DOCTORAL THESIS

Anti-hepatocellular carcinoma mode and mechanism of action of antrodia camphorata mycelia
Zhu, Peili

Date of Award:
2019

General rights
Copyright and intellectual property rights for the publications made accessible in HKBU Scholars are retained by the authors and/or other copyright owners. In addition to the restrictions prescribed by the Copyright Ordinance of Hong Kong, all users and readers must also observe the following terms of use:
• Users may download and print one copy of any publication from HKBU Scholars for the purpose of private study or research
• Users cannot further distribute the material or use it for any profit-making activity or commercial gain
• To share publications in HKBU Scholars with others, users are welcome to freely distribute the permanent URL assigned to the publication
ABSTRACT

Hepatocellular carcinoma (HCC), the major form of primary liver cancer, is a common cause of cancer-related death worldwide. Signal transducer and activator of transcription 3 (STAT3) plays a pivotal role in the pathogenesis of HCC. Inhibition of STAT3 signaling has been proposed as a promising strategy for treating HCC. Due to the limitations of conventional therapeutics, increasing attention has been paid to complementary and alternative medicines (CAM) including traditional Chinese medicine (TCM) for the management of HCC. Antrodia camphorata (AC), a medicinal mushroom, is historically used for treating HCC. Pharmacological data showed that extracts and constituents of AC are able to inhibit STAT3 activation. Natural AC is scarce, cultured AC mycelia are becoming alternatives. AC mycelia have been demonstrated to possess anti-HCC properties. We hypothesize that inhibition of the STAT3 signaling pathway contributes to the anti-HCC mechanisms of AC mycelia. To test our hypothesis, we evaluated the safety and investigated the anti-HCC effects of the ethyl acetate fraction of an ethanolic extract of AC mycelia (EEAC); and we further explored the involvement of STAT3 signaling in EEAC’s anti-HCC effects.

Acute and repeated dose 28-day oral toxicity studies showed that EEAC had no toxicity in rats. The maximum tolerable dose for acute oral toxicity and the no-observed-adverse effects level for repeated dose 28-day oral toxicity of EEAC were higher than 5,000 mg/kg body weight and 1,000 mg/kg body weight, respectively, in rats. In cultured cells, EEAC is less toxic in normal liver-derived cells than in HCC cells. In HepG2 and SMMC-7721 cells, EEAC reduced viability, induced apoptosis, and retarded migration and invasion. In SMMC-7721 cell-bearing mice, EEAC significantly suppressed tumor growth. EEAC inhibited cell proliferation,
induced apoptosis and suppressed angiogenesis in tumors. Mechanistic studies showed that EEAC downregulated protein levels of phosphorylated and total STAT3 and JAK2 (an upstream kinase of STAT3) in HCC cells and tumors. In cultured HCC cells, EEAC lowered the protein level of nuclear STAT3, decreased the transcriptional activity of STAT3, and downregulated protein levels of STAT3 targeted molecules. Over-activation of STAT3 in HCC cells diminished the cytotoxic effects of EEAC. STAT3 can be activated by receptor tyrosine kinases (RTKs). Phospho-RTK array assays showed that EEAC significantly inhibited the tyrosine phosphorylation of platelet-derived growth factor receptor-beta (PDGFR-β) in HepG2 cells. EEAC dose-dependently lowered mRNA levels of PDGF BB (a ligand of PDGFR-β) and protein levels of p-PDGFR-β and PDGFR-β in HCC cells. Activating PDGFR-β enhanced STAT3 activation, and inhibiting PDGFR-β blocked STAT3 activation in HCC cells. EEAC reversed PDGF BB induced STAT3 activation in HCC cells. Our data indicate that EEAC exerts anti-HCC effects, and inhibition of PDGFR-β/STAT3 signaling is, at least in part, responsible for these effects.

In summary, we have demonstrated that EEAC exerts anti-HCC effects without significant toxicity in vitro and in vivo. We have also demonstrated that inhibition of PDGFR-β/STAT3 signaling contributes to the anti-HCC mechanisms of EEAC. Our findings provide a pharmacological basis for the development of EEAC as a modern anti-HCC agent and for the traditional use of AC in treating HCC. In addition, our data suggest that the PDGFR-β/STAT3 pathway plays a pathogenic role and presents a novel therapeutic target in HCC.
TABLE OF CONTENTS

