of the sparsity inducing norm, which is essentially to compute the projection
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onto ! 1 norm ball. In detail, eq.(5.3.29) is the proximal mapping corresponds to

|| á ||#s that is denoted asproxH " 1
t +1 r (!)

7ö$t # g(ö$t )/H t+1 ),

$t+1 = arg min
!

1
2

||$ # (ö$t # g(ö$t )/H t+1 )||2F +
4

Ht+1
||$||#s, (5.3.31)

which can be equivalently evaluated by the projection on the unit|| á ||s norm ball

according to

$t+1 =
7ö$t #

g(ö$t )
Ht+1

8
#

4
Ht+1

proj
( 1

*
H t +1

7ö$t #
g(ö$t )
Ht+1

8)
, (5.3.32)

whereproj (X ) denotes the projection operation, e.g. projects onto! 1-ball or ! 2,1-ball,

both of which allow e!cient computation that costs linear complexity with respect

to the size ofX , i.e. O(mn) for X " R(m,n ) [133].

Line-search

In the following, we study the (sub)gradient set off ($), which apparently depends

on the structure of the (sub)gradient of the dual norm|| á ||#sp,k (see eq.(5.3.7) and

eq.(5.3.21)). To keep the study more general, the following lemma shows the form of

(sub)gradient of the dual norm of spectral (k, p)-norm ||á ||#sp,(k,p) , which is generalized

from Proposition 5 in [29] and also see [135].

Proposition 5.3.6. For $ *= 0, denote a particular singular value decomposition

of $ by $ = Udiag(* )V T and suppose the singular values satisÞes* 1 ' * 2 ' ... >

* k& a+1 = ... = * k = ... = * k+ b > ... ' * d. q satisÞes1
p + 1

q = 1. Then, the subgradient

set of the dual norm of the spectral(k, p)-support norm at $ is

1

||$||#(q& 1)
sp,(k,p)

>
U[:,1:k& a]diag(* q& 1

[1:k& a])V
T

[:,1:k& a]

+ U[:,k& a+1: k+ b]RV T
[:,k& b+1: k+ b]

?
,

(5.3.33)

whereR is a symmetric matrix and satisÞes||R||2 ) 1 and

||R||# = a. In particular, it is di!erentiable when * k > * k+1 or * k = 0 with the

gradient equal to
1

||$||#(q& 1)
sp,(k,p)

>
U[:,1:k]diag(* q& 1

[1:k])V
T

[:,1:k]

?
. (5.3.34)
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According to Proposition (C.3.1), we actually choose eq.(C.3.36) as the (sub)gradient

in computing the gradient ofg($). The conditions of the uniqueness of the subgradi-

ent set, i.e. whe-

ther * k > * k+1 or * k = 0 is satisÞed, can be interpreted as whether the Þrstk

singular vales of $ are well-separated with the remaining singular values. Proposition

(C.3.1) indicates that, when the Þrstk singular values are well-separated,g($) would

be di"erentiable. In practice, initializing with a low rank matrix $ (e.g. all-zero

matrix), we would expect that the singular values of $ change from satisfying the

uniqueness condition (e.g.* k = 0) to dissatisfying across iterations.

Therefore, the smoothness of the dual objective lossg($) would change from

di"erentiable to subdi"erentiable across iterations, which corresponds to degree0 = 1

to degree0 = 0 in the sense of H¬older continuity, which guarantees the following

relationship (for more detailed properties, please see [102]), ||$ f (x) # $ f (y)|| )

H, ||x # y||, , . x, y, where0 " [0, 1] is referred as the degree of smoothness andH,

is assumed Þnite that is deÞned by

H, := H, (f ) = sup
x+= y"D

||$ f (x) # $ f (y)||
||x # y||,

. (5.3.35)

Next, we utilize a line-search scheme proposed recently by [149], which is able to

automatically adapt to both the degree and constant of the H¬older continuity of the

dual objective and thus chooses more optimal step size. We denote the reciprocal of

the step size at iterationt by Ht . According to proximal gradient update related to

r ($), we have

QH t ($; ö$t ) = f (ö$t ) + %g(ö$t ), $ # ö$t&+
Ht+1

2
||$ # ö$t ||2F . (5.3.36)

