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Abstract

Online social and information networks, like Facebook and Twitter, exploit the in-


uence of neighbors to achieve e�ective information sharing and spreading. The

process that information is spread via the connected nodes in social and informa-

tion networks is referred to as di�usion. In the literature, a number of di�usion

models have been proposed for di�erent applications like in
uential user identi�ca-

tion and personalized recommendation. However, comprehensive studies to discover

the hidden di�usion mechanisms governing the information di�usion using the data-

driven paradigm are still lacking. This thesis research aims to design novel di�usion

models with the structural and behaviorable dependency of neighboring nodes for

representing social networks, and to develop computational algorithms to infer the

di�usion models as well as the underlying di�usion mechanisms based on information

cascades observed in real social networks.

By incorporating structural dependency and diversity of node neighborhood in-

to a widely used di�usion model called Independent Cascade (IC) Model, we �rst

propose a component-based di�usion model where the in
uence of parent nodes is

exerted via connected components. Instead of estimating the node-based di�usion

probabilities as in the IC Model, component-based di�usion probabilities are esti-

mated using an expectation maximization (EM) algorithm derived under a Bayesian

framework. Also, a newly derived structural diversity measure namely dynamic ef-

fective size is proposed for quantifying the dynamic information redundancy within

each parent component.

The component-based di�usion model suggests that node connectivity is a good
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proxy to quantify how a node’s activation behavior is a�ected by its node neighbor-

hood. To model directly the behavioral dependency of node neighborhood, we then

propose a co-activation pattern based di�usion model by integrating the latent class

model into the IC Model where the co-activation patterns of parent nodes form the

latent classes for each node. Both the co-activation patterns and the corresponding

pattern-based di�usion probabilities are inferred using a two-level EM algorithm.

As compared to the component-based di�usion model, the inferred co-activation

patterns can be interpreted as the soft parent components, providing insights on

how each node is in
uenced by its neighbors as re
ected by the observed cascade

data.

With the motivation to discover a common set of the over-represented temporal

activation patterns (motifs) characterizing the overall di�usion in a social network,

we further propose a motif-based di�usion model. By considering the temporal or-

dering of the parent activations and the social roles estimated for each node, each

temporal activation motif is represented using a Markov chain with the social roles

being its states. Again, a two-level EM algorithm is proposed to infer both the tem-

poral activation motifs and the corresponding di�usion network simultaneously. The

inferred activation motifs can be interpreted as the underlying di�usion mechanisms

characterizing the di�usion happening in the social network.

Extensive experiments have been carried out to evaluate the performance of

all the proposed di�usion models using both synthetic and real data. The results

obtained and presented in the thesis demonstrate the e�ectiveness of the proposed

models. In addition, we discuss in detail how to interpret the inferred co-activation

patterns and interaction motifs as the di�usion mechanisms under the context of

di�erent real social network data sets.

Keywords: Social networks, di�usion networks, Independent Cascade Model, struc-

tural diversity, co-activation patterns, temporal activation motifs, expectation max-

imization algorithms
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Chapter 1

Introduction

The objective of this thesis research is to investigate how the structural and behav-

ioral dependency of neighboring nodes in online social networks can be explored to

develop more accurate information di�usion models, and to discover the underly-

ing social interaction mechanisms driving the di�usion. The generative modeling

approach is adopted throughout this thesis research.

1.1 Social Networks and Information Di�usion

Online social and information networks have exploded in popularity due to the

e�ciency for communication and sharing, which have made them become major

marketing platforms. Popular social networking sites like Google+, Facebook and

Twitter allow users to make friends with or follow other users and thus connected.

Also, they allow users to share their views and information. With the users modeled

as nodes and their connections due to, e.g., friendship or followership, modeled as

edges, a social networkon which information spreads is formed. Information is also

spread over mass media. The mainstream media outlets are increasingly scanning

online sources such as webblogs for news items, citing the links to the online sources

in their websites. A mainstream media website can cite weblogs in another website

by hyperlinks and thus make the websites connected. The corresponding information

networkis formed, with the websites of news articles and webblogs modeled as nodes,

1



and the hyperlinks modeled as edges.

The phenomenon that an action or information spreads from one node to an-

other via edges in a network is often termed as di�usion . For instance, an original

post posted by a user in Facebook can be forwarded by his/her friends, then the

friends’ friends can again forward the same post and the information sharing con-

tinues. Also, for mass media, the same news item can be mentioned in di�erent

media over time due to the in
uence among news media. The chain reaction of the

action/information in the di�usion is termed as cascade. For example, the posts

forwarding the same original post ordered by time is a chain reaction of the same

information, and thus a cascade via social networks. The weblogs in di�erent me-

dia mentioning the same news item ordered by time is a cascade via information

networks.

Very often, it is the in
uence of neighbors in online social and information net-

works that determines how the information is di�used. To better understand the

inner mechanism of how information di�uses via online social and information net-

works, and thus to infer underlying di�usion networks on which the information ac-

tually spreads, various di�usion models have been proposed in the literature. Based

on the di�usion models, tasks like in
uence maximization [21, 42, 57], authoritative

user identi�cation [105], personalized recommendation [95, 96], etc. can be carried

out. Among them, in
uence maximization for the application of viral-marketing is

widely studied. In viral-marketing, companies with a limited budget aim to make

as many users know their products as possible. This is achieved by giving trial

products to a limited number of users, and let them promote the product to their

friends by the word-of-mouth e�ect. In
uence maximization is needed to select the

users to which the limited trial products are given so that the number of promoted

people by word of mouth is achieved as many as possible.

The Independent Cascade (IC) model [36] and the Linear Threshold (LT) mod-

el [58] are two widely used information di�usion models. Other models include

stochastic process models based on survival theory [37, 38] or based on Hawkes pro-

2
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Figure 1.1: A toy example of the diffusion process using the IC

model.

cess [25, 48, 107, 114], game-theoretic models [65, 79], agent-based di�usion models

[61, 84], among others. In this thesis, we focus on the IC model. The IC model [36]

allows a node to be activated independently by any of its parents, and most of the

extensions of the IC model still share the same assumption that a node is in
uenced

independentlyby any of its parents. In this thesis, we propose that by exploring

the structural and behavioral properties of the parent nodes, better models can be

derived to model the di�usion processes in social and information networks.

According to the IC model, a social/information network is represented as a

graph G = (V; E), in which V and E are sets of nodes and edges respectively. An

edge from node v to node w is represented as (v; w) 2 E . Each edge (v; w) 2 E

is associated with a real number indicating the di�usion probability pv;w 2 [0; 1]. A

di�usion process starts with a set of nodes being activatedby themselves (e.g., due

to some external in
uence). Then, those activated nodes exert in
uence on their

child nodes. For each node w 2 V , whenever one of its parent nodes v is activated,

it will be activated with a probability pv;w . A node once activated will stay active.

The di�usion stops when no further activations happen. The reason for the model

to be called Independent Cascademodel is that the in
uence of a node v on its child

node w is independentof other parent nodes of w.
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Figure 1.1 illustrates a toy example of modeling the di�usion process using the

IC model. The graph is represented as G = (V; E) where V = f a; b; c; d; e; f; g; h; ig

and E = f (b; a); (c; a); (a; d); (a; e); (a; f ); (f; h ); (f; g ); (g; i)g. The corresponding

di�usion probabilities are pb;a = 0:1, pc;a = 0:5, pa;d = 0:6, pa;e = 0:4, pa;f = 0:7,

pf;h = 0:1, pf;g = 0:9, and pg;i = 0:8. Given that node a is activated at time step

0, node a succeeds in activating d and f at time step 1 for this example which is

reasonable as the di�usion probabilities pa;d = 0:6 and pa;f = 0:7 are both not low.

Node f in turn succeeds in activating node g at time step 2 as the corresponding

di�usion probability pf;g = 0:9, and then node i is activated by node g at time step

3 as pg;i = 0:8 (again quite high).

1.2 Structural and Behavioral Dependency of Neigh-

bors for Di�usion

In the literature, there is related work that tries to characterize di�erent real net-

works based on their structural and behavioral properties. However, studies on the

relationship between the structural and behavioral dependency of node neighbors

and information di�usion together is still rare. In this thesis research, we develop

computational algorithms under a uni�ed probabilistic framework to identify the

structural and behavioral dependency properties of node neighborhood to enhance

the accuracy in modeling information di�usion.

How is the structural and behavioral dependency of node neighbors related to

information di�usion? This thesis research is in fact inspired by studies on roles of

strong and weak ties in social networks which are originated from the social science

community. To illustrate the key notion, Figure 1.2 illustrates a concept related

to the information redundancy of neighborhood caused due to connectivity [17].

Suppose three possible neighborhood networks A, B and C of an individual are

considered. Going from A to B and then to C, the number of parents keeps increas-

ing. The conjecture is that unique information or views obtained from the three
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Figure 1.2: Redundancy of neighborhood information caused by

connectivity [17].

di�erent neighborhood networks may not change that much as highly connected (or

acquainted) parents normally communicate a lot and thus carry similar information

or views. So, the argument is that it is the non-redundant parents that matters for

the spread of information. Such a structural dependency of neighbors will in
uence

the information di�usion, and incorporating dependency of parent nodes instead of

modeling the parents’ in
uence as independent becomes important.

In the literature, most of the di�usion models extended from the conventional

IC model do not consider the dependency of node neighborhood in general. The

long-standing framework associates the probability of adopting a behavior with mul-

tiple neighbors [43, 53] has been challenged by a recent work [100] which found that

the user engagement in Facebook was a�ected by the connected components of users

instead of individual users. In particular, it is the number of loosely coupled \group-

s" (or called non-redundant contactsin [17] and componentsin our work) instead

of the number of friends in
uencing you that matters. In Chapter 3, we propose

a component-baseddi�usion model with the assumption that the in
uence of the

parent nodes to a child node is exerted by connected components. A related notion

called social in
uence locality has been proposed in [112] for modeling retweeting

behaviors.

The consideration of the behavioral dependency of neighbors on di�usion is also

lacking in the literature. We believe that the cause for a node to be activated is
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highly related to the recent activation activities of its parents, which can be mod-

eled as some behavioral patterns of parent activations. So, instead of considering

structural components of parents, we consider alternatives including co-activation

patterns (Chapter 4) and temporal activation patterns (or called motifs as detailed

in Chapter 5). Using the information cascade data, we develop algorithms to infer

both the behavioral patterns and the corresponding di�usion network simultane-

ously under the Bayesian framework. While there exists related work where the

information cascades were used to detect global communities and the di�usion a-

mong the communities [9, 10, 77], we focus on modeling neighbor’s in
uence per

node to account for the information di�usion.

1.3 Our Contributions

In this thesis, we focus on the di�usion modeling with incorporation of structural and

behavioral dependency of node neighborhood in social and information networks.

The detailed contributions of our work are listed as follows.

1.3.1 Modeling Structural Dependency of Node Neighbor-

hood (Chapter 3)

We propose a component-based di�usion model with a special focus on incorporat-

ing the node neighborhood structural dependency and diversity. In particular, we

extend the IC model by exploiting the connected components of parent nodes with a

structural diversity measure named dynamic e�ective sizeproposed for quantifying

the dynamic information redundancy within each component. Instead of inferring

node-to-node di�usion probabilities, component-to-node di�usion probabilities are

modeled and inferred using an expectation maximization (EM) algorithm derived

under a Bayesian framework. To the best of our knowledge, there is no previous

work that considers the structural diversity of neighbors in di�usion modeling.
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1.3.2 Modeling Behavioral Dependency of Node Neighbor-

hood (Chapter 4 and 5)

We propose two di�usion models with the behavioral dependency of the activations

of the node neighborhood considered. As such behavioral patterns are mostly latent

and hard to be known in advance, we develop learning algorithms so that the latent

patterns together with the information di�usion network can be inferred within a

uni�ed framework.

Co-activations as Behavioral Patterns (Chapter 4)

We model the behavioral dependency by assuming the co-activation patterns of

parents to be the underlying mechanisms driving the di�usion on the network. In

particular, we propose to integrate the latent class model (LCM) [49] into the IC

model for modeling the latent co-activation patterns of parent nodes. We derive a

two-level expectation maximization (EM) algorithm for estimating both the latent

co-activation patterns and the di�usion model based on the observed cascades. To

the best of our knowledge, this is the �rst work where the latent co-activation pattern

identi�cation problem and di�usion network inference problem are solved within a

uni�ed framework based on solely the information cascades and the knowledge of

direct parents. We also demonstrate how the inferred co-activation patterns can be

utilized for dependency analysis of di�erent online news media.

Temporal Activation Motifs as Behavioral Patterns (Chapter 5)

We also model the behavioral dependency using temporal activation motifs to rep-

resent the underlying mechanisms driving the di�usion on the network. Each motif

is essentially a Markov chain so that the temporal relationship among the parent

activations can be considered (as compared to co-activation). Also, further assum-

ing that a common set of motifs are shared among the nodes in the network, social

roles are computed (e.g., based on [92]) as the node attributes so that temporal

activation patterns can be aligned according to the computed social roles. To the
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best of our knowledge, this is the �rst work where the motif detection problem and

di�usion network inference problem are solved within a uni�ed framework. The

temporal activation motifs discovered are di�usion-speci�c , which makes our work

unique compared with other motif detection work. Again, a two-level expectation

maximization (EM) algorithm is derived for estimating the model parameters.