DECLARATION ... i

ABSTRACT .. ii

ACKNOWLEDGEMENTS ... iv

LIST OF TABLES ... ix

LIST OF FIGURES .. x

LIST OF ABBREVIATIONS .. xii

CHAPTER 1 Introduction ... 1

1.1 Hepatocellular carcinoma ... 1

 1.1.1 Epidemiology .. 1

 1.1.2 Etiology .. 2

 1.1.3 Pathogenesis .. 3

 1.1.4 HCC treatments ... 15

1.2 Traditional Chinese medicine (TCM) and HCC ... 19

1.3 Antrodia campharata (AC) mycelia and HCC ... 20

 1.3.1 AC .. 20

 1.3.2 AC mycelia ... 26

1.4 Hypothesis and objectives ... 28

CHAPTER 2 Materials and methods .. 29

2.1 Reagents ... 29

2.2 Herbal materials .. 31

 2.2.1 Cultivation of AC mycelia ... 31

 2.2.2 Preparation of EEAC .. 31

 2.2.3 Quality control of EEAC ... 32

2.3 Rat models and drug treatments .. 33

2.4 Hematological and biochemical analyses .. 34

2.5 Measurement of organ index .. 34

2.6 Histopathological analysis .. 34
2.7 Cell culture ... 35
2.8 MTT assay ... 35
2.9 Annexin V/PI assay .. 35
2.10 Transwell migration and invasion assays ... 36
2.11 Subcellular fractionation extraction .. 37
2.12 Western blot analysis ... 37
2.13 Plasmids transient transfection and luciferase reporter assay 38
2.14 Quantitative real-time polymerase chain reaction (qRT-PCR) 38
2.15 A HCC-cell bearing mouse model and drug treatments 39
2.16 TUNEL assay ... 40
2.17 Immunohistochemistry (IHC) staining ... 40
2.18 Human phospho-receptor tyrosine kinase (Phospho-RTK) array 41
2.19 Preparation of cell membrane protein ... 41
2.20 Immunofluorescence assay .. 42
2.21 Statistical analysis .. 42

CHAPTER 3 Safety assessment ... 43

3.1 Abstract .. 43
3.2 Results ... 44
 3.2.1 Detection of aflatoxins and heavy metals in AC mycelia 44
 3.2.2 Acute oral toxicity in rats ... 44
 3.3 Repeated dose 28-day oral toxicity in rats ... 45
3.4 Discussion and conclusion ... 52

CHAPTER 4 EEAC exerts anti-HCC effects in vitro and in vivo 54

4.1 Abstract .. 54
4.2 Results .. 55
 4.2.1 EEAC reduces the viability of HCC cells... 55
 4.2.2 EEAC induces apoptosis in HCC cells ... 57
 4.2.3 EEAC retards migration and invasion of HCC cells 60
4.3 Discussion and conclusion ... 67
CHAPTER 5 Inhibition of STAT3 signaling contributes to the anti-HCC mechanisms of EEAC ... 69

5.1 Abstract .. 69

5.2 Results .. 71

5.2.1 EEAC inhibits STAT3 activation in HCC cells and tumor tissues 71

5.2.2 EEAC decreases the mRNA levels of STAT3 in HCC cells 74

5.2.3 EEAC reduces STAT3 nuclear pool and suppresses STAT3 transcriptional activity in HCC cells .. 76

5.2.4 EEAC downregulates protein levels of STAT3-targeted molecules in HCC cells ... 78

5.2.5 Over-activation of STAT3 in HepG2 cells diminishes the cytotoxic effects of EEAC ... 81

5.2.6 EEAC inhibits PDGFR-β activation in HepG2 cells 83

5.2.7 EEAC downregulates mRNA levels of PDGF BB in HCC cells 86

5.2.8 EEAC lowers the protein level of membrane PDGFR-β in HepG2 cells ... 88

5.2.9 PDGF BB induces the activation of STAT3 in HCC cells 90

5.2.10 EEAC inhibits STAT3 phosphorylation in PDGF BB stimulated HepG2 cells .. 93

5.2.11 EEAC activates AKT after a 24-h treatment in HCC cells 95

5.3 Discussion and conclusion .. 100

CHAPTER 6 General discussion and conclusion .. 105

6.1 Discussion and conclusion ... 105

6.2 Significance of this study .. 108

6.3 Future plans .. 109

6.3.1 To determine if EEAC triggers ER stress-mediated apoptosis in HCC cells 109

6.2.2 To determine whether the PDGFR-β/STAT3 signaling pathway is a pathogenetic factor of HCC ... 110

REFERENCES ... 112
PUBLICATIONS ... 155
CURRICULUM VITAE ... 159