DOCTORAL THESIS

Exploration of the anticancer mechanisms of novel chemotherapeutic adjuvants involving autophagy and immune system reprogramming in the treatment of pancreatic cancer
Zhang, Zhu

Date of Award:
2020

Link to publication

General rights
Copyright and intellectual property rights for the publications made accessible in HKBU Scholars are retained by the authors and/or other copyright owners. In addition to the restrictions prescribed by the Copyright Ordinance of Hong Kong, all users and readers must also observe the following terms of use:

• Users may download and print one copy of any publication from HKBU Scholars for the purpose of private study or research
• Users cannot further distribute the material or use it for any profit-making activity or commercial gain
• To share publications in HKBU Scholars with others, users are welcome to freely distribute the permanent URL assigned to the publication
Abstract

Pancreatic cancer is known to be one of the most life-threatening cancers characterized by aggressive local invasion and distant metastasis. The high basal level of autophagy in pancreatic cancer may be responsible for the low chemotherapeutic drug response rate and poor disease prognosis. However, the clinical application of autophagy inhibitors was unsatisfactory due to their toxicity and minimal single-agent anticancer efficacy. Hence, oncologists begin to consider the tumor microenvironment when exploring new drug targets. In the present study, the anti-tumorigenic mechanisms of two major phytochemicals derived from Chinese medicinal herbs had been investigated against pancreatic cancer development.

Calycosin is a bioactive isoflavonoid of the medicinal plant *Astragalus membranaceus*. Our results have shown that calycosin inhibited the growth of various pancreatic cancer cells both *in vitro* and *in vivo* by inducing cell cycle arrest and apoptosis. Alternatively, calycosin also facilitated MIA PaCa-2 pancreatic cancer cell migration *in vitro* and increased the expression of epithelial-mesenchymal transition (EMT) biomarkers *in vivo*. Further mechanistic study suggests that induction of the Raf/MEK/ERK pathway and facilitated polarization of M2 tumor-associated macrophage in the tumor microenvironment both contribute to the pro-metastatic potential of calycosin in pancreatic cancer. These events appear to be associated with calycosin-evoked activation of TGF-β signaling, which may explain the paradoxical drug actions due to the dual roles of TGF-β as both tumor suppressor and tumor promoter in pancreatic cancer development under different conditions.

Isoliquiritigenin (ISL) is a chalcone obtained from the medicinal plant *Glycyrrhiza glabra*, which can be a precursor for chemical conversion to form calycosin. Results
have shown that ISL decreased the growth and EMT of pancreatic cancer cells in vitro, probably due to modulation of autophagy. ISL-induced inhibition of autophagy subsequently promoted reactive oxygen species (ROS) production, leading to induction of apoptosis in pancreatic cancer cells. Such phenomenon also contributed to the synergistic growth-inhibitory effect in combined treatment with the orthodox chemotherapeutic drug 5-fluorouracil. In addition, ISL-induced tumor growth inhibition in vivo was further demonstrated in a tumor xenograft mice model of pancreatic cancer. ISL promoted apoptosis and inhibited autophagy in the tumor tissues. Study on immune cells indicates that ISL could reduce the number of myeloid-derived suppressor cells (MDSCs) both in tumor tissue and in peripheral blood, while CD4⁺ and CD8⁺ T cells were increased correspondingly. In vitro test has revealed that ISL inhibited the polarization of M2 macrophage along with its inhibition of autophagy in M2 macrophage. These immunomodulating effects of ISL had reversed the pro-invasive role of M2 macrophage in pancreatic cancer.

In conclusion, calycosin acts as a “double-edged sword” on the growth and metastasis of pancreatic cancer, which may be related to the dual roles of TGF-β and its influence on the tumor microenvironment. Alternatively, ISL consistently inhibited the growth and metastatic drive of pancreatic cancer through regulation of autophagy and reprogramming of the immune system. The differential modes of action of these compounds have provided new insights in the development of effective pancreatic cancer treatment adjuvants.

Keywords: pancreatic cancer, calycosin, Isoliquiritigenin, TGF-β, autophagy, anticancer immunity
Table of Contents

DECLARATION .. i
ABSTRACT ... ii
ACKNOWLEDGEMENTS ