

MASTER'S THESIS

Semantic analysis for extracting fine-grained opinion aspects

Zhan, Tianjie

Date of Award: 2010

Link to publication

General rightsCopyright and intellectual property rights for the publications made accessible in HKBU Scholars are retained by the authors and/or other copyright owners. In addition to the restrictions prescribed by the Copyright Ordinance of Hong Kong, all users and readers must also observe the following terms of use:

- Users may download and print one copy of any publication from HKBU Scholars for the purpose of private study or research
 Users cannot further distribute the material or use it for any profit-making activity or commercial gain
 To share publications in HKBU Scholars with others, users are welcome to freely distribute the permanent URL assigned to the publication

Download date: 18 Mar, 2025

Semantic Analysis for Extracting Fine-grained Opinion Aspects

ZHAN Tianjie

A thesis submitted in partial fulfillment of the requirements

for the degree of

Master of Philosophy

Principle Supervisor: Dr. LI Chun Hung

Hong Kong Baptist University

November 2010

Abstract

Web documents of user-generated content such as forum discussions and product reviews attracted research interests in opinion mining. Previous works on extraction of opinion aspects and words obtain lexical features based on grammatical rules and WordNet-like lexical resources together with machine learning analyses. Rule based approaches involve in using syntactical and semantic rules to learn the co-occurrence patterns of relevant lexicons for identifying opinion and its aspect. To enhance identification of words' semantic similarity, the WordNet-like lexical database provides semantic relations, e.g. synonyms and hypernyms, for distinguishing distinct opinion aspects and sentiments. But such approaches often represents sentence as "bag of word" or "sequence of word" without fully utilizing semantic dependency relations in a sentence which is essential for extracting semantic relevant words to represent opinion aspects or opinions. To address above problems, this dissertation considers two issues on the topic of extracting fine-grained opinion aspects in sentence level.

The first issue is how to take full advantage of semantic information within a sentence. We introduce a syntactic dependency parser as baseline to develop our sentential semantic parser for learning the composition structure of a sentence. Starting with the atomic sentence which contains only one verb predicate comprising of a subject, main verb and object, compound sentences and complex sentences are parsed into several atomic sentences within a hierarchical layered structure. For example, a compound sentence could be parsed as an atomic sentence with its subject or object as an atomic sentence. Based on the assumption that parts of a atomic sentence can be divided into core parts (subject-verb-object or subject-verb) and other parts for modifying the components of core parts, atomic sentence can be parsed into representation comprising of a <subject, verb, object> triple and a set of head-modifier dependency relations.

The second issue is how to identify distinct finer-grain opinion aspects in discriminative semantic orientation. To address the problem, we focus on identifying discriminative clusters of semantic relevant lexicons to indicate distinct opinion aspects,

among which noun is most representative and essential for describing specific opinion aspect. To develop related noun features and their semantic dependent context features, we extract noun fragments and their semantic neighbor features which are determined by their adjacency relationship with noun fragment within the sentence structure. Given the obtained noun fragments and their semantic neighbors, we propose two approaches to extract finer-grained opinion aspects in an unsupervised manner. The first approach is to employ non-negative matrix factorization (NMF) method on the co-occurrence frequency matrix between noun fragments and their semantic neighbor features. To combine the two views of noun-sentence co-occurrence and association relationship between noun fragment and its semantic neighbors, the second approach takes adjectives as the representative of semantic neighbor features, and a tri-factorization generative model is developed to factorize the corpus along three views of noun fragments, adjectives and sentences to generate semantic relevant clusters for opinion aspect representation.

Finally, the experimental results demonstrate the advantage of our NMF-based approach over the conventional approaches based on noun-sentence co-occurrence frequency matrix. In the second approach, experimental results indicate that our trifactorization model outperforms the baseline models based on latent Dirichlet allocation. Effectiveness of the two approaches is shown by improved numerical measurement as well as recognition of semantically cohesive fine-grained opinion aspects.

Contents

D	ECLE	RATION	i
A	bstract		ii
A	cknow	ledgements	iv
1.	Intr	oduction	1
	1.1	Introduction to Basic Concept, Methodology and Techniques.	1
	1.1.	1 Opinion	1
	1.1.	2 Opinion Aspect	2
	1.1.	3 Feature-based Opinion Mining	3
	1.2	Research Objective	4
	1.3	Organization of this Dissertation	7
2.	Bac	ekground of Opinion Mining	8
	2.1	Opinion Mining	8
	2.1.	1 Tasks, Applications and Challenges of Opinion Mining	8
	2.1.	2 General Framework in Opinion Mining	9
	2.1.	3 Approaches to Opinion Mining	11
	2.2	Deep Semantic Parsing	12
	2.3	Opinion Aspect Extraction	14
	2.4	Chapter Summary	14
3.	Nat	ural Language Analysis	16
	3.1	Natural Language Analysis	16

	3.1.	Part-of-speech Tagging	16
	3.1.	2 Semantic Dependency Parsing	17
	3.2	Opinion Mining with NLP	19
	3.2.	1 Syntactical Pattern based Approaches	20
	3.2.	2 Semantic Pattern based Approaches	21
	3.3	Chapter Summary	23
4.	. Sen	tential Semantic Parsing	24
	4.1	Introduction	24
	4.2	Sentence Modeling.	27
	4.3	Sentential Semantic Parsing via Part-of-sentence Recognition	33
	4.4	Generative Process	41
	4.5	Implementation	45
	4.6	Empirical Evaluation	48
	4.7	Visualization Graph	52
	4.8	Chapter Summary	54
5.	. Opi	nion Aspect Mining with Nominal Semantic Structure	55
	5.1	Introduction	55
	5.2	Problem Definition	56
	5.3	Our Nominal Semantic Structure Model	56
	5.3.	Noun Fragment	57
	5.3.	Nominal Semantic Structure	57
	5.3	Nominal Semantic Neighborhood	58
	5 4	Nominal Semantic Structure Parsing	59

	5.4.1	1	Adjective	. 59
	5.4.2	2	Verb Predicate	. 59
	5.4.3	3	Preposition	. 60
	5.5	Co-	clustering Approach	. 61
	5.5.1		Non-negative Matrix Factorization	. 61
	5.5.2	2	Clusters Evaluation	. 62
	5.6	Exp	eriments	. 63
	5.7	Rela	nted Works	. 69
	5.8	Con	clusions	. 69
6.	A Tı	ri-fac	etorization Model for Opinion Aspect Mining	. 70
	6.1	Intro	oduction	. 70
	6.2 Fea		ture Extraction	. 71
	6.3	Our	Tri-factorization Generative Model	. 73
	6.4	Infe	rence and Parameter Estimation	. 75
	6.4.1	1	Latent Variable Inference	. 76
	6.4.2	2	Parameter Estimation	. 77
	6.4.3	3	Hyper-parameter Estimation	. 78
	6.5	Eva	luation	. 78
	6.5.1	1	Perplexity	. 78
	6.5.2	2	Average Cluster Entropy	. 79
	6.5.3	3	Normalized Mutual Information Index	. 80
	6.6	Exp	eriments	. 80
	6.7	Con	clusion	. 88

7. Conclusions and Future works			
7.1	Summary	89	
7.2	Feature Works	90	
Reference			
CURRICULUM VITAF			