In essence, the line search aims to Þnd the minimumHt+1 (corresponding to the

largest step size) that satisÞes the following criterion:

f ($ t+1 ) ) QH t +1 ($ t+1 ; ö$t ) +
$

2, t
, (5.3.37)

where$ is the error tolerance and, t is the sequence kept by APG algorithm.
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Primal Variable Recovery

Thus far, we have dealt with the dual objective and dual variable. However, our

ultimate goal is the primal variableL. To do so, we follow [149] to simultaneously

maintain the primal variable sequenceLt across dual variable updating procedure,

i.e. L t+1 = (1 # " t )L t + " tL# , where" t is the weighting parameter andL# is the

polar operator result computed during the gradient evaluation. According to [149],

" t is constructed by also taking information from the adaptive step size

" t =
, t /H t! t
i =1 , i /H i

. (5.3.38)

This primal update step is similar to the Frank-Wolfe algorithm. With a constant

step size, the weighting strategy would look even more similar to the ÒstandardÓ

Frank- Wolfe weighting strategy 2
t+1 . By combining the above parts, the complete

procedure is summarized in Algorithm 12.

Algorithm 12 Proposed algorithm

Input: $0, ö$0, L0 = 0(m,n ) , , 0 = 1, vl , Ql , 4, $ > 0, tmax ;

1: for t = 0, 1, ..., tmax do

2: Compute L# by evaluating the polar operator in eq. (5.3.15) atö$t ;

3: Compute the (sub)gradientg(ö$t ) of f ($) at ö$t by eq.(5.3.14) (for Formulation

I) or eq.(5.3.28) (for Formulation II);

4: Compute $t+1 = proxH " 1
t +1 r (!)

7ö$t # H & 1
t+1 g(ö$t )

8
by eq.(5.3.32), whereHt+1 is

decided by line-search subroutine:line-search (ö$t , g(ö$t ), Ht , $, , t );

5: Update the weight " t for primal recovery by eq.(5.3.38);

6: Update the sequence, t+1 : , t+1 =
1+

3
1+4 ) 2

t

2 ;

7: Update interpolation sequenceö$t+1 = $ t+1 + ) t & 1
) t +1

($ t+1 # $t );

8: Update the primal sequenceL t+1 = (1 # " t )L t + " tL# .

9: end for

10: Return: L tmax ;

The following is the line-search subroutine.
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Algorithm 13 line-search subroutine

Input: ö$, g(ö$), H0, $, , ;

1: for i = 0, 1, ..., imax do

2: $i +1 = proxH " 1
i r (!)

7ö$ # H & 1
i g(ö$)

8
;

3: if f ($ i +1 ) ) f (ö$) + %g(ö$), $i +1 # ö$&+ H i
2 ||$i +1 # ö$||2F + "

2) then

4: break;

5: else

6: Hi +1 = 2Hi ;

7: end if

8: end for

9: Return: $i , Hi ;

Algorithm Analysis

To recover an underlying low rank matrix of size (m, n), the time complexity of

each part of Algorithm 12 is as follows: step 2 costsO(kmn) to compute the top

k SVD; step 3 is simply the point-wise multiplication and summation, which costs

O(mn); the proximal map of r ($) in step 4 takesO(mn) which mainly comes from

projection onto sparse norm ball [133]; the line search in step 4 costsO(imax kmn) to

compute at mostimax times dual loss value that requires top k SVD; step 8 costs

O(mn). Therefore, the per-iteration complexity isO(imax kmn), where imax is 2 on

average as observed by [149]. Recall that proximal map-based ADM methods would

cost O(min{ m, n} mn) to compute the full SVD and min{ m, n} log(min{ m, n} ) to

compute the proximal map of the singular values of the target matrix [95]. For

practical applications, k is often much smaller thanmin{ m, n} , e.g. we set k=3 for

tasks in subsection (4.2), (4.3). Hence, the proposed method enjoys much lower

per-iteration cost.

Now we discuss the convergence behavior of the proposed method by Theorem 2

from [149], depicted by the following theorem.