1.4 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives the literature review

on di�usion models in social networks and related social science theories. Chapter

3 presents a component-based di�usion model in social networks with incorporation

of structural dependency of node neighborhood. Chapters 4 and 5 describe the two

di�usion models with behavioral dependency of node neighborhood incorporated

into the di�usion models. Chapter 6 concludes the thesis with remarks on future

work.
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Chapter 2

Related Work on Di�usion

Modeling in Social Networks

In the literature, various di�usion models have been proposed to model how views

and opinions are spread via connected nodes in online social and information net-

works. Given a set of observed information cascades, di�usion models can be inferred

for characterizing the underlying di�usion process [36, 58]. The inferred models can

then be applied to data mining tasks like in
uence maximization [21, 42, 57], author-

itative user identi�cation [105], personalized recommendation [95, 96], etc. In this

chapter, we will present a literature review on di�usion models in social networks.

2.1 Independent Cascade and Linear Threshold

Models

The Independent Cascade (IC) model [36] and the Linear Threshold (LT) model

[58] are two di�usion models widely studied in the literature. The IC model [36]

allows a node to be activated independently by any of its parents, while the LT

model [58] assumes whether a node will be activated depends on the aggregation of

the parents’ activations. Both models have been further extended since they were

�rst proposed. In social science, the phenomenon of di�usion is also called conta-
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gion, which consists of single contagion and complex contagion. Simple contagion,

like the IC Model, considers cases where only one source is su�cient for di�usion

while complex contagion, like the LT Model, is related to collective behaviors which

require social a�rmation from multiple sources [18]. Before we move on to provide

more details on the IC and LT models, it is worth mentioning a much earlier related

work | the voter model [24, 50]. The model assumes that each node simultane-

ously chooses a random neighbor according to some probability distribution (e.g.,

uniformly), and copies the state of that neighbor (either active or not active) in each

iteration. It allows people to study issues like how long it takes all individuals to

adopt the same behavior in a connected graph. As this model is oversimpli�ed for

modeling real information spreading, its extension will not be further discussed in

this thesis.

Here, we provide some basics of the IC model and the LT model, and their

extensions. Given a social network G = (V; E), where V is the set of nodes and E

is the set of edges. Let e = (v; w) 2 E be an edge from node v to node w, and b(w)

be the set of parent nodes of node w given as b(w) = f v : (v; w) 2 Eg. For the

IC model, whenever a parent node v 2 b(w) is activated, w will then be activated

by v with probability pv;w . The di�usion process proceeds as follow. Given a set

of initially activated nodes, di�usion activities are then considered at discrete time

steps. At time t, each activated node v will succeed in activating each of its inactive

child nodes w at probability pv;w . A node once activated will stay active. The

di�usion continues until no more activations occur. The in
uence of v on w is

independent of the history of the activations of other parent nodes of w. For the

LT model, each node w is associated with a threshold tw 2 (0; 1], drawn from some

probability distribution. Every parent node v 2 b(w) has a non-negative weight

wv;w under the constraint
P

v2 b(w) wv;w � 1, and w will be activated if and only if

tw �
P

v2 b(w) wv;w . The di�usion process then proceeds as follows. Given a set of

initially activated nodes, at time t, active nodes try to activate their inactive child

nodes. For each inactive node w, the overall in
uence of its activated parent nodes
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f vg is a linear summation of all the weights wv;w . And node w will be activated if

the overall in
uence exceeds the threshold tw . The di�usion continues until no more

activations occur.

The IC model and the LT model can be uni�ed under a broader framework like

the General Threshold and Cascade Models [57]. For the General Cascade Model,

the independence assumption is discharged. Given an initial non-empty set of active

nodes, whenever a node v is activated, it is given one chance to activate each inactive

child node. Each activation succeeds with the probability that depends not just on

v and the child node w, but also on the set of parent nodes that have already

tried but failed to activate w. If v succeeds, then w in turn try to activate its

currently inactive child nodes. If v fails, then v joins the set of nodes who have

tried but failed to activate w. The di�usion stops when no more activations occur.

This essentially takes into the consideration the accumulated e�ect of parents’ past

activation history. For the General Threshold Model, each node w has an arbitrary

function gw(�) de�ned on subsets of the parent nodes b(w). For any subset X � b(w),

there is a value gw(X ) 2 [0; 1]. It is assumed that the function is monotonic in the

sense that if X � Y , then gw(X ) � gw(Y ). Here gw(�) plays the role of the weighted

sum. Speci�cally, each node w chooses a threshold � w uniformly at random in [0; 1].

Given an initial non-empty set of active nodes, each node w becomes active whenever

the set of currently active parent nodes X satis�es gw(X ) � � w . This essentially

assumes that considering only the views of subsets of parents are su�cient. In [57],

the General Threshold Model and the General Cascade Model have been shown

equivalent.

Variants of the di�usion models have also been proposed in the literature based

on di�erent assumptions and modeling details on the interaction of parent and child

nodes leading to information di�usion. For instance, a parent node’s in
uence on

a child node is modeled by a linear combination of the parent node’s in
uence on

the neighbors of the child node [105]. In [41, 68], the in
uence of a parent node is

assumed to decay over time after its activation in an exponential manner. Also, one
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can allow a node to be activated multiple times as it is reasonable for a motivated

user to post several times on the same topic [63, 88]. In addition, a node can consider

not only the in
uence of activations happened one time step before but also that of

the earlier ones as a user can be motivated by revisiting earlier posts [41, 68]. Gruhl

et al. [45] extended the IC model by considering reading probability and writing

probability since some users visit some blogs frequently and others infrequently, and

a user can write a similar post only if he/she has read the previous posts. Kuhlman

et al. [67] adopted an additional deactivation threshold in the original LT model to

model non-monotonic behavior since, for instance, a fashionable person can uninstall

the application if quite a lot of friends have installed the application. In addition,

various di�usion network inference algorithms have been proposed for social network

reconstruction, where the network structure is assumed unknown and only a set of

information cascades is available [33, 38].

Also some researchers explore the dynamic aspects of the di�usion models. For

instance, one can allow the transmission rate to be dynamic in di�usion modeling

[37, 40]. Asynchronous time di�usion models can allow the activations to occur in

continuous time for both the IC model [86, 90], and the LT model [87, 89]. Also,

temporal networks have been studied [15, 51, 98]. Di�usion processes can evolve in

time on temporal networks [46, 51], which in turn imposes a dynamic requirement

on related analysis tasks like in
uence maximization [46].

By considering that the nodes are not homogeneous, features of nodes can be

incorporated to de�ne the di�usion probabilities [90], and a non-negative weight

which is computed from the node attributes was proposed in [111]. In [110], other

than tagging nodes with attributes like social roles, the di�usion models are inferred

together with the social roles under a uni�ed framework.

By considering that the information spreading over the network is not homoge-

neous, topic-aware IC and LT models have been proposed in [8] as it is not di�cult

to understand that views and opinions under di�erent topics di�use over their own

di�usion networks. Modeling the propagation of competing opinions has also been
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studied [20], [16], and one can also allow the polarity of each node to change over

time [103].

2.2 Game-theoretic Models

Game-theoretic models have been proposed where di�usion processes in social net-

works are interpreted as networked coordination games. The scenarios considered

in the LT model share the same nature of games. In the LT model, one tends to

accept a new behavior or an assertion if more and more neighbors have accepted it.

If the fraction of one’s neighbors adopting a new behavior is larger than a threshold,

then he/she will also adopt it. This scenario could be interpreted as that one plays

games with his/her neighbors. One can get di�erent payo�s when he/she chooses to

behave di�erently [65, 79]. And the threshold in the LT model to be formulated as

the fraction of the neighbors adopting the behavior can be derived by a simple ver-

sion of networked coordination games in [65, 79], as detailed in the following. Under

a social network G = (V; E), each node can choose one of the following behaviors:

the \old" behavior, denoted as behavior A, and the \new" behavior, denoted as

behavior B . The coordination game between node v and node w is described by

Table 2.1. They would receive a payo� of q (0 < q < 1) if both of them choose \old"

behavior, 1 � q if they both choose \new" behavior and 0 if they choose opposite

behaviors. If node v has dv neighbors, and dB
v of them have chosen behavior B .

Then node v should adopt the behavior B if dB
v � qdv. Thus, a node should adopt

the new behavior if no less than q fraction of its neighbors have adopted it. And this

is equivalent to a simple LT model with threshold q and the neighbors have equal

weights.

In general, the payo�s of di�erent games that node v plays with its di�eren-

t neighbors should not be considered the same because the neighbors contribute

various weights in raising the node toward its threshold. This kind of heteroge-

neous game theoretical model for di�usion modeling, which assumes the in
uence

of neighbors to be di�erent, can be generalized into the LT Model.
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Table 2.1: A coordination game of diffusion between node v and node w.

w choosesA w choosesB

v choosesA q 0

v choosesB 0 1 � q

More complex game-theoretic models have been proposed for the di�usion with

more aspects of consideration being incorporated into the game. In [26, 115, 116],

each node in a social network maximizes the corresponding utility, which depends on

a convex combination of knowledge, reputation and popularity (or social visibility

[52]) in the networked coordination games. Each game played by a sender node

v and its neighbor receiver node w, is a rectangular 2 � 2 game with a non-zero

sum. Once an information is transmitted from v to w, the knowledge, reputation

and popularity of them will also change. The di�usion of competing opinions or

products is also studied using the game-theoretic models [101]. More work related

to the use of game-theoretic models for di�usion modeling can be found in [74], where

it tries to categorize the related literature into stochastic best-response dynamics,

di�usion of innovations and network games, according to the rules and constraints

for the agents involved [74].

2.3 Stochastic Process Models

A class of models for the information di�usion is under the general framework of the

survival theory [37, 38] and is used for social network reconstruction. For this class

of models, whether a node is \infected" (or activated) at a given time is represented

as a nondecreasing (binary) counting process. The instantaneous risk of infection,

i.e., the hazard rate, of a node i at a given time t is calculated by the number of

times being infected by the previously infected nodes as the explanatory variables,

given as � i (t) = Yi (t)� i (tjs(t)) where Yi (t) is an indicator such that Yi (t) = 1 if node

i is susceptible to be infected before time t and � i (tjs(t)) is the hazard rate of node
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i de�ned conditional on the explanatory variables. The hazard rate of node i can

be designed in many ways. For instance, as in the additive risk model, � i (tjs(t)) =

� T
i s(t) = � T

i 
 (t<t ; t) where � i = (� 1i ; : : : ; � Ni ) is a nonnegative parameter vector

in which � j i models the e�ect of a node j on node i and 
 (�) is an arbitrary positive

time shaping function on the previously infected nodes up to time t. It has been

shown that some existing di�usion models are special cases of the additive risk model

[29, 37, 39, 102] subject to di�erent de�nitions of 
 (�). The parameters of the hazard

function in the model can be inferred from the observed cascades. The cumulative

probability Fi (tjs(t)) of infection of a susceptible node i at time t is thus calculated

using the hazard function as Fi (tjs(t)) = 1 � e�
Rt

0 � i (t0js(t0)) dt0, and Si (tjs(t)) = 1 �

Fi (tjs(t)) is the survival function. Di�erent factors can be incorporated into the

framework. For instance, the features of nodes can be considered [102]. Recently,

the consideration of topics has also been proposed in some extension of this class of

models [93].

Recently, point process models such as Hawkes process di�usion models have

been proposed so as to model the inter-activation time [25, 48, 107, 114]. The

Hawkes process is a class of self or mutually exciting point process models [47]. A

univariate Hawkes process is described by the conditional intensity function (a.k.a.

the hazard rate) � � (t). It de�nes the occurrence rate of events at time t based on

the history events, given as � � (t) = � (t) +
Rt

�1 � (t � s)dN(s), where � (t) is a base

intensity regardless of the history events, � (t � s) is a kernel function modeling the

time-decay e�ect (t � s is the di�erence between the current time t and the previous

time s to be considered) and dN(s) is the number of additional events happening

at time s with reference to time t. While univariate Hawkes process models events

in one dimension for one self-excited node or an aggregated number for all nodes

[25], multivariate Hawkes process is a multi-dimension extension and can be applied

to social networks with N nodes [48, 107, 114]. The intensity function can thus be

� �
i (t) = � i (t)+

P N
j =1

Rt
�1 � j i (t � s)dNj (s) where � j i (t � s) = � j i � � (t � s), and � j i is

0 if the nodes i and j are not connected. The corresponding cumulative distribution
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is F �
i (t) and the survival function is S�

i (t) = 1 � F �
i (t). There also exist some recent

work that extends the basic Hawkes process di�usion model with sparse low-rank

representation [114], topic models [48], etc.

2.4 Epidemic Di�usion Models

The study of epidemic disease has always been a topic where both biological and

social factors have to be considered at the same time. Contagious diseases caused by

biological pathogens such as in
uenza, measles, and sexually transmitted diseases,

spread from person to person. Epidemic di�usion models try to formulate the spread

of contagious diseases in mathematical form, where some have also been applied to

modeling di�usion in social networks [64].

