

DOCTORAL THESIS

Development of luminescent iridium(III) complex-based probes for monitoring analytes in environmental and biological systems Wang, Wanhe

Date of Award: 2019

Link to publication

General rights

Copyright and intellectual property rights for the publications made accessible in HKBU Scholars are retained by the authors and/or other copyright owners. In addition to the restrictions prescribed by the Copyright Ordinance of Hong Kong, all users and readers must also observe the following terms of use:

Users may download and print one copy of any publication from HKBU Scholars for the purpose of private study or research
Users cannot further distribute the material or use it for any profit-making activity or commercial gain
To share publications in HKBU Scholars with others, users are welcome to freely distribute the permanent URL assigned to the publication

ABSTRACT

Transition metal complexes offer potential alternatives to fluorescent organic compounds in various sensing applications. They show several characteristic properties over organic dyes, such as strong luminescence emission, long emission lifetime and large Stoke shift. Among transition metal complexes, cyclometalated iridium(III) (Ir) complexes are most widely explored for sensing applications, due to their bright and tuneable phosphorescence emission. Up to now, Ir(III) complexes have been successfully applied to detect a range of analytes in environmental and biological systems, such as cations, anion, small molecules and proteins. In this thesis, we deeply explored the capability of Ir(III) complexes to the detection of a range of targets including metal ions, small molecules and biomarkers. Several strategies are used to improve the biocompatibility of Ir(III)-based probes while retaining their desirable characteristics.

In chapter 2, we developed a novel Ir(III) complex for the detection of Al^{3+} with a detection limit of 1 μM . The long lifetime of the complex was $A1^{3+}$ from harnessed to distinguish luminescence response to autofluorescence in biological samples by TRES experiment, while the probe was also successfully applied for imaging Al³⁺ in living cells. The results have been published as Chem. Commun., 2016, 52, 3611. In chapter 3, we reported a new reaction-based luminogenic probe for imaging both H₂S and hypoxia in living zebrafish. This probe demonstrated their utility for the detection of H₂S in solution, living cells and zebrafish model, while it was also capable of discriminating hypoxic from normoxic cells and zebrafish model. The results have been published as Sens. Actuator B-Chem., 2018, 255, 1953. In chapter 4, we conjugated a natural product oridonin to an Ir(III) scaffold for tracking intracellular NF-kB. This complex was successfully applied to track NF- κ B translocation induced by TNF- α , without affecting the translocation process. The results have been published as Chem. Eur. J., 2017, 23, 4929. In chapter 5, an Ir(III) scaffold with galactose moiety was designed and synthesized for discriminating ovarian carcinoma cell lines from normal cell lines. This probe can selectively "light up" ovarian carcinoma cells with negligible luminescence in normal cells. The results have been published as Anal. Chem., 2017, 89, 11679.

These works have further demonstrated the utility of Ir(III) complex in the monitoring environment and studying biomolecules in living systems. In particular, the conjugation of endogenous molecule galactose or a natural compound oridonin to Ir(III) scaffolds highlights an effective solution to develop biocompatible probes. However, it should be pointed out that there is a need for developing a general strategy to improve the biocompatibility of luminescent Ir(III) complex-based probes, while there is huge potential for incorporating luminescent Ir(III) complexes-based sensing platforms into portable devices, and exploring theranostic probes.

TABLE OF CONTENTS

DECLARA	ΓΙΟΝ	i
ABSTRACT	Γ	ii
ACKNOWL	LEDGMENTS	iii
TABLE OF	CONTENTS	iv-vi
LIST OF SC	CHEMES, TABLES AND FIGURES	vii-xvi
LIST OF AF	BBREVIATIONS	xvii-xix
Chapter 1	Introduction	
	1.1 Brief introduction of fluorescence probes	1-2
	1.2 Brief introduction of luminescent transition metal	2-3
	complexes	
	1.3 General introduction of luminescent cyclometalated	3-6
	Ir(III) complexes	
	1.4 General strategies of Ir(III) complexes as	6-7
	chemosensors	
	1.5 Ir(III) complexes as probes for cations, anions, small	7-11
	molecules and biomolecules	
	1.6 Reference	12-14
Chapter 2	Long-lived luminescent Ir(III)-based probe for	
	selectively turn-on detection of Al ³⁺ ions	
	2.1 Introduction	15-16
	2.2 Experimental section	16
	2.2.1 Materials and general experiments	16-17
	2.2.2 Synthesis of complex 1	17-25
	2.2.3 The detection of Al^{3+} ions	25
	2.2.4 Live cell imaging assay	25-26
	2.3 Results and discussion	26-39
	2.4 Conclusion	39-40
	2.5 Reference	41-45

Chapter 3	Luminescent Ir(III) complex for visualizing H_2S and	
	hypoxia in living zebrafish	
	3.1 Introduction	46–49
	3.2 Experimental section	49
	3.2.1 Materials and general experimental	49–50
	$3.2.2 H_2 S$ detection	50
	3.2.3 Stability experiment	50
	3.2.4 Solubility experiment	50
	3.2.5 Purity experiment	51
	3.2.6 Cell imaging of H ₂ S	51-52
	3.2.7 Zebrafish imaging of H ₂ S	52
	3.2.8 Hypoxic cell imaging	52
	3.2.9 Hypoxic zebrafish imaging	52-53
	3.2.10 Cytotoxicity assay	53
	3.2.11 Nitroreductase (NTR) activity assay	53-54
	3.2.12 Synthesis of complex 1	54-57
	3.3 Results and discussion	57-73
	3.4. Conclusion	73
	3.5 Reference	74-80
Chapter 4	Oridonin-conjugated Ir(III) complex for tracking NF-κB	
	in living cells	
	4.1 Introduction	81-83
	4.2 Experimental section	83
	4.2.1 Chemicals and general experimental	83-84
	4.2.2 Synthesis	84-88
	4.2.3 Cell viability assay determined by XTT	88-89
	4.2.4 Luciferase reporter assay	89
	4.2.5 p50 knockdown assay	89
	4.2.6 Cell imaging	90

	4.2.7 Western blotting	90
	4.3 Results and discussions	90-103
	4.4 Conclusion	103-104
	4.5 Reference	105-110
Chapter 5	Long-lived luminescence probe for detecting	
	β-galactosidase in ovarian cancer cells	
	5.1 Introduction	111-113
	5.2 Experimental section	113
	5.2.1 Materials and general experimental	113
	5.2.2 Synthesis of complexes 1 and 2	114-117
	5.2.3 Stability experiment	117
	5.2.4 β-Gal detection	117-118
	5.2.5 Time-resolved luminescence spectra measurement	118
	5.2.6 Cell viability assay	118
	5.2.7 Luminescence cell imaging	119
	5.2.8 Confocal imaging with a β -gal inhibitor	119
	D-galactose	
	5.2.9 Determination of β -gal activity	119
	5.3 Results and discussion	120-138
	5.4 Conclusion	138–139
	5.5 Reference	140-144
Chapter 6	Summary and outlooks	145-147
CURRICULUM VITAE		