Theorem 5.3.7. The primal sequenceLt generated by Algorithm 1 converges with
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the worst case iteration number to achieve$ error with tmax = O(inf , " [0,1]( H "
" )

2
1+ " ).

With the smooth objective, i.e. 0 = 1, the worst-case iteration number is the same

as the one of Frank-Wolfe type algorithms that trade o" lower per-iteration complexity

with slower convergence rate to scale to larger problem. Also, in practice we Þnd

the line-search condition is too conservative. Actually, more e!cient implementation

can be made by checking the line-search condition every 5 to 10 iterations instead of

one per-iteration.

5.4 Experiment

In this section, we study the empirical performance of the proposed method on

both synthetic and real datasets to test on the RPCA model in eq.(2.3.19). In

our implementation, we solve the k-SVD by the lansvd function in the PROPACK

package [46] 1. We empirically set k to be equal or slightly larger than the desired

rank of the low rank matrix, which can also be selected by cross-validation. All

experiments are done on a laptop computer running MATLAB.

We compare with 1) IALM [84] uses nuclear norm as low rank penalty; 2) PSSV

2[105] uses partial sum of singular values, i.e. omits the leading singular values in the

nuclear norm, which is nonconvex; 3) FWT3 [99] also uses nuclear norm, but it is

an FW-based method instead of proximal mapping. We use recommended or default

parameter settings for these compared methods. We do not compare with neither

Reg! 1-ALM [ 156] which imposes additional assumption thatL = PZ, whereP is

orthogonal andZ is low rank, nor the composition of nuclear norm with nonconvex

functions [142] like SCAD [37] and MCP [150] functions. For the former, we can

expect performance gain if we substitute the nuclear norm penalty with spectral

k-support norm for the corresponding low rank part. For the latter, we omit them

because this chapter focuses only on studying whether the spectral k-support can

1http://sun.stanford.edu/ ~rmunk/PROPACK/
2http://thoh.kaist.ac.kr/Research/PartialSum/PartialSum.htm
3https://sites.google.com/site/mucun1988/publi
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be a better and computational feasibleconvex relaxation than nuclear norm for the

robust subspace learning problems.

Also, we would like to point out that our algorithm can actually be applied to

more general joint low rank and sparse minimization model by taking di"erent linear

map and constant matrix in eq.(2.3.18). A representative problem is the low rank

representation problem (LRR) [86], whereM can be identity matrix I and B equals

input data matrix D. With ! 2,1 norm [147] to promote column-wise sparsity, the

problem becomesarg minL,S ||L ||sp,k + ||S||2,1, s.t. D # DL = S. In this regard,

the proposed method is more favorable than algorithms dedicated only to RPCA

problem.

5.4.1 Synthetic Data

This subsection evaluates the performance of the proposed algorithm on synthetic

data. We generated the ground truthd ! d low rank matrix G by Þrst generating

random matrix uniformly sampled within 0 to 1, which was then truncated bylansvd

with the various rank ratio r . We added random Gaussian noiseN (0, 0.1) to G.

Finally, we obtained the input matrix M for testing by randomly setting matrix

elements to either -20 or +20 inG with a series of corruption ratioc, which are

outliers.

Figure 5.1 reports the recovery performance under a series degree of corruption.

We varied the corruption percentage from 1% to 10%. The data dimension was Þxed

with 1000! 1000 and the rank ratio was set at 10%. We measured the reconstruction

performance by! 1 relative error ||L & G||1

d' d (left subplot) and ! 2 relative error ||L & G||2
||G||F

(right subplot), where G is the ground truth matrix and L is the output of algorithms.

From Figure 5.1, it can be seen that the recovery error increases with the more

outliers. The two formulations of the spectral k-support norm regularized RPCA

algorithm perform closely and are better than proximal mapping-based nuclear norm

regularized (solved by IALM) and partial singular value sum regularizer algorithms

(solved by PSSV). Note that the performance of PSSV is close to that of IALM, both
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Figure 5.1: Corruption ratio versus relative error.
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Figure 5.2: Rank ratio versus relative error.

of which are slightly worse. Among these algorithms, the performance of the FWT

method is the worst. Although it uses proximal step for the sparse matrix update, the

low rank part is still updated by pure Frank-Wolfe strategy, which is slow and cannot

obtain enough decease of the objective compared to proximal algorithm for either

primal (like ALM/ADMM) or for the dual form without further local reÞnement [ 60].