Epidemic di�usion models in general can be categorized as classical epidemics

and network epidemics with respect to whether the underlying di�usion network

is considered. Classical epidemics refer to the early work (prior to 1990s) on epi-

demic modeling where homogeneous mixing of the population is assumed and the

population-based dynamics of the disease spreading is being modeled [60]. Later on,

the network structure factor was also taken into consideration and di�erent di�usion

models for network epidemics were proposed [59]. Orthogonal to this categorization

of population-based verse network-based, people also propose di�erent models by

considering di�erent states of infection and the state transitions during the \life

cycle" of infection. The states of infection are Susceptible, Infectious and Recovery

states, de�ned as follows: (1) Susceptible(S) - Before an individual has caught the

disease, it is susceptible to infection from its neighbors; (2) Infectious (I) - Once

the individual has caught the disease, it is infectious and has some probability of

infecting each of its susceptible neighbors; (3) Removed (R) - After a particular node

has experienced the full infectious period, this node is removed from consideration

(either recovered or died). Some common epidemic di�usion models found in the

literature include SIR model [4], SIS model [82], SIRS model [31], etc.

Given a directed network G = (V; E) representing the contact network on which
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disease spreads via each edge (v; w) 2 E with probability p(v; w) from an infected

node v to its neighbor w. Initially, some nodes are in the I state and all the others

are in the S state. For a node v that gets infected, the length of infection lasts

for a time interval t I . At each time steps within t I , v passes the disease to each

of its susceptible neighbors with probability p(v; w). After that, di�erent epidemic

di�usion models assume di�erent state transition processes. In the SIR model, node

v is assumed to be no longer infectious or susceptible to the disease, and thus can be

removed (R) (either recovered or died) for consideration. The SIS model assumes

that a node can never be immune to the disease and thus there is no \removed" state.

After node v has experienced the infectious state, it cycles back to the susceptible

state and is ready to catch the disease again. The SIRS model corresponds to

the kind of disease to confer temporary but not permanent immunity on infected

individuals. After a particular node has experienced the full infectious period, this

node is removed temporally from consideration for an interval tR . After that, it

cycles back to the susceptible state and is ready to catch the disease again. Despite

the di�erences between the SIR and SIS models, we can use time-expanded contact

network to convert the SIS model into the SIR model. The key idea is a node v is

a \di�erent individual" at each time step, thus nodes are never reinfected with this

representation. Therefore, the same SIS disease dynamics can now 
ow forward in

time through the time-expanded contact network without circulation [30].

The aforementioned models have been extended since they were �rst proposed.

Matt et al. [56] extended the model by separating the I state into a sequence of

several states (i.e., early, middle and late periods of the infection), and allowing

the contagion probabilities to vary among these states. Michelle et al. [34] consid-

ered that the disease-causing pathogen is mutating (and thus changing its disease

characteristics) over the process of the di�usion. In [37, 40], di�usion with dynamic

transmission rates has been considered. In addition, an epidemic model for two

di�erent types of infectious diseases on the same population is proposed in [80].

To contrast with information di�usion in social networks, disease di�usion does
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not involve any decision making process which is needed for a person before a new

idea is adopted and further spread. However, despite the passive nature of disease

infection, the underlying process is still su�ciently complex (with social contact

also involved) and unobservable at the individual level. So, it is most useful to

model using probabilities how one person will pass the disease to the neighbors.

With further understanding of the mechanism for disease transmission, we may

model this inner mechanism into the epidemic models to build more constrained

randomized models. As discussed in [12] [104], decision-based and probabilistic

approaches produce related results, and they can sometimes be used in conjunction.

In the literature, under the randomness mechanism assumption, the IC models are

considered to be closely related to the SIR or SIRS models [81] [45] [64]. For instance,

in the context of information di�usion in blogspace, one might interpret the SIRS

model as follows: a blogger who has not yet written about a topic is exposed to

the topic by reading the blog of a friend. He/She decides to write about the topic,

becoming infected. The topic may then spread to readers of his/her blog. Later,

he/she may revisit the topic from a di�erent perspective, and write about it again

(while in the SIR model, he/she only writes one post about the same topic).

2.5 Other Variants of Di�usion Models

Instead of the conventional way to represent information spread as cascade se-

quences, some recent work assumes that a cascade takes the form of a tree [97]

(also called a di�usion event in [35] and a forest in [5]). Some are large in size while

most are small ones like network motifs. Some also studied how the di�usion pro-

cesses in social networks are a�ected by factors like the cascade structure, its size,

and the roles of the users involved [3].

To allow the state transition at each node to be stochastic and coupled, people

have proposed the use of Graph-Coupled Hidden Markov Models (GCHMMs) [28]

which extends the widely-used Coupled Hidden Markov Models (CHMMs). Each

node can be modeled as a Hidden Markov Model (HMM). To model dependencies
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among nodes, CHMMs allow dependencies between state transitions across multiple

HMMs. And GCHMMs add dynamic social network structure to further constrain

the dependencies to the connected nodes, thus each node is only a�ected by its

neighbors.

For variants with respect to the decision making process of individuals, there

exists work where each adoption of innovation can also be viewed as a prediction

task based on the features like one’s own attributes, similarities with friends, or

previous adoptions of friends [2, 108]. Also, agent-based di�usion models simulate

the behavior of individual customers as that of individual agents, and an agent

makes the decision of adoption according to some decision rules [61, 84].

In contrast to site percolation in a network where nodes are a�ected, there also

exists work on bond percolation that considers whether edges are a�ected. In the

bond percolation model, each edge (u; v) 2 E is a�ected with an independent prob-

ability pu;v . The IC model (or equivalently SIR model [81]) is equivalent to the bond

percolation process on the same network since they have the same probability distri-

bution for the �nal set of a�ected nodes given as q(r ) =
Q

(u;v )2 E pr u;v
u;v (1 � pu;v )(1� r u;v )

where r is the set of a�ected edges [64, 81].

2.6 Summary

In this chapter, a literature review on di�usion models was presented. Other than

providing a survey on the state-of-the-art development of the �eld, it also explains

how the models proposed in di�erent communities are related in the context of

information spreading in social networks. In the following chapters, we will propose

novel di�usion models and the corresponding learning algorithms to infer them with

the objective to identify also the inner mechanisms driving the di�usion.
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Chapter 3

A Component-based Di�usion

Model with Structural Diversity

for Social Networks

The Independent Cascade Model (IC Model) is a widely adopted di�usion model

where a node is assumed to be activated independently by any one of its neighbors.

In reality, how a node will be activated also depends on how its neighbors are

connected and activated. For instance, the opinions from the neighbors of the same

social group are often similar and thus redundant. In this chapter, we extend the IC

Model by considering that (1) the information coming from the connected neighbors

are similar, and (2) the underlying redundancy can be modeled using a dynamic

structural diversity measure of the neighbors. Our proposed model assumes each

node to be activated independently by di�erent communities (or components) of

its parent nodes, each weighted by its e�ective size. An expectation maximization

algorithm is derived to infer the model parameters. We compare the performance of

the proposed model with the basic IC Model and its variants using both synthetic

data sets and a real-world data set containing news stories and web blogs. Our

empirical results show that incorporating the community structure of neighbors and

the structural diversity measure into the di�usion model signi�cantly improves the
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accuracy of the model, at the expense of only a reasonable increase in run-time.

3.1 Introduction

Di�usion models are de�ned with the notion of neighborhood. The neighbors with

direct connections (also called ties) to a node could exhibit di�erent forms of in
u-

ence depending on their connectivity in the social network. There have been studies

on the e�ect of di�erent local ties on the overall network properties. For instance,

ties with di�erent strength characterized by the amount of shared time, emotional

intensity and so on have been found playing unique roles in a network [44]. The

importance of weak ties serving as \local bridges" to introduce novel information in

social networks has long been understood [44]. Related perspectives have recently

been explored for online communication and social media analysis [91], [100], [99].

J.-P. Onnela et al. [91] studied the roles of strong and weak ties in mobile commu-

nication networks and illustrated that random removal of weak ties could lead to

the networks falling apart, no longer supporting the communication. Online social

ties across heterogeneous networks have been studied in [99]. Also, the structure

of neighbors has been considered as the resources they hold (a.k.a. social capital)

in [17]. Information provided by each neighbor when they communicate through

their connectivity carries redundancy. In [100], it has been demonstrated that the

number of connected components of the neighbors correlates well with the proba-

bility for a person joining social coalition. That is, it is not the number of friends

in
uencing you that matters but the number of loosely coupled \groups" (or called

non-redundant contactsin [17] and componentsin this work).

We here propose a novel component-based IC model that considers the neigh-

borhood structure of each node for modeling information redundancy during the

di�usion process. In particular, a node will be activated independently by groups

of parent nodes which are densely connected (called component in the sequel) in-

stead of individual parent nodes. Also, we make use of di�erent structural diversity

measures for quantifying the redundancy of each component and then derive the
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corresponding model learning algorithm to infer the di�usion probabilities based on

a set of observed cascades. The e�ectiveness of the proposed IC Model is evaluated

using both synthetic and real data sets. Note that the focus of this work is to study

the e�ect of incorporating neighbors’ structural diversity into the di�usion network

and the network structure is assumed to be known and static. The results of this

work can also be extended to the cases where the network structure is unknown [33]

and/or contains dynamic ties [15, 46]. Also, we consider only static transmission

rates and activations happening at discrete time steps.

The contributions of this work are as follows:

1. We model information redundancy using the structural diversity of neighbors

and propose a novel component-based di�usion model. To the best of our

knowledge, we are the �rst group demonstrating the importance of considering

the structural diversity of neighbors in di�usion modeling.

2. We adopt the notion of e�ective size in social science and propose a measure

called dynamic e�ective sizeto allow the di�usion models to be more adaptive

to dynamic behaviors. A special case of e�ective size equals the modularity

which is commonly used in community detection [23].

3. We derive an expectation maximization (EM) algorithm for obtaining the ML

estimates of the model parameters based on the observed cascades with a

detailed analysis of its run-time. An incremental method is also derived to

speed up the calculation of e�ective size from O(n2) to O(n).

3.2 Problem Formulation and Methodology

In this section, we put forward a di�usion based model for social networks with the

consideration of the community structure of neighbors for each node. We regard the

communities of the parents of a node as its components. Within a component, nodes

are assumed to be frequently interacting and thus carry redundant information.

So, instead of considering the independent in
uence of the neighboring nodes, we
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consider the independent in
uence of the neighboring components (as independent

information sources [17, 100]). And for each component, we model the e�ective

number of nodes by its e�ective size to further remove redundancy.

3.2.1 Preliminaries

We represent a given social network as a directed graph G = (V; E) where V is the

set of nodes and E is the set of edges. Let e = (v; w) be an edge from node v to

node w, and f (v) and b(v) be the sets of child nodes and parent nodes of node v

respectively, given as: f (v) = f w : (v; w) 2 Eg and b(v) = f u : (u; v) 2 Eg: For

each node w, we de�ne the connected components of its parent nodes as its parent

componentsB (w) = f B i (w) : i = 1; � � � ; Nc(w)g where Nc(w) is the number of

components for B (w). And reversely, for a component c, we de�ne the set of nodes

having component c as one of its parent components as F (c) = f w : c 2 B (w)g.

Here the parent components of node w are modeled as the detected communities in

b(w) using community detection algorithms (e.g., [23]).

With the assumption that the component structure of the parents of each node

is static, we de�ne for each component-node pair (c 2 B (w); w) a component-based

di�usion probability � c;w with 0 � � c;w � 1. Also, we allow a node to be activat-

ed multiple times. Some major notations de�ned in this work are summarized in

Table 3.1. Fig. 3.1 illustrates a node w and its parents. The node w has a set of

parent nodes b(w) = f v1; v2; v3; v4; v5; v6g (Fig. 3.1a). The parent nodes form two

components, i.e, B (w) = f B1(w) = f v1; v2; v3g; B2(w) = f v4; v5; v6gg (Fig. 3.1b).

By denoting B1(w) as C1 and B2(w) as C2, the corresponding component-based

di�usion probabilities are denoted as � C1 ;w and � C2 ;w respectively.

3.2.2 Problem Formulation

Let Ds = f Ds(0); Ds(1) � � � Ds(Ts)g be the sth observed information cascade where

Ds(t) is the set of nodes activated at time step t and Ts is the end time of cascade

Ds. In our proposed di�usion model, given the sth cascade and the current time step
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Table 3.1: Notations.

SYMBOL DESCRIPTION

G = (V; E) A directed graph with node set V , edge set E

f (v) The set of child nodes of node v

b(v) The set of parent nodes of node v

B (w) The set of parent components of node w

Nc(w) The number of parent components of node w

F (c) The set of nodes having parent component c

� = f � c;wg Component-based di�usion probability

Ds = f Ds(t)g The sth observed cascade

Ts The end time for the cascade Ds

Ds(t) The set of nodes activated at time t in sth cascade

Cs(w; t) The set of active parent components of w

with respect to time step t in the sth cascade

Gc(t) The graph of activated parent nodes in c at time t

with node set Nc(t) and edge set Ec(t)

F (s)
a (c; w; t) The decay factor of c given w

F (s)
b (c; w; t) The structural diversity factor of c given w

Ns(c; w; t) The e�ective count of activations in c

T (s)
c (w; t) The time when F (s)

b (c; w; t) is peaked

L s(w; t) The time di�erence between the current time t

and the latest activation time of w up to time t

� The decay parameter for F (s)
a (c; w; t)
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Figure 3.1: Node-based vs. component-based diffusion.

t, whether a node w will be activated at the time step t + 1 depends on whether its

parent components B (w) are active or not during the time interval [t � L s(w; t); t].

Here L s(w; t) denote the time di�erence between the current time t and the latest

activation time of w up to t. And a parent component is considered activeduring the

interval if at least one of its nodes is activated during the interval. This implies that

we are only interested in recent news and that the posts prior to our previous posting

have little in
uence on our future posting behavior. We de�ne Cs(w; t) � B (w) to

be the set of active parent components of w with respect to time step t in the sth

cascade.

The di�usion process of a particular cascade proceeds as follows. Given the

initial set of activated nodes in the sth cascade (Ds(0)), the parent components of

each node are checked for being active or not as the time step proceeds. Based on

the di�usion probabilities f � c;wg with c 2 Cs(w; t), some of their child nodes f wg will

be activated accordingly. The process proceeds until there are no more nodes being

activated and thus the cascade stops. To infer the di�usion model, we adopt the

Bayesian framework and obtain the model parameters by maximizing the likelihood

of generating the observed cascades f Dsg (to be discussed in Section 3.3).

In this work, we incorporate also the factors which can a�ect the degree of in-


uence of a component activation into the di�usion model. We regard a parent

component’s degree of in
uence to be a�ected by (1) the time at which the compo-
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nent is activated, and (2) the dynamics of the structural properties of the activated

nodes in the component. We de�ne the two factors as F (s)
a (c; w; t) and F (s)

b (c; w; t).

In the following, we �rst introduce the structural diversity factor F (s)
b (c; w; t), and

then the decay factor F (s)
a (c; w; t) which is de�ned based on F (s)

b (c; w; t).

Structural Diversity Factor

We argue that a parent component is more in
uential if the associated nodes are

sparsely connected, and thus less redundancy among them. In social networks,

news items posted by closely linked web sites are considered to carry redundant

information. We formulate F (s)
b (c; w; t) as the e�ective size, a well-known measure

of structure holes [17]. As explained by the theory of social capital, lacking edges

among neighbors results in structural holes, which bene�t novel information [17].

To compute F (s)
b (c; w; t), we �rst build a weighted undirected complete graph

Gc(t) = (Nc(t); Ec(t)) for the set of activated parent nodes Nc(t) of w in component

c 2 Cs(w; t) before time step t +1 where Ec(t) de�nes the set of pairs of the activated

nodes in component c. For each edge eij 2 Ec(t), we compute a weight hij to indicate

the similarity of the node pair. Even though the activated nodes are not connected

at a certain time, they may share information through common friends, which is

also known as structural equivalence [17]. For example, in Fig. 3.1, although v4 and

v6 are not connected, they could share information via v5. We use SimRank [55]1

that considers node connectivity to calculate the similarity score associated to each

node pair in component c. The score will then be within [0; 1]. To achieve run-time

e�ciency, we use the similarity scores obtained after the �rst iteration, which is

essentially equal to a normalized version of co-citation [94]. Given f hij g, we further

de�ne the relative similarity mjq 2 [0; 1] as

mjq =
hjq

maxk2 N c (t ) hjk
: (3.2.1)

To sum up the in
uence of the nodes in Nc(t) on its child node w, we use once

again SimRank to �rst compute the similarity of node w and each node in Nc(t).
1The use of SimRank is by no means optimal and alternatives can be explored in future work.
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We then de�ne pwq 2 [0; 1] as the portion of emphasis w will put on a parent node

q, given as

pwq =
hwq + �

P
j 2 N c (t )(hwj + � )

(3.2.2)

with an additive smoothing parameter � (set to 1E-12 in our experiments). Then,

the e�ective size of Gc(t) is given as

F (s)
b (c; w; t) =

X

j 2 N c(t )

�
1 �

X

q2 N c (t )nf j g

pwq mjq

�
: (3.2.3)

Given the formulation, F (s)
b (c; w; t) takes values within [1; jNc(t)j]. In addition,

P
q2 N c (t )nf j g pwq mjq can be interpreted as the redundancy for parent node j . Note

that if maxk2 N c(t ) hjk equals 0, indicating hjq equals 0 for all q, we assign mjq to 0

since there is no information shared with any node q to cause redundancy.

It is interesting to note that if we compute the similarity score by assigning the

weight hij to 1 given there exists a corresponding edge (eij or ej i ) in G and to 0

otherwise, Eq. (3.2.3) can be rewritten as

F (s)
b (c; w; t) = jNc(t)j �

2 jEc(t)j
jNc(t)j

(3.2.4)

which is equivalent to the normalization of modularity measure [13]. In the sequel,

we refer to the use of Eq. (3.2.3) as adopting e�ective size, and Eq. (3.2.4) as

adopting modularity. Meanwhile, if we consider all the parent nodes in a component

instead of only the activated ones, F (s)
b (c; w; t) becomes a static measure, whereas

the aforementioned measures are all dynamic by de�nition. The e�ectiveness of

di�erent versions of the structural diversity factor, namely dynamic e�ective size,

static e�ective size, dynamic modularity, and static modularity will be evaluated and

discussed in Section 4.

Example 1. The similarity scores of the node pairs in component C1 are listed

in Fig. 3.2a. At t = 1 (Fig. 3.2b), only v1 is activated. The inner sum in Eq.

(3.2.3) has no items and thus F (s)
b (c; w; t) equals 1. At t = 2, v2 is activated (Fig.

3.2c). It is easy to see that mv1 v2 = mv2v1 = 1 and pv1w = pv2w = 1
2. Then,

F (s)
b (c; w; t) = (1� 1

2)+(1� 1
2) = 1. When v3 is further activated at t = 3 (Fig. 3.2d),
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mv1v2 = mv2v1 = 1
2 , and for other pairs the values are 1. pv1w = pv2w = pv3w = 1

3.

Thus F (s)
b (c; w; t) = (1 � 1

3 � 1
2 � 1

3) + (1 � 1
3 � 1

2 � 1
3) + (1 � 1

3 � 1
3) = 4

3.

Decay Factor

For the factor F (s)
a (c; w; t), we need to de�ne a component activation start time so

as to formulate the decay e�ect. We can postulate that a user will start paying

attention to the posts in a parent component when the topic is �rst discussed or

when it is frequently discussed among some nodes within the component. For the

former, the de�nition is obvious. For the latter, we can compute T (s)
c (w; t) (peak

time) which is the time t0 when the value of Fb(c; w; t0) reaches maximum within the

interval [t � L s(w; t); t]. In case it reaches maximum at multiple time points, we take

the earliest one. And in case there are no activations in the interval, we consider

that the component c has no in
uence on node w, and F (s)
a (c; w; t) equals 0.

Given the activation start time of a parent component c to be T (s)
c (w; t), the

component with the activation start time closer to the time t will be more in
uential

on w at t. We adopt an exponential decay [41, 68] which gives

F (s)
a (c; w; t) = 1 + e� (t � T ( s)

c (w;t )) =� : (3.2.5)

The parameter � (also called the mean life time [41]) represents the expected time

delay between an activation of a parent component and that of its child node. Note

that F (s)
a (c; w; t) is formulated such that it is always larger than 1. Our prelim-

inary experimental results show that adding the o�set value 1 gives more stable

performance.

Example 2. Figs. 3.2e and 3.2f illustrate the calculation of T (s)
c (w; t). As shown

in Fig. 3.2e, the component C1 contains nodes f v1; v2; v3g. Node v1 is activated at

time steps f 1; 5g, v2 at time steps f 2; 6g, and v3 at time step f 3g. The activations of

component C1 = f v1; v2; v3g are considered to happen at the union of the activation

time steps of the three nodes, i.e., f 1; 5g[f 2; 6g[f 3g = f 1; 2; 3; 5; 6g. Given that the

activations of the component’s child node w happen at time steps f 4; 7g, as shown
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in Fig. 3.2f, we obtain L s(w; 4 � 1) = 3 (since there are no previous activations),

and L s(w; 7 � 1) = 2. Prior to time step 4, according to Example 1, at t = 1

and t = 2, the value of the e�ective size remains 1. At t = 3, v3 is activated, and

the e�ective size increases to 4
3 . Thus, the e�ective size of component C1 reaches

maximum within the interval [4 � 1 � L s(w; 4 � 1); 4 � 1] = [0; 3] at time step 3.

Therefore, T (s)
c (w; 3) = 3. For time step 7, the e�ective size of component C1 reaches

maximum within the interval [7 � 1 � L s(w; 7 � 1); 7 � 1] = [4; 6] when v1 is activated,

i.e., T (s)
c (w; 6) = 5.

Overall Formulation

By combining the structure diversity and decay factors, the overall in
uence (and

we call it e�ective count in the sequel) of the activation of a parent component c on

node w can be modelled as

Ns(c; w; t) = F (s)
a (c; w; t)F (s)

b (c; w; T(s)
c (w; t)): (3.2.6)

The probability that the node w becomes active at time t + 1 is given as

P (s)
w (t + 1) = 1 �

Y

c2 Cs (w;t )

(1 � � c;w)N s (c;w;t ) : (3.2.7)

Given D = f Ds : s = 1; � � � ; Sg as the set of independent information di�usion

cascades, and � = f � c;wg as the set of di�usion probabilities, the log-likelihood

function with respect to � can be written as

L(� ) =
SX

s=1

ln P(Dsj� ; Ds(0))

=
SX

s=1

Ts � 1X

t=0

 
X

w2 D s (t+1)

ln P (s)
w (t + 1) +

X

w62D s (t+1)

X

c2 Cs (w;t )

Ns(c; w; t) ln(1 � � c;w)

!

(3.2.8)

where Ds(0) are the nodes which are activated initially as the original sources in the

sth cascade. Since there could be multiple paths from multiple sources in a cascade,

Ds(0) could consist of more than one node.

Then, the remaining step is to estimate � = f � c;wg so as to maximize Eq. (3.2.8).
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Figure 3.3: The framework of our learning algorithm.

3.2.3 Learning Algorithm

We �rst identify the parent components for each node in the social network using

community detection algorithms [23, 72, 85, 106]. The \Clauset-Newman-Moore"

algorithm [23] is adopted for the community/component detection in most of our

experiments. We also evaluate the use of \InfoMap" [85] as an alternative for com-

parison (see Section 3.3.6). We then compute the e�ective counts of component

activations Ns(c; w; t) for de�ning the likelihood function. An EM algorithm is de-

rived to obtain the ML estimates of the model parameters based on the observed

cascades. The framework of our learning algorithm is shown in Fig. 3.3.

E�ective Counts of Component Activations

The detailed steps for calculating the e�ective counts of component activations

Ns(c; w; t) is summarized in Algorithm 1. In words, we �rst pre-compute the n-

odes in component c which could cause the activation of node w at time step t in

the sth cascade and store them as Tc(w; c; s; t) where all the nodes in each compo-

nent are to be traversed. Then we compute Ns(c; w; t) based on Tc(w; c; s; t). This

is to avoid the time-consuming enumeration of iterators in a for-loop for computing

Ns(c; w; t). Also, we pre-compute the sum of Ns(c; w; t) for cases where w is not
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Algorithm 1 Computing E�ective Counts of Component Activations
Input: network G = ( V; E), cascadesD = f D1; � � � ; DSg

Output: e�ective counts of activations for each parent componentc of each nodew 2 V

at each time t in each cascadeD s, Ns(c; w; t)

1. global max, prod, sum

2. for all (c; w) : w 2 V and c 2 B (w) do

3. for all i 2 c do

4. for all s : i 2 D s do

5. for all t : w 2 D s(t + 1) or t = Ts � 1 do

6. Tc(w; c; s; t)  Tc(w; c; s; t) [ f (i; min f t0 : i 2 D s(t0) and t0 2 [t � L s(w; t); t]g)g

7. end for

8. end for

9. end for

10. for all s : 9i 2 c : i 2 D s do

11. for all t : w 2 D s(t + 1) or t = Ts � 1 do

12. Nodes  Nil F max
b  0 T max  0

13. SORT (Tc(w; c; s; t), ( i; t ) 2 Tc(w; c; s; t) by t)

14. for all t0 : 9i : (i; t 0) 2 Tc(w; c; s; t) do

15. NewNodes i : (i; t 0) 2 Tc(w; c; s; t)

16. F (s)
b (c; w; t0)  Calculating the E�ective Size(Nodes; NewNodes)

17. if F (s)
b (c; w; t0) > max f F (s)

b (c; w; t00); t002 [t � L s(w; t); t0)g then

18.
P

t 002 (T max ;t 0] Ns(c; w; t00)  
P

t 002 (T max ;t 0](1 + e� ( t 00� T max )=� )F max
b

19. F max
b  F (s)

b (c; w; t0) T max  t0

20. end if

21. Nodes  Nodes[ NewNodes

22. end for

23. if t 6= Ts � 1 then

24. F (s)
a (c; w; t)  1 + e� ( t � T max )=�

25. Ns(c; w; t)  F (s)
a (c; w; t)F max

b

26. end if

27.
P

t 02 (T max ;t ] Ns(c; w; t0)  
P

t 02 (T max ;t ](e
� ( t 0� T max )=� + 1) F max

b

28. end for

29. end for

30. end for
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Algorithm 2 Calculating the E�ective Size
Input: current nodesNodes, the newly added nodesNewNodes