In Figure 5.2, we compared the algorithms with rank ratio varying from 1% to 10%,

while Þxing corruption ratio to 5% and data dimension to 1000! 1000. Recovery

performance under! 1 (left) and ! 2 norm (right) are reported. Again, the proposed

method with two formulations performs closely and are better than the counterparts.

Therefore, the spectral k-support norm is superior to nuclear norm for RPCA task in

terms of recovering performance. Furthermore, we also studied the scalability of the

proposed method, which is another key issue determining the feasibility for adopting

spectral k-support norm in RPCA task. We generated the data with the sizes of
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Figure 5.3: Data dimension versus CPU time.

1000! 1000 to 3000! 3000 and set the corruption ratio to 1%, rank ratio to 10%. As

shown in Figure 5.3, the proposed method is more e!cient than IALM and PSSV.

In the experiment, we also used the truncated SVD to approximately solve the SVT

operator, i.e. proximal mapping of nuclear norm. Therefore, the proposed method

costs comparable computation of per-iteration. Nevertheless, our method chooses

optimal step size adaptive to the smoothness of the dual objective, which can explain

why it is faster than IALM and PSSV. By contrast, FWT is much faster than all

algorithms because it only computes the top singular value and corresponding vector

that can be much more e!cient than truncated SVD. As a result, our method, by

avoiding full SVD if otherwise ADM is applied, makes the spectral k-support norm

e!cient enough to use compared to prevalent proximal mapping-based nuclear norm

regularized methods. Although not as fast as FWT, the proposed method has the

better recovery performance.
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Table 5.1: Videos used in the experiment

campus lobby

frame size 160! 128 160! 128

# of frames 1, 439 1, 536

M size 20, 480! 4, 317 20, 480! 4, 608

Figure 5.4: Background modeling results on campus and lobby dataset.

5.4.2 Background Modeling on Surveillance

Videos

In this experiment, we considered modeling background in surveillance videos cap-

tured by a Þxed camera. When stacking each frame as column vectors to form the

input data matrix, the relative static background can be assumed to be low rank,

while the foreground (e.g. human, car movements) can be modeled as sparse noise.

Table 5.1 summarizes the dataset4 used in this experiment. Since we dealt with

color videos, in which each frame is described by three sub-matrices, we vectorized

these matrices from each frame and stack them together to form a large matrix.

Therefore, the row size of large input matrix equals length times width of the frame

and the column size is three times of the frame number in the video.

Figure 5.4 shows the extraction performance of a sample frame of the campus

dataset (left three columns) and lobby dataset (right three columns). In the raw

4http://perception.i2r.a-star.edu.sg/bkmodel/bkindex.html
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image, the foreground mainly contains two pedestrians in the middle of the frame,

one in dark shirts, while the other is in white, and a car at the left corner of the

frame. The background extracted by spectral k-support norm is obviously better

than that by (partial) nuclear norm, in which there are still vague contours of the

pedestrian in white shirt in the middle and car in the left from the background

extracted by (partial) nuclear norm. The rightmost three columns of Figure 5.4

present a pretty challenging sample frame from lobby dataset, where the two men

stand in the middle of the frame for a moment leading them hard to be separate

from background. In this case, (partial) nuclear norm is unable to remove these two

men from the background. The spectral k-support norm is able to completely remove

the man on the right and the man on the left only leaves with a vague contour. As

a result, the spectral k-support norm has better recovery performance. Also, the

running time indicates that our algorithm is e!cient.

In conclusion, this experiment indicates that spectral k-support norm is superior

than (partial) nuclear norm for recovering low rank matrix under sparse noise. Also,

the proposed method is scalable to large scale tasks that makes the spectral k-support

norm feasible to be applied for robust low rank subspace learning.