Output: F (s)
b (c; w; t0)

1. if Nodes= Nil then

2. max  0 prod  0 sum(w)  0

3. end if

4. for all i 2 NewNodes do

5. for all j 2 Nodes do

6. max(i )  max(hij ; max(i ))

7. max(j )  max(hij ; max(j ))

8. prod(i )  prod(i ) + hij (hjw + � )

9. prod(j )  prod(j ) + hij (hiw + � )

10. end for

11. Nodes  Nodes[ i

12. sum(w)  sum(w) + hiw + �

13. end for

14. temp  0

15. for all i 2 Nodes do

16. if max(i ) 6= 0 then

17. temp  temp + prod ( i )
max ( i )

18. end if

19. end for

20. F (s)
b (c; w; t0)  j Nodesj � temp

sum (w)
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Algorithm 3 Inferring Di�usion Network with Components
Input: network G = ( V; E), cascadesD = f D1; � � � ; DSg,

parent componentsf cg for each nodew 2 V

Output: component-based di�usion probabilities � = f � c;w g

1. Assign initial values to �̂ = f �̂ c;w g

2. for all (c; w) pairs do

3. N +
c;w  

P
s2 S+

c;w

P
t 2 T +

c;w;s
Ns(c; w; t � 1)

4. N �
c;w  

P
s2 S �

c;w

P
t 2 T �

c;w;s
Ns(c; w; t � 1)

5. if N +
c;w = 0 and N �

c;w 6= 0 then

6. � c;w  0

7. end if //special cases for di�usion probabilities

8. end for

9. while not convergencedo

10. E-step:

11. for all P̂ (s)
w (t) do

12. P̂ (s)
w (t)  1 �

Q
c2 Cs (w;t � 1) (1 � �̂ c;w )N s (c;w;t � 1)

13. end for

14. M-step:

15. for all (c; w) : S+
c;w 6= ; do

16. calculate� c;w using the bisection method for function
P

s2 S+
c;w

P
t 2 T +

c;w;s

 
1� (1 � �̂ c;w )N s ( c;w;t � 1)

P̂ ( s )
w ( t )

Ns(c; w; t� 1) 1
1� (1 � � c;w )N s ( c;w;t � 1)

!

� Nc;w = 0.

17. end for

18. �̂  �

19. end while
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activated. F (s)
b (c; w; t) (Eq. (3.2.3)) is computed incrementally when there are new

nodes to be added according to Algorithm 2. Given a set of newly added nodes, a

na��ve way to calculate F (s)
b (c; w; t) is to do it with two levels of summations, result-

ing in a quadratic runtime with respect to the number of nodes. Instead, it is not

di�cult to show that the formulation of the e�ective size can be rewritten as:

F (s)
b (c; w; t) = jNc(t)j �

P
j 2 N c(t )

prod(j )
max (j )

sum(w)
(3.2.9)

where prod(j ) =
P

q2 N c(t )nf j g hjq (hwq + � ), max(j ) = maxk2 N c (t )hjk and sum(w) =
P

j 2 N c(t )(hwj + � ). prod(j ), max(j ) and sum(w) can be updated via scanning the

current set of nodes once when a new node j is added. The e�ective size is computed

by traversing prod(j ) and max(j ) of all the nodes in the second scan. Thus, updating

F (s)
b (c; w; t) takes linear time.

Inferring Model Parameters

We make use of the Expectation-Maximization (EM) [11] algorithm to infer the

model parameters. We denote Y (s)
c;w (t) as the latent variable to indicate whether the

activation of node w at time step t in the sth cascade is activated by w’s parent

component c. With reference to Ds, we represent the corresponding set of latent

variables as Ys = f Ys(0); Ys(1) � � � Ys(Ts)g where Ys(t) = f Y (s)
c;w (t)g. We then derive

the Q-function and infer the model parameters via the EM algorithm which consists

of an E-step and an M-step.

E-step: We take expectation of all possible assignments of Y which can explain

the observed cascades.

Given a node w 2 Ds(t+1) and its parent component c 2 Cs(w; t), the probability

of successful activation is
�
1� (1� � c;w)N s (c;w;t )

�
given Y (s)

c;w (t+1) = 1. The probability

of failing to activate, i.e., Y (s)
c;w (t + 1) = 0, is (1 � � c;w)N s (c;w;t ) . The Q-function
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becomes:

Q(� j �̂ )

=
SX

s=1

Ts � 1X

t=0

 
X

w62D s (t+1)

X

c2 Cs (w;t )

Ns(c; w; t) ln(1 � � c;w)+

X

w2 D s (t+1)

X

c2 Cs (w;t )

�
P(Y (s)

c;w (t + 1) = 1) ln
�
1 � (1 � � c;w)N s (c;w;t )

�

+
�
1 � P(Y (s)

c;w (t + 1) = 1)
�

Ns(c; w; t) ln(1 � � c;w)
� !

:

where the probability for the activated parent component c of node w to succeed in

activating w at time step t + 1 is calculated as

P(Y (s)
c;w (t + 1) = 1) =

1 � (1 � �̂ c;w)N s (c;w;t )

P̂ (s)
w (t + 1)

;

where �̂ c;w denotes the current estimate of � c;w, and P̂ (s)
w (t +1) is computed according

to Eq. (3.2.7).

M-step: We solve the optimality condition @Q=@�c;w = 0 for the new estimate

of � c;w.

We de�ne T+
c;w;s (T �

c;w;s) as the set of time steps f tg in Ds where node w is

(not) activated at t and at the same time its parent component c has been activat-

ed since L (s)
w (t). Also, we de�ne the set of cascades where T+

c;w;s is not empty as

S+
c;w = f Ds : 9t

�
c 2 Cs(w; t) ^ w 2 Ds(t + 1)

�
g and the set of cascades where T �

c;w;s
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is not empty as S�
c;w = f Ds : 9t

�
c 2 Cs(w; t) ^ w 62Ds(t + 1)

�
g. Then,

@Q=@�c;w = 0

)
X

s2 S+
c;w

X

t2 T +
c;w;s

 
1 � (1 � �̂ c;w)N s (c;w;t � 1)

P̂ (s)
w (t)

Ns(c; w; t � 1)
1

1 � (1 � � c;w)N s (c;w;t � 1)

!

= Nc;w = N +
c;w + N �

c;w

N +
c;w =

X

s2 S+
c;w

X

t2 T +
c;w;s

Ns(c; w; t � 1)

N �
c;w =

X

s2 S�
c;w

X

t2 T �
c;w;s

Ns(c; w; t � 1):

As the function

f (� c;w) =
X

s2 S+
c;w

X

t2 T +
c;w;s

 
1 � (1 � �̂ c;w)N s (c;w;t � 1)

P̂ (s)
w (t)

Ns(c; w; t � 1)

1
1 � (1 � � c;w)N s (c;w;t � 1)

!

� Nc;w

is monotonic, we use the bisection method to get the solution of f (� c;w) = 0. For

our case, the starting interval to solve for � c;w is set to [0; 1] satisfying the condition

f (0)f (1) � 0 for the bisection method to work.

When N +
c;w = 0, namely S+

c;w = ; , then

Q(� c;wj �̂ c;w) =
X

s2 S�
c;w

X

t2 T �
c;w;s

Ns(c; w; t) ln(1 � � c;w) + const

where const stands for terms without � c;w included. The function becomes monoton-

ically decreasing, and the maximum value is reached when � c;w is set to the minimum

possible value, i.e., 0.

The E-step and M-step repeat until convergence. The detailed steps are sum-

marized in Algorithm 3.
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Computational Complexity

Implementing the learning algorithm involves three main steps: (1) load the network

data, the per-node neighbors’ community structure and the cascades related data,

(2) pre-compute the e�ective counts of components (pre-processing), and (3) carry

out the EM iterations.

For Step (1), the cost for loading the network data is O(jV j + jE j). For loading

the per-node neighbors’ community structure, it includes the similarity scores for all

the node pairs in each parent component (needed for computing the e�ective size).

Given that the number of nodes in a parent component c of a node w is n(w; c),

the total number of similarity scores to be computed will be
P

w2 V

P
c2 B (w) n(w; c)2.

But, since for each node w, the cost for traversing the n(w; c) nodes for all c 2 B (w)

is equivalent to that of visiting all its parent nodes,
P

w2 V

P
c2 B (w) n(w; c) essentially

gives jE j. By denoting I max to be the maximum indegree of the network, it is easy

to see that the worst case complexity for loading the similarity scores is

X

w2 V

X

c2 B (w)

n(w; c)2 � I max

X

w2 V

X

c2 B (w)

n(w; c);

and thus O(I max � j E j). Regarding the cascades information, the worst case com-

plexity is O(S� T) where T denotes the maximum length of a cascade record. Thus,

the overall complexity is O(jV j + I max � j E j + S � T).

For Step (2), the �rst major preprocessing task is to compute Tc(w; c; s; t) (lines

2 � 9 in Algorithm 1). The worst case complexity is essentially that of computing

Tc(w; c; s; t), that is,
P

w2 V

P
c2 B (w) n(w; c) � S � T; which gives O(S � T � j E j).

The second task is to compute the e�ective size for activated nodes in a component

(lines 10 � 30). The node activations in a component c (stored in Tc(w; c; s; t)) are

added incrementally and then the value of F (s)
b (c; w; t0) is updated accordingly. The

complexity for such an update is O(n(w; c)) (Algorithm 2 lines 7 � 12). Thus, the

overall complexity of adding all the nodes (lines 14 � 16) for updating F (s)
b (c; w; t0)
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is O(n(w; c)2). Then, the worst case complexity becomes

X

w2 V

X

c2 B (w)

S � T � n(w; c)2 � I max

X

w2 V

X

c2 B (w)

S � T � n(w; c);

which gives O(I max � S � T � j E j). The overall complexity for the preprocessing

step (i.e., Algorithm 1) is thus O(I max � S � T � j E j).

For the EM algorithm (Step 3) as shown in Algorithm 3, we �rst calculate N +
c;w

and N �
c;w (lines 2 � 8) and the corresponding complexity is

X

w2 V

X

c2 B (w)

S � T �
X

w2 V

X

c2 B (w)

n(w; c) � S � T;

and thus O(S � T � j E j). The main part of the EM algorithm corresponds to lines

9 � 19. In each iteration, the bisection method (line 16) is the most costly step with

the complexity of
P

w2 V

P
c2 B (w) S � T which gives O(S � T � j E j). By denoting

the number of iterations in the bisection method as k, then the complexity for each

EM iteration becomes O(k � S � T � j E j).

3.3 Experiments

We evaluate the proposed model using both synthetic and real data sets. We show

that the component-based di�usion model is more accurate in modeling di�usion

when compared with the node-based ones. All the experiments are conducted on a

machine with a 2:67 GHz 4-core CPU and 32 GB RAM running Linux. The algo-

rithms are developed using C++. In the following, we �rst present the experimental

settings for conducting the performance evaluation.

3.3.1 Experimental Settings

We �rst implement a basic node-based IC Model which extends the original IC

Model by considering the in
uence of all the parent nodes activated after the child

node’s latest activation instead of only those just activated at the previous time

step. We use it as the baseline reference for evaluation. The main reason of using
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this modi�ed IC Model is to make sure that the comparison is only based on whether

the component structure is adopted or not but not other modeling aspects.

We then implement the component-based model with di�erent extensions by

adding the structure diversity factor and the decay factor into the model. In par-

ticular, we have tested the following combinations:

� ICM : The basic IC Model,

� ICM-DK : The IC Model with the decay factor,

� COMP : The component-based IC Model without the decay factor, and

� COMP-DK : The component-based IC Model with the decay factor.

ICM and ICM-DK are essentially node-based, while the other two are component-

based. For ICM and ICM-DK , the number of parameters for each node equals the

number of its parent nodes, while for COMP and COMP-DK , the number is reduced

to that of its parent components. And for both COMP and COMP-DK , we adopt

the dynamic e�ective size to de�ne the structural diversity factor.

To contrast the e�ectiveness of adopting di�erent structural diversity factors

as mentioned in Section 3.2.2 as well as di�erent ways to de�ne the time for a

component to be considered activated, we implement the following variants of the

component-based model:

� COMP(1st): The component-based model without considering structural di-

versity. The time of the �rst node activation in the component is considered

as the time of the component activation.

� COMP SMod(1st): The static modularity is adopted as the structural diversity

factor. The time of the �rst node activation is considered as the time of the

component activation.

� COMP SE�Sz(1st): The static e�ective size is adopted as the structural di-

versity factor. The time of the �rst node activation is considered as the time

of the component activation.
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� COMP DMod(Max): The dynamic modularity is adopted as the structural di-

versity factor. The time when the dynamic modularity value reaches maximum

is considered as the time of the component activation.

� COMP DE�Sz(Max) : The dynamic e�ective sizeis adopted as the structural

diversity factor. The time when the dynamic e�ective sizereaches maximum

is considered as the time of the component activation.

For all the experiments, we set the initial values of �̂ = f �̂ c;wg to be within [0; 0:1]

as the di�usion probabilities in real cases are small (e.g., with a mean value of 0:04

and standard deviation of 0:07 in [45]). We test di�erent initializations and report

the best results to get rid of the local minimum problem, though the variations are

found to be only within 0:005 for almost all the runs. For detecting the community

structure, we consider nodes within two hops (instead of just the direct neighbors)

to enhance the detection accuracy. For the decay factor � , we tried di�erent values

and found setting � to 100 works �ne for all the models.

3.3.2 Performance Evaluation

Given that the ground truths of the di�usion models are unknown, we adopt per-

plexity as the evaluation metric. The perplexity over the observed cascades is de�ned

as

P erplexity =
�

P S
s=1 ln P(Ds)

W
(3.3.10)

where P(Ds) is the probability to generate the sth cascade, and the normalization

term W is the number of activations due to the in
uence of the corresponding

nodes’ parents. A smaller perplexity value indicates the inferred model to be more

probable. Five-fold cross-validation is adopted for all the experiments.

In addition, the simulation approach can also be used for the evaluation [110].

Information cascades can be generated using di�erent di�usion models given the

same set of initial node activations for each cascade in the test set to �rst estimate
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empirically the probabilities of di�erent nodes being activated afterwards. Then,

the nodes are ranked accordingly and the percentage of the top K nodes also found

in the test set can be computed. The metric is commonly called precision at K ,

denoted as P@K . Again, �ve-fold cross-validation is adopted.

3.3.3 Experiments on Synthetic Data

We generate synthetic cascades based on the component-based IC Model with the

dynamic e�ective size adopted for the structural diversity factor. We anticipate that

the inferred model with the same assumption for cascade generation should perform

the best.

Experimental Setup

We �rst generate two scale-free networks of 1; 000 nodes using the SNAP platform

[70] as real networks are mostly scale-free. One network is generated with 5; 000

edges and the other with 10; 000 edges. For each network, 100 cascades are gener-

ated based on the proposed component-based model where the decay factor � is set

to 100 and the di�usion probabilities are randomly assigned. Note that the network

with 10; 000 edges is denser and thus there are more activations in the cascades, pro-

viding more data for model training. Figs. 3.4a and 3.4b show the complementary

cumulative distributions of the size of the parent components k (i.e., the fraction of

parent components that have nodes greater than or equal to k) in the two synthetic

networks. The long tail distribution indicates the presence of parent components

with a wide range of sizes.

Generative Ability

We apply ICM , ICM-DK , COMP and COMP-DK to the synthetic networks. As

mentioned in Section 3.3.1, we adopt the dynamic e�ective size (COMP DE�Sz(Max) )

for both COMP and COMP-DK to de�ne the structural diversity factor. The per-

formance comparison results in terms of perplexity and P@K are shown in Fig. 3.5
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Figure 3.4: Complementary cumulative distributions of parent

component size in (a,b) the synthetic networks and (c) the re al

network (MemeTracker).
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Figure 3.5: Performance comparison on synthetic data for networks

with (a) 5; 000 edges and (b) 10; 000 edges

.

and Table 3.2 respectively. According to Fig. 3.5, we observe that all the models

perform better for the network with 10; 000 edges when compared with that with

5; 000 edges due to more training data. Also, while adding the decay factor can

result in a perplexity decrease of 0:02 for the two networks, adding the structure

diversity factor achieves more signi�cant improvement with a perplexity decrease of

0:04. Combining both, the performance further improves by a perplexity decrease

of 0:02 and 0:01 respectively for the two networks.

In addition, Table 3.2 shows the performance measured in terms of P@K for

K = f 10; 50; 100g. The performance ranking among the models remains more or less

the same given di�erent values of K . COMP and COMP-DK apparently outperform

ICM and ICM-DK , especially when the data is sparse (5; 000 edges).

Then, we follow the experiment protocols described in Section 3.3.1. Table 3.3

shows the performance of di�erent variants of the component-based model. Among

them, COMP DE�Sz(Max) achieves the best performance. Again, as anticipated,

for the network with 10; 000 edges, more apparent improvement is achieved.

By contrasting the performance of COMP SE�Sz(1st) vs. COMP SMod(1st)and
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Table 3.2: Performance comparison in terms of P@K based on the

synthetic data. The best results are printed in boldface.

Model
5; 000 edges 10; 000 edges

P@10 P@50 P@100 P@10 P@50 P@100

ICM 0.487 0.487 0.487 0.887 0.887 0.887

ICM-DK 0.701 0.587 0.567 0.964 0.954 0.941

COMP 0.620 0.605 0.596 0.891 0.891 0.891

COMP-DK 0.836 0.760 0.705 0.958 0.956 0.954

Table 3.3: Performance comparison among the component-based

models in terms of perplexity based on the synthetic data. Th e

best results are printed in boldface.

Settings
5; 000 edges 10; 000 edges

without with without with

decay decay decay decay

COMP(1st) (baseline) 7.013 7.002 6.415 6.430

COMP SMod(1st) 7.014 7.003 6.415 6.431

COMP SE�Sz(1st) 7.014 7.003 6.415 6.431

COMP DMod(Max) 7.022 7.005 6.419 6.402

COMP DE�Sz(Max) 7.009 6.994 6.393 6.383

COMP DE�Sz(Max) vs. COMP DMod(Max), we see that the use of the e�ective

size gives better results than using modularity. In addition, by contrasting the per-

formance of COMP DE�Sz(Max) vs. COMP SE�Sz(1st) and COMP DMod(Max)

vs. COMP SMod(1st), the dynamic structural diversity measures are found better

when compared with the static counterparts, except for COMP DMod(Max) applied

to the network with 5; 000 edges. For the decay factor, as shown in Table 3.3, its

inclusion improves the performance in most cases, except for the models with static

structural diversity measures for the network with 10; 000 edges.
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Figure 3.6: (a) Performance comparison between node-based and

component-based diffusion models given different values o f �

(MemeTracker). (b) Effect on the model accuracy given diffe rent

ratios of nodes activated within an activated component

(MemeTracker).

3.3.4 Experiments on Real Data

To validate if component-based di�usion indeed happens in online social networks,

we apply the proposed model to a real social network data set.

Data Set

We use the MemeTracker [71] data set that contains (1) the link structure of web

sites with news articles and blog posts (as red and blue points in Fig. 3.7) and (2)

the corresponding information cascades. It covers a period of 9 months from Aug.

1 2008 to Apr. 30 2009. A web site A is assumed to have in
uence on a web site B

if a post in B has mentioned a post in A. Then, there will be an edge from node A

to node B . The data set contains 4m nodes and 13m edges. The average clustering

coe�cient is 0:0676 and the number of triangles is 70; 577; 107 for the dataset.

To investigate if it is common to have parent components with more than one

node in the data set, we plot the corresponding complementary cumulative distribu-

46



americanpowerblog.blogspot.com

d-day.blogspot.com

chacha.com

pheedcontent.com

golpedegato.blogspot.com

gizmodo.com

thekevinpipe.com

deadspin.com

huffingtonpost.com

usnews.com

techchuck.com

seekingalpha.com

guardian.co.uk

washingtonpost.com

i.gizmodo.com

news.cnet.com

gawker.com

salon.com

medlogs.com

thinkprogress.org

democraticunderground.com

washingtonmonthly.com thepoliticalcarnival.blogspot.com

engadget.com

apple.wowgoldir.com

techdirt.com

crap713three.blogspot.com

rwww.techdirt.com

forums.macrumors.com

wikiality.com

jezebel.com

boxxet.com

archive.salon.com

prolifeblogs.com

britanniaradio.blogspot.com

rsmccain.blogspot.com

cinie.wordpress.com

nosheepleshere.blogspot.com
thevelvethottub.com

gle.am
alternet.org

forum.dvdtalk.com

kotaku.com

blogs.abcnews.com

joystiq.com

(a) Small part of news media (red) and blog (blue) diffusion network

Li
nk

s
P

er
ce

nt
ag

e

Figure 3.7: A small part of the MemeTracker network [71].

tion as shown in Fig. 3.4c and observe that it follows the power law. Thus, having

parent components with more than one node is highly probable, which hints model-

ing the structural diversity of node neighborhood is meaningful for the MemeTracker

data set. As an illustrated example, we extract from the data set the parent nodes

of the web site \ksat.com", a local news web site in San Antonio. The parent nodes

form several communities which are found to be corresponding to (1) general news

(\news.bbc.co.uk", \cnn.com"), (2) business news (\economist.com", \forbes.com"),

(3) sports (\sports.espn.go.com") and so on. It is not di�cult to interpret that each

group of the web sites essentially forms an independent information source.

For the cascades [33], each is de�ned based on a frequently mentioned phrase or

its variants in the posts. For each cascade, the time steps and the corresponding

web sites mentioning the phrase or its variants are recorded. The data set contains

71; 568 cascades.

Generative Ability

We apply ICM , ICM-DK , COMP and COMP-DK to the MemeTracker data set

and the results are shown in Fig. 3.6a. For COMP and COMP-DK , the dynamic
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e�ective size is used to measure structure diversity. Both component-based di�usion

models give signi�cantly lower perplexity values when compared with the node-based

counterparts. When � = 100, adding the decay factor improves the ICM with a

perplexity decrease of 2:68. This indicates that the decay of in
uence is an important

factor governing the di�usion. By incorporating the component-based formulation,

the decrease in perplexity can reach 5:01. This indicates the validity of the proposed

component-based di�usion models for social networks. Combining both factors, the

performance further improves by an additional drop of 0:34 in perplexity.

Also, we compare the performance of the models inferred with the value of the

decay coe�cient � ranging from 3 days (� = 100) up to 5 months (� = 5000).

Referring to Fig. 3.6a, the perplexity values of ICM and COMP remain unchanged

as they do not consider the decay factor at all. For ICM-DK and COMP-DK , the

performance decreases as the value of � increases. This indicates that the in
uence

decay should not be too slow. For instance, readers most likely do not pay attention

to the posts appearing a few months ago.

Table 3.4: Performance comparison of variants of the

component-based model based on the MemeTracker data set. Th e

best results are printed in boldface.

Settings without decay with decay

COMP(1st) (baseline) 13.729 13.438

COMP SMod(1st) 121.705 127.475

COMP SE�Sz(1st) 101.259 106.006

COMP DMod(Max) 13.765 13.442

COMP DE�Sz(Max) 13.662 13.326

Table 3.4 shows the performance comparison of the models given di�erent com-

binations of the structure diversity and decay factors. The results are consis-

tent with those based on the synthetic data. Without the decay factor, COM-

P DE�Sz(Max) achieves the best performance (perplexity = 13:662). With the
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decay factor incorporated, COMP DE�Sz-DK(Max) achieves the best performance

(perplexity = 13:326). In general, the settings with the e�ective size incorporated

achieve better performance when compared with those using modularity, as shown

in Table 3.4 (COMP SE�Sz(1st) vs. COMP SMod(1st); COMP DE�Sz(Max) vs.

COMP DMod(Max)). However, we observe that COMP SE�Sz(1st) and COM-

P SMod(1st)perform extremely bad compared to their dynamic counterparts COM-

P DE�Sz(Max) and COMP DMod(Max), which however is not observed when the

synthetic data is used. To explain that, we further compared the static and dynamic

models by referring to nodes with only selected parent components. In particular,

for each node, we compute the ratio of the number of activated parent nodes to the

total number of nodes in the activated parent components. We then set a lower

bound on the ratio, and select di�erent subsets of nodes for computing the corre-

sponding perplexity values. When the lower bound is set to zero, it is equivalent to

selecting all the nodes. When the lower bound is larger than zero, we start �ltering

out nodes with their activated parent components having a certain degree of their

nodes not activated. When the ratio reaches one, only the nodes with their parent

components containing only activated parents are selected. For such a case, the stat-

ic and dynamic formulations should behave exactly the same. Fig 3.6b shows the

changes of the perplexity values of COMP SE�Sz(1st) and COMP DE�Sz(Max) as

the lower bound on the ratio increases from zero to one. As anticipated, we observe

that COMP SE�Sz(1st) and COMP DE�Sz(Max) give the same performance when

the ratio lower bound is one. As the ratio lower bound is less than one, we �nd a

substantial rise in perplexity for COMP SE�Sz(1st) while COMP DE�Sz(Max) still

maintains a low perplexity value.

3.3.5 Run-time

The run-time for (1) loading the network and the cascades related information, (2)

preprocessing the cascades and (3) running the EM algorithm for both synthetic

and real networks are shown in Fig. 4.7. In particular, we compare the run-time
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performance of ICM , ICM-DK , COMP DE�Sz(Max) (labelled as COMP), COM-

P DE�Sz(Max)-DK (labelled as COMP-DK ), COMP(1st) and COMP-DK(1st) .

COMP DE�Sz(Max) and COMP DE�Sz(Max)-DK incur longer time for loading

information as the similarity scores for all the node pairs in each parent component

are involved.

Regarding the time for preprocessing cascades, the component-based models con-

sume slightly more time as computing the e�ective counts of component activations

involves aggregation of nodes’ activations into the parent components’ (Algorithm

1 line 3 � 8 with the complexity of O(S � T � j E j) as discussed in Section 3.2.3).