5.4.3 Face Reconstruction

In this experiment, we consider the face reconstruction task, where front face images

are taken under varying conditions like changing illumination. When stacking all

vectorized face together, the shadow and specularity caused by changing environment

can be treated as sparse noise and the underling low rank matrix is the desired face

image to be recovered. We used part of the Extended Yale-B Face Database-B (i.e.

subjects 1 to 10 of 38 subjects in total), which contains 64 frontal face pictures of

192! 168 pixels in each subject. When stacking them together, the input matrix is

of size 32256! 640, which is not very large compared to experiment in the previous

subsection. In this case, IALM and PSSV are faster than the proposed method. A

snapshot of the reconstruction result on sample images is illustrated in Figure 5.5.
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Figure 5.5: Face reconstruction result on Extended yale B face dataset.

Visually, the spectral k-support norm outperforms both nuclear norm and partial

sum of nuclear norm.

5.5 Summary

In this chapter, we have studied robust low rank subspace learning problem with

spectral k-support norm to promote the low rank property. Our method can utilize

both the squared spectral k-support norm and itself. For both formulations, we

consider a sparse norm Þtting error ball constrained low rank optimization problem

and transform it to the dual objective form. Solving the dual problem only involves

a linear subproblem called polar operator and a projection onto the unit sparse ball,

which allow us to avoid expensive proximal mapping of the spectral k-support norm.

Furthermore, by studying the (sub)gradient of the dual norm of the more generalized

spectral k-support norm, we have incorporated a line search strategy that is able to

adapt to smoothness change. Experiment result on both synthetic and real datasets

with background modeling and face reconstruction have successfully demonstrated

the superiority of the proposed method in comparison with the existing counterparts.
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Chapter 6

Robust Low-Rank Tensor

Minimization via a New Tensor

Spectral k-Support Norm

6.1 Introduction

Multidimensional data, formally referred to as tensors, are high-order generalizations

to vectors (i.e. Þrst-order tensors) and matrices (i.e. second-order tensors). Tensor is a

natural form of many real world data that appears in various areas ranging from image

and video analysis in computer vision [154, 88, 87, 160], social network analysis and

recommendation system [12] in data mining [125, 83], to signal processing [153, 44],

bioinformatics [107], and so on. One prominent example in computer vision and

image processing is natural color images, which are 3# way tensors of sizen1 ! n2 ! 3,

where each of the three frontal slices corresponds to a color channel. In practice,

the collected tensors are often: 1) having exact or approximate intrinsic low-rank

structure; 2) missing some entries due to unavailability or instrument failure; 3)

contaminated with arbitrary corruption. Robust tensor principal component analysis

and robust low-rank tensor completion, jointly referred to as robust low-rank tensor

minimization (RLTM) hereafter, are popular tools for robustly recovering such
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complex multi-way data.

In the literature, based on di"erent tensor decomposition algebraic frameworks

and their accompany rank deÞnitions, there exist three lines for low-rank tensor

estimation, i.e. CANDECOMP/PARAFAC (CP) decomposition model [19, 71],

Tucker decomposition model [132], and tensor singular value decomposition (t-SVD)

model [73]. The CP model deÞnes the rank to be the smallest number of rank one

tensor decomposition, which then approximates a tensor as sum of rank-one outer

products. The CP model has di!culty in determining the CP rank (known to be

NP-hard problem). Also, its convex relaxation is ill-posed [54, 98]. By contrast,

the Tucker model is more tractable, which unfolds a tensor to matrices along each

mode (i.e. a single dimension) and deÞnes the rank to be the matrix rank of each

unfolded matrix. Many methods use sum of matrix nuclear norm (SNN) of each

matricization to convexify the Tucker rank [75, 87, 123, 115]. A tensor is then folded

back from the low-rank matrices. Albeit more favored than CP model in certain

applications, it fails to exploit the correlations between modes and the unfolding

and folding processes tend to discard internal structure information of the tensor.

In addition, each mode of matricization has the same number of entries with the

original tensor, which leads to heavy computational burden for large size tensors.

A more promising approach which has received increasing interests is the recently

proposed t-SVD model [73]. The t-SVD framework decomposes a tensor into a

SVD-structure similar to the matrix SVD, which is based on a new deÞned tensor-

tensor product (t-Product)[73]. The t-SVD naturally arises a new tensor tubal

rank deÞnition. By seeking low-rankness in terms of the tubal rank, t-SVD based

methods expect to better capture the intrinsic structure of a tensor without much

loss of correlation information as opposed to matricization of the Tucker model. By

mimicking the relationship between matrix rank and matrix nuclear norm, most

existing work is to use the tensor nuclear norm (TNN) as convex surrogate, which

has achieved state-of-the-art performance in various computer vision and image

processing tasks. For example, image and video completion (also called inpainting)
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[154, 153, 55]; robust image and video recovery [88]; outlier detection [160, 141];

moving object detection [56]. In terms of computational cost, TNN is equivalently

deÞned as the sum of the matrix nuclear norm of each frontal slices after Fourier

transformation, whose sizes are smaller than matricization along modes. It reduces

the computational cost with a certain degree when compared to the Tucker model.

Meanwhile, unlike the matrix case where one can simple relaxing the matrix rank,

TNN is introduced based on two di"erent tubal rank quantities. One in [88] is by

relaxing on the sum of tubal multi-rank, while the other in [154, 153] is on the tubal

multi-rank. Subsequently, they result in two di"erent but related TNN formulations.

In additional, as pointed out by [88], the TNN form by [154, 153] is not dual to the

tensor spectral norm, which leads to inconsistence with matrix NN properties.

The rational behind the tensor nuclear norm relaxation, similar to the relationship

between! 1 norm and cardinality in the vector case as well as between nuclear norm

and rank in the matrix case, is probably that the nuclear norm is the tightest convex

relaxation of the rank function on the tensor spectral norm ball. However, relaxing on

the spectral norm ball can be less optimal. For example, in the vector cardinality case,

papers [3, 36] show that seeking convex surrogate within unit! 2 norm ball results into

superior performance in sparse regression and feature selection tasks. In the matrix

rank case, papers [95, 97] show that the convex relaxation of rank function within

unit Frobenius norm ball is superior than the nuclear norm. Hence, it is questionable

to exclusively relaxing the t-SVD based rank within unit tensor spectral norm ball.

We may ask: Whether it is possible to derive other form convex surrogate to t-SVD

ranks? Whether the new norm allows as convenient formulation as in TNN case

that can be presented by matrices norms of the frontal slices in the Fourier domain?

Furthermore, most TNN based methods resort to alternating direction method of

multipliers (ADMM) [ 13] for optimization, which computes a proximal operator

[109, 15] of the nuclear norm (also known as singular value thresholding) in each

iteration. The per-iteration complexity is O(n1n2n3 log(n3) + n1n2n3 min{ n1, n2} ),

which is super-linear with respect to the input tensor of sizeRn1' n2 ' n3 . Can we

98



develop alternative optimization procedure for the new convex surrogate with smaller

complexity so that the t-SVD based methods can scale to a larger dataset like

high-resolution color images and videos?

In this chapter, we focus on the new t-SVD framework and consider the important

models of robust tensor completion and principal component analysis as examples.

First, we revisit the derivation of the two di"erent TNN norms by introducing a

general TNN that includes both as a special case. Rather than obtaining TNN by

relaxing on thetubal multi-rank or the average of the tubal multi-rankwithin a unit

tensor spectral norm ball, we deduce a general TNN by relaxing thesum of the

multi-rank within an #-scaledtensor spectral norm ball. When# = 1, the general

TNN takes the form as deÞned by [154, 153], and when# = n3, it is the same as

the one deÞned by [88]. Second, apart from TNN, we propose a new tensor norm,

called tensor spectralk-support norm, as an alternative convex relaxation for sum of

tubal multi-rank. Rather than relaxing the tubal rank within a unit tensor spectral

norm ball, which exactly gives rise to the tensor nuclear norm, we propose to relax

within a scaled tensor Frobenius normball. In particular, we derive the closed-form

formulation of the new relaxation, in terms of the matrix spectralk-support norm of

the frontal slices of the tensor in the Fourier domain, through which we observe that

our tensor spectralk-support norm is a more general and ßexible relaxation, which

interpolates between tensor nuclear norm and tensor Frobenius norm. Instead of

computing the norm independently for each frontal slice in the Fourier domain, the

new norm also contains cross-slices factors which acts as a global factor to further

capture the interrelationship of the tensor as a whole.