Among them, COMP DE�Sz(Max) and COMP DE�Sz(Max)-DK take longer time

mainly due to the computation of the e�ective size (Algorithm 1 line 14 � 22 with

the complexity of O(I max � S � T � j E j)).

For the run-time of the EM algorithm (Algorithm 3), ICM-DK takes signi�cantly

long time than ICM as adding the decay factor requires the use of the bisection

method for estimating the corresponding parameters (the complexity becomes O(k�

S � T � j E j) instead of O(S � T � j E j) as presented in Section 3.2.3). The run-time

needed by the component-based models drops signi�cantly as all the computations

are basically component-based instead of node-based.

3.3.6 Sensitivity to Component Identi�cation Methods

The key contribution of our work is to demonstrate the importance of introducing

the component-based notion in the di�usion modeling. Various algorithms for com-

munity detection can be utilized to detect parent components. In this section, we

evaluate the sensitivity of the proposed component-based IC Model given two di�er-

ent community detection algorithms, namely the \Clauset-Newman-Moore" (CNM)

[23] and the \InfoMap" [85] algorithms. The results are presented in Table 3.5.

We �nd that the models inferred with CNM and InfoMap used in the community

detection step give similar modeling accuracy, with the former one performs slightly

better than the latter.
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Figure 3.8: Comparison of run-time for loading the network and

the cascades related information, preprocessing the casca des,

and running the EM algorithm on (a,b) synthetic networks wit h

5; 000 edges and 10; 000 edges and (c) real data.
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Table 3.5: Performance comparison based on different algorithms

used for the community detection step.

Settings
without decay with decay

CNM InfoMap CNM InfoMap

COMP(1st) 13.729 14.414 13.438 14.053

COMP DMod(Max) 13.765 14.464 13.442 14.109

COMP DE�Sz(Max) 13.662 14.360 13.326 13.990

3.4 Summary

In this Chapter, we proposed a component-based IC Model which incorporates the

community structure of the node neighbors to model information di�usion. We

adopted the e�ective size | a structural metric well-known in social science and

extended it to a dynamic version for characterizing the in
uence of an activated

parent component. An EM algorithm was derived for training the component-based

IC model. With the proposed model, we obtained signi�cant improvement on model

accuracy at the expense of reasonable increase in run-time.

Our work has some limitations. Unlike some related work where the network

structure is unknown [33], we assume that the network structure is known. And for

simplicity, we assume that the di�usion rate is static and topic-independent, and

that activations only occur at discrete time steps. Also, we assume that the cascade

information obtained from the MemeTracker data set is correct and complete.
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Chapter 4

Inferring Latent Co-activation

Patterns for Information Di�usion

Di�erent di�usion models have been proposed in previous literature to model infor-

mation di�usion, in which each node is often assumed to be independently in
uenced

by its parents. More recently, some have begun to challenge this assumption based

on the observation that structural and behavioral dependency among the parent n-

odes exerts a notable role in di�usion within networks. In this chapter, we postulate

that a node is independently in
uenced by a set of latent co-activation patterns of

its parents, instead of the parents directly. We integrate the latent class model with

the conventional independent cascade model where each latent class corresponds to

a particular co-activation pattern of the parent nodes. Each parent activation is

essentially �rst \projected" onto the latent space and then \reconstructed" before

exerting its in
uence onto the child nodes. The co-activation patterns are to be

inferred based on the information cascades observed without using the connectivity

related cues except the information of direct parents. We formulate the co-activation

pattern identi�cation problem and the di�usion network inference problem under a

uni�ed probabilistic framework. A two-level EM algorithm is derived for inferring

the model parameters. We applied the proposed model to a meme dataset and

two social network datasets with promising results obtained. Using the results ob-
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tained based on the meme dataset, we also illustrate how the identi�ed co-activation

patterns can support the analysis of dependency among online news media.

4.1 Introduction

In Chapter 3, a component-based di�usion model was proposed, which assumes that

the in
uence of the parent nodes to a child node in a social network is not exerted

individually but by connected components, and the validity of the assumption was

supported by the empirical results when compared with the IC model based on a

meme dataset. In short, for a more accurate di�usion model, the dependency of

the parent nodes’ activations should be considered. In this work, we consider in

particular the co-activation patterns of the parents for each node.

To that end, we postulate that the activation of a node is caused by a set of latent

co-activation patterns of its parent nodes, and propose to integrate the latent class

model (LCM) [49] into the conventional IC model for modeling the co-activation

patterns. Under the proposed LCM-IC model, each parent’s activation is �rst \pro-

jected" onto the latent space and then \reconstructed" before exerting its in
uence

to the child node. Using latent variable models has been found e�ective to capture

hidden patterns embedded in the data with missing values and noise. Applications

include topic modeling [49] and collaborative �ltering [22]. We here adopt it for

di�usion modeling.

In this chapter, we assume only the knowledge of direct parents for each node

and the cascade information to infer the LCM-IC di�usion model. We formulate

the co-activation pattern identi�cation problem and the di�usion network inference

problem under a uni�ed probabilistic framework. The maximum likelihood approach

is adopted to infer simultaneously the latent co-activation patterns and the di�usion

probabilities. A two-level EM algorithm is derived for the inference. For performance

evaluation, we apply the proposed model to both synthetic and a number of real

social network datasets. Other than the objective of achieving a more accurate

di�usion model, we use online news media as an example to illustrate how the
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inferred co-activation patterns provides insights in practice to support quantitative

analysis of in
uence among the nodes in an information network.

Our consideration of the parent nodes’ co-activation behaviors has some overlap

with the social circle detection problem [75]. Researchers [75, 83, 109] have proposed

algorithms to detect social circles by analyzing the users’ pro�les and generated

contents. Under the context of social circle detection, this work aims to infer the

\social circles" in the contact neighborhood of each user according to the friends’ co-

activation patterns. Our work is also related to the studies analyzing the credibility

of web/blog sites in a hyperlink structure. Hyperlinks as connections represent

networks among people or organizations, and thus are often interpreted as the social

or communication structure among those social actors. In the di�usion network of

the new news ecosystem, through a hyperlink, an individual web/blog site plays

the role of an actor who could in
uence other websites’ perceived credibility [66].

Most of the related works analyze the incoming and outgoing links of the sites in

the hyperlink structure [19]. As hyperlinks could be created with di�erent reasons,

the use of information cascades observed over the network as presented in this work

could provide more evidence to better capture the in
uence related structure.

The main contributions of this chapter are highlighted as follows: (1) To the best

of our knowledge, this is the �rst work where the identi�cation of co-activation pat-

terns of parent nodes and the inference of the overall information di�usion network

are solved within a uni�ed framework solely based on information cascades and the

knowledge of direct parents. (2) The proposed LCM-IC di�usion model allows the

co-activation patterns to be discovered, and the positive empirical results obtained

further hint the importance of considering the dependency among the parent nodes

for di�usion modeling. (3) We demonstrate in detail how the proposed model with

the consideration of the co-activation patterns can be applied to support dependency

analysis of di�erent online news media.
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4.2 Problem Formulation and Methodology

In this section, we present a novel di�usion model where the co-activation patterns

of the parents are incorporated for each node. Our conjecture is that parent nodes

which often co-activate before the activation of a node should implicitly hint some

underlying reason causing that, and detecting such latent parent co-activation pat-

terns can better our understanding on the hidden reasons causing the underlying

di�usion behaviors in social and information networks. For instance, recent postings

of some friends with similar political views as yours may cause you to put forward

their views via the information network. Also, postings of friends of di�erent na-

tionalities may get your attention on some international news. To formulate the

proposed model, we integrate the latent class model and the conventional IC model

as a uni�ed one to represent the co-activation patterns and the pattern-basedin-

formation di�usion. In the following, we present the mathematical notations and

the formulation of the model, followed by a two-level EM algorithm for the model

learning.

4.2.1 Preliminaries

We represent a social network as a directed graph G = (V; E) where V is the set of

nodes and E is the set of edges. Let e = (v; w) be an edge from node v to node w, and

f (w) and b(w) be the sets of child nodes and parent nodes of node w respectively,

given as: f (w) = f u : (w; u) 2 Eg and b(w) = f v : (v; w) 2 Eg: For each node w, we

assume that its activation depends on Nz(w) di�erent latent co-activation patterns

of its parent nodes b(w). We denote by zw 2 f 1; :::; Nz(w)g the index to the latent

patterns. For each parent node v 2 b(w), we denote the probabilities that node v

belongs to the Nz(w) di�erent latent patterns as �v;zw = f � v;zw =1 ; : : : ; � v;zw = N z (w)g

where � v;zw is the probability of the parent node v being assigned to the latent co-

activation pattern zw ,
P

zw � v;zw = 1 and 8zw(� v;zw � 0). In this work, we assume

the co-activation patterns to be static, leaving the modeling of evolving co-activation

patterns as our future work.
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Figure 4.1: An illustration of the pattern-based diffusion model.

4.2.2 Formulation

Given the latent co-activation patterns as de�ned for w, we further de�ne for each

pattern a pattern-based di�usion probability� zw ;w with 0 � � zw ;w � 1. That is when

any node belonging to pattern zw is \activated" (e.g., making a post online) at

time t, there will be a probability � zw ;w that node w will then be activated by the

pattern zw . In addition, as in [41, 68], we allow an activated parent node to make

in
uence via the latent patterns on node w multiple times within a short period

after time t. Figure 4.1 shows an illustration of the proposed model. In the �gure,

three co-activation patterns are highlighted, each corresponding to some speci�c

co-activating parent nodes. The probabilities of each node to belong to the three

patterns are shown in the bar chart next to each node. Note that we allow the

patterns to overlap and that the patterns are node speci�c.

Using the proposed pattern-based di�usion model, the di�usion process of a

particular cascade proceeds as follows. Let Ds = f Ds(0); Ds(1) � � � Ds(Ts)g be the

sth observed information cascade where Ds(t) is the set of nodes activated at time
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step t and Ts is the �nal time step for the cascade Ds. Given the initial set of

activated nodes in the sth cascade (Ds(0)), we assume that each of them tries to

activate its child nodes. Note that we assume a parent node to be able to activate

its child node not just for the next immediate time step but also the subsequent

ones up to a limit. To explain that, we de�ne Cs(w; t) as the set of nodes which

have at least one activation within the interval between the latest activation of the

node w in the sth cascade denoted as L (s)
w (t + 1) and the time step t. This assumes

that we are only interested in recent news and that the posts earlier than our latest

post have little in
uence on our future posting behavior. b(w) \ Cs(w; t) then gives

the subset of Cs(w; t) which are parents of w.

Thus, the probability of a parent node v to activate its child node w p(vjw)

becomes an expected value of the di�usion probabilities f � zw ;wg over all the latent

patterns based on f � v;zw g, that is p(vjw) =
P N z (w)

zw =1 � v;zw � zw ;w .

Then, the probability that the child node w will be activated at time t + 1 is

given as: P (s)
w (t + 1) = 1 �

Q
v2 b(w)\ Cs (w;t )(1 �

P N z (w)
zw =1 � v;zw � zw ;w); and whether node

w will be activated is determined accordingly. The process proceeds until there is

no more node being activated and the cascade will stop.

The likelihood function of the observed cascades Ds can thus be formulated as:

L(� ) =
SX

s=1

logP(Dsj� ; Ds(0))

=
SX

s=1

Ts � 1X

t=0

 
X

w2 D s (t+1)

logP(s)
w (t + 1)

+
X

w62D s (t+1)

X

v2 b(w)\ Cs (w;t )

log(1 �
N z (w)X

zw =1

� v;zw � zw ;w)

!

:

4.2.3 Learning Algorithm

We propose a two-level EM algorithm to maximize the likelihood function L(� ) with

respect to the parameters � = ff � zw ;wg; f � v;zw gg to infer the latent co-activation

patterns and the di�usion probabilities.
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First level EM

Let I v;zw be a latent variable that takes the value of 1 when a parent node v of

a node w belongs to the latent pattern zw , and 0 otherwise, given the constraint
P N z (w)

zw =1 I v;zw = 1. Let I = f I v;zw g denote the whole set of the latent variables. If we

assume that I is known, the complete likelihood function can be written as:

P(D; I j� ) = P(DjI; � )P(I j� )

where
P(I j� ) =

Y

w2 V

Y

v2 b(w)

N z (w)Y

zw =1

� I v;z w

v;zw

and

P(DjI; � ) = L(� jI )

=
SX

s=1

logP(Dsj� ; D (s)
0 ; I )

=
SX

s=1

Ts � 1X

t=0

 
X

w2 D s (t+1)

logP(s)
w (t + 1; I )

+
X

w62D s (t+1)

X

v2 b(w)\ Cs (w;t )

log(1 �
N z (w)X

zw =1

I v;zw � zw ;w)

!