On the optimization side, we develop two procedures for optimizing in both

primal and dual formulation. In the primal form, we also build upon the ADMM

optimization procedure, where we present the proximal operator for the tensor

spectral k-support norm. This proximal mapping can also be conveniently obtained

in the Fourier domain and converted to the proximal mapping of the vectork-support

norm on the singular values of the tensor. This method shares the same overall
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per-iteration complexity of O(n1n2n3 log(n3) + n1n2n3 min{ n1, n2} ) as that for TNN.

In order to scale to large data size, we propose to optimize in a greedy way with

the dual objective. Instead of directly solving the Lagrangian dual formulation by

ADMM-type methods like the existing approaches, we further convert it by taking

Fenchel dual. To optimize the equivalent Fenchel dual objective, we then apply the

dual accelerated proximal gradient descent algorithm (APG) [102, 149]. We show that

the dual APG requires to evaluate the polar operator, rather than proximal operator,

with respect to the tensor spectralk-support norm, which turns out to require only

nearly linear computation (i.e. O(n1n2n3 log(n3) + kn1n2n3)) with respect to input

tensor size. The dual algorithm is greedy in nature because we construct the low-rank

tensor by a convex combination of the intermediate variable of the atom tensor,

which is based on the polar operator of TSP-k norm. In particular, TNN can be

viewed as combination of sum of tubal rank 1 atomic tensors. The dual optimization

procedure implies that sum of tubal rankk atomic tensors allowingk other than 1

can be more general and better choice.

In summary, our contributions in this chapter are three-fold:

1. We propose a new tensor spectralk-support norm for tensor tubal rank relax-

ation, which interpolates between tensor nuclear norm and tensor Frobenius

norm, showing great ßexibility and generality;

2. We provide both ADMM-based algorithm for medium size data in the primal

formulation as well as a greedy optimization for large size data in the dual

formulation.

3. We conduct an extensive empirical study of the new norm and the scalable

algorithm with both synthetic and real image and video datasets with both

medium and large size data.

Furthermore, potential advantages of our TSP-k norm over TNN include:

1. The tensor Frobenius norm factor of TSP-k norm contains additional global

information, which can be helpful for better capturing the intrinsic structure
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among the entire tensor.

2. Rather than imposing sparsity penalties with! 1 norm on all singular values,

TSP-k only sums! 1 norm over the minor singular values, which can avoid over

penalizing large singular values that tends to leading to skewed estimation.

3. Through the dual optimization procedure, inducing low-rankness with TSP-k

results in decomposing the tensor into linear combinations of sum of tubal

multi-rank k atom tensors. TNN exclusively decomposes withk = 1, which

can lead to inferior estimation performance, as real tensors can have various

intrinsic decomposition with k > 1. TSP-k provides such ßexible choice ofk.

In addition, this chapter extends our preliminary work, which focuses on matrix

case [23] only, in the following three aspects:

1. While the previous work focused on matrices, this chapter generalizes to

third-order tensors, where the deÞnition and derivation of the tensor spectral

k-support norm is very di"erent from the matrix one.

2. Along the derivation of the optimization algorithms, new computation compo-

nents are developed for the tensor case. That is, new proximal operator and

new polar operator of the tensor spectralk-support norm is established.

3. Experiments are conducted on tasks with natural tensor representations.

The rest of this chapter is organized as follows. In Section II, we describe

additional notation and background of the tensor t-SVD algebraic framework. In

Section III, we introduce the new tensor spectralk-support norm and discuss its

properties. In Section IV, we present an optimization algorithm for solving the

objective function in the primal form based on ADMM algorithm. In Section V,

we present the scalable algorithm, including the Fenchel dual conversion, algorithm

design, computational complexity and convergence analysis. Experimental results

are reported in Section VI. Finally, we draw a conclusion in Section VII.
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