:

As I is missing in most of the cases, we can do the E-step by �rst computing the

posterior probabilities of I with the current parameter estimates �̂ zw ;w and �̂ v;zw ,

given as

� v;zw = P(I v;zw = 1jw; �̂ ) =
�̂ zw ;w �̂ v;zw

P N z (w)
zw =1 �̂ zw ;w �̂ v;zw

:

Then, the expected likelihood function can be de�ned as:

Q(� j �̂ )

=
SX

s=1

Ts � 1X

t=0

 
X

w2 D s (t+1)

E I [log P (s)
w (t + 1; I )]

+
X

w62D s (t+1)

X

v2 b(w)\ Cs (w;t )

N z (w)X

zw =1

� v;zw log(1 � � zw ;w)

!

+
X

w2 V

X

v2 b(w)

N z (w)X

zw =1

� v;zw log� v;zw

(4.2.1)
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For the M-step, we maximize Q by taking the derivative of Q with respect to �

to obtain the updating rule of the model parameters.

To update �v;zw , according to the Lagrange multiplier method, maximizing

Q(� j �̂ ) with the constraint
P N z (w)

zw =1 � v;zw = 1 yields

@
� P N z (w)

zw =1 � v;zw log� v;zw � � (
P N z (w)

zw =1 � v;zw � 1)
�

@�v;zw
= 0:

Then, it can be easily shown that 8zw � v;zw = � v;zw .

To update f � zw ;wg, setting to zero the derivative for the �rst term E I [log P (s)
w (t +

1; I )] in Eq.(5.2.1) does not have a simple solution. So, within this M-step, we

introduce another level of the EM algorithm.

Second level EM

Let Y (s)
v;w(t) denote a latent variable that indicates whether the activation of a node

w at time step t in the sth cascade is due to w’s parent node v or not. We further

de�ne Ys = f Ys(0); Ys(1) � � � Ys(Ts)g where Ys(t) := f Y (s)
v;w(t)g represents the set of

latent variables corresponding to the activations at time step t in the sth cascade.

Then, we compute the posterior probability of Y (s)
v;w(t), given as


 v;w;s;t =P(Y (s)
v;w(t + 1) = 1jw; f � v;zw g; �̂ ) =

P N z (w)
zw =1 � v;zw �̂ zw ;w

P̂ (s)
w (t + 1)

where �̂ zw ;w stands for the current estimate of � zw ;w , and

P̂ (s)
w (t + 1) = 1 �

Y

v2 b(w)\ Cs (w;t )

(1 �
N z (w)X

zw =1

� v;zw �̂ zw ;w)
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The corresponding Q0 function can then be de�ned as

Q0(� j �̂ )

=
SX

s=1

Ts � 1X

t=0

 
X

w2 D s (t+1)

X

v2 b(w)\ Cs (w;t )

N z (w)X

zw =1

� v;zw

�

 v;w;s;t log�zw ;w + (1 � 
 v;w;s;t )log(1 � � zw ;w)

�

+
X

w62D s (t+1)

X

v2 b(w)\ Cs (w;t )

N z (w)X

zw =1

� v;zw log(1 � � zw ;w)

!

+
X

w2 V

X

v2 b(w)

N z (w)X

zw =1

� v;zw log� v;zw

We de�ne T+
w;s as the set of time steps f tg with reference to the sth cascade satisfying

the condition that node w is activated at time step t+1 and at least one of its parents

have been activated since L (s)
w (t + 1). Meanwhile, T �

w;s is the set of time steps f tg

where node w is not activated at t +1, but at least one of its parents have been acti-

vated since L (s)
w (t + 1). Moreover, we de�ne a set of cascades where T+

w;s is not emp-

ty as S+
w = f Ds : 9v

�
v 2 b(w) ^ 9 t

�
v 2 Cs(w; t) ^ w 2 Ds(t + 1)

��
g and a set of cascades

where T �
w;s is not empty as S�

w = f Ds : 9v
�
v 2 b(w) ^ 9 t

�
v 2 Cs(w; t) ^ w 62Ds(t + 1)

��
g.

Then @Q=@�zw ;w = 0 yields:

� zw ;w =
1

N +
zw ;w + N �

zw ;w

X

s2 S+
w

X

t2 T +
w;s

X

v2 Cs (w;t )\ b(w)

� v;zw 
 v;w;s;t

N +
zw ;w =

X

s2 S+
w

X

t2 T +
w;s

X

v2 Cs (w;t )\ b(w)

� v;zw

N �
zw ;w =

X

s2 S�
w

X

t2 T �
w;s

X

v2 Cs (w;t )\ b(w)

� v;zw :

4.3 Experiments

For performance comparison, we implement the proposed pattern-based di�usion

model (LCM-IC ), the basic IC model and three variants of a component-based dif-

fusion model proposed in [7] where the parents are grouped based on their structural

relations to exert in
uence. The three variants (COMP(1st), COMP DMod(Max),
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COMP DE�Sz(Max) ) di�er in term of implementation details related to a struc-

tural diversity factor and a decay factor, which are not to be detailed here. Both

synthetic and real social and information network data sets are used in our evalua-

tion. We also visualize the results obtained based on a meme data set and illustrate

how the co-activation patterns obtained can provide insights on the dependency of

di�erent news media in the news ecosystem regarding the news being released.

4.3.1 Experimental Settings

For all the experiments performed, the initial values of f �̂ zw ;wg are within [0; 0:1]

as the di�usion probabilities in real data are known to be very small (e.g., with a

mean value of 0:04 and standard deviation of 0:07 [45]). And the initial values of

f �̂ v;zw g are generated within [0; 1] satisfying
P

zw �̂ v;zw = 1. In this work, we obtain

the optimal number of latent patterns per node with best performance using the

cross-validation method.

As the ground-truth is unknown for real data, we use perplexity as the perfor-

mance evaluation metric. Perplexity is widely used for evaluating language models

[14], which calculates the average probability for each word to be generated by the

trained model. For our case, the perplexity over the cascades is de�ned as

P erplexity =
�

P S
s=1 ln P(Ds)

W
: (4.3.2)

where P(Ds) is the probability for the sth cascade to be generated, and the normal-

ization term W is the number of activations due to the in
uence of the corresponding

nodes’ parents. A smaller perplexity value indicates the inferred model to be more

accurate, and thus better performance. Also, we divide the cascades into �ve folds

and obtain the average performance using cross-validation.

4.3.2 Experiments on Synthetic Data

We �rst generate two scale-free networks with 1; 000 nodes using the snap platform

[70], with 5; 000 and 10; 000 edges respectively. For each network, 100 cascades are

62



7.2

7.4

7.6
P

e
rp

le
x
it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)

LCM-IC

Ground tru
th

(a) 5; 000 edges

6.25

6.3

6.35

P
e
rp

le
x
it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(Max)

LCM-IC

Ground tru
th

(b) 10; 000 edges

Figure 4.2: Model comparison on synthetic data.

generated based on our proposed model with Nz(w) = 20. For model initializa-

tion, all the parameters are randomly assigned under the constraints. Note that

the network with 10; 000 edges is denser and thus there are more activations gen-

erated in the cascades available for inferring the model parameters. We apply our

proposed LCM-IC model and the baseline models COMP DMod(Max) and COM-

P DE�Sz(Max) to the synthetic networks. The performance of the basic IC model

is much worse and thus its performance is not further reported. According to Figure

4.2, all the models perform better for the network with 10; 000 edges when compared

to that with 5; 000 edges as anticipated due to the increased size of the training set.

Also, the performance of our proposed LCM-IC model can approach the ground

truth and is apparently better than the other baseline models. The performance

ranking among all the models is consistent for both data sets.

4.3.3 Experiments on Real Data

To validate that the proposed model is in fact modeling what is happening in the

real di�usion processes, we apply the model to three real data sets. We use three real

datasets MemeTracker [71], Digg [69] and Flixster [54] where both (1) the network
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structure and (2) information cascades are available. (i) The MemeTracker dataset

covers a period of 9 months from August 1 2008 to April 30 2009. Websites with

news articles and blog posts are modeled as nodes which are further connected by

directed edges. A website A is assumed to have in
uence on another site B if a post

in website B has referred to a post in A. Then, there will be a corresponding edge

from A to B . The MemeTracker dataset contains 4 million nodes, 13 million edges,

and 71; 568 cascades. (ii) The Digg dataset records the story voting process under

a directed friendship network of users over one month in 2009. Users are modeled

as nodes. A user A has in
uence on a user B if B is A’s follower, modeled as an

edge from user A to user B . The Digg dataset contains 280 thousand nodes, 2:6

million edges and 3; 553 cascades. Each cascade is de�ned based on a particular

frequently voted story. (iii) The Flixster dataset records the movie rating process

under an undirected friendship network of users over a period from November 2005

to November 2009. Users are modeled as nodes. In Flixster, if users A and B

are friends, there is an undirected edge for nodes A and B . The Flixster dataset

contains 787 thousand nodes and 5:9 million edges. We select 5; 318 cascades which

correspond to the frequently rated movies in the dataset. The average clustering

coe�cient is 0:0676 for MemeTracker, 0:0924 for Digg and 0:1676 for Flixster. And

the number of triangles is 70; 577; 107 for MemeTracker, 14; 236; 438 for Digg and

8; 631; 929 for Flixster.

We apply again the proposed model and the baseline models to the three data

sets. Figure 5.1 shows the performance comparison results. The optimal numbers

of latent co-activation pattern Nz(w) are evaluated by cross-validation separately

for each node. The proposed LCM-IC model outperforms all the baseline models

with a decrease in perplexity value of at least 0:54 and 1:66 for the MemeTracker

and Digg datasets respectively. For the Flixster dataset, the proposed model gives

comparable performance to the baseline models we tested. We �nd this encouraging

given that the structural information for modeling detailed relation of parent nodes

is not used at all in the proposed model.
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Figure 4.4 shows the frequency distribution of the optimal number of latent

co-activation patterns Nz (we use each value Nz(w) for each node w to count the

frequencies of Nz), chosen from the setting Nz 2 f 1; 5; 10; 15; 20g on three real

data sets. We found the value is equally distributed except for Nz = 1. We then

explore the reason for the case Nz = 1. Figure 4.5 shows the number of activations

per node given di�erent numbers of latent co-activation patterns Nz, where Nz 2

f 5; 10; 15; 20g on three real data sets. The nodes whose parent nodes are inferred as

generated from the same latent pattern (Nz = 1) do no activate very much, which

makes the algorithm hard to di�erentiate several patterns. Since the activations are

mostly generated by active nodes, dividing them into more than one latent patterns

is still highly appreciated.

4.3.4 Run-time

To facilitate run-time comparison, we record the time for (1) loading the network

and the cascades, (2) preprocessing the cascades and (3) running the EM algorith-

m, for each of the models as shown in Figures 4.6 and 4.7. The LCM-IC model

takes shorter time in the �rst two steps for both synthetic and real data sets as the

component-based models require the component information to be pre-computed.

But it takes more in the third step as the co-activation patterns are to be inferred

at the same time. For the overall run-time, the LCM-IC model is still more e�cient

than COMP DE�Sz(Max) and COMP DMod(Max) when applied to Meme and Dig-

g. However, the run-time for the EM iterations on Flixster is relatively long. Also,

it is worth mentioning that the parameter estimation for each node is independent

of each other, and thus can always be easily parallelized.

4.3.5 Analysis of Dependency among News Media

As a case study, we apply the LCM-IC model to the online version of the New York

Times (NYTimes) and demonstrate how the latent parent co-activation patterns

identi�ed can help understand the e�ectiveness of di�erent news sources on NY-

65



12

13

14

15

P
e
rp

le
x
it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)

LCM-IC

(a) MemeTracker

10

15

20

P
e
rp

le
x
it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)

LCM-IC

(b) Digg

9
10
11
12
13

P
e
rp

le
x
it
y

COMP(1st)

COMP_DMod(Max)

COMP_DEffSz(M
ax)

LCM-IC

(c) Flixster

Figure 4.3: Performance comparison on three real data sets.
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Figure 4.5: Distribution of the number of activations per node

given different number of co-activation patterns.
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Figure 4.6: Run-time comparison on synthetic data.

Times. To ease the result interpretation, given w to be the node corresponding to

the NYTimes and v be one of its parents, we plot the values of p(vjw) as shown in

Figure 4.8 where the e�ect of the latent patterns are aggregated so as to compare

the overall importance among the news sources (parent nodes). In addition, we

plot the values of p(vjz) over f vg given di�erent latent patterns so as to identify the

pattern-speci�c in
uential news sources, and the values of p(zjv) to identify the news

sources unique to di�erent co-activation patterns, as shown in Figures 4.9 - 4.18. In

particular, by assigning a parent v in the k� -th co-activation pattern of the refer-

ence node w where k� = arg maxk � (v; k), the co-activation patterns without parent

nodes are thus not considered. We look into the details of resulting �ve patterns.

Also, before the discussion, it is worth pointing out that an overall observation is

that Boston.com makes signi�cant contribution to quite some of the patterns even

though it is in fact not as famous as other news sources. According to [1], Boston

Globe was purchased by the NYTimes during the time period covered by the data

set (the year 2008-2009). We believe that this accounts for its strong presence as

one of the new sources of the NYTimes. In the sequel, we will exclude the discussion

of the e�ect of Boston.com in the results. By referring to the plots shown in Figures
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Figure 4.7: Run-time comparison on three real data sets.
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(a) Nodes specific to z1 ( p(z1jv))

Figure 4.10: Visualization of the patterns identified in the

neighborhood of nytimes.com (nodes specific to pattern z1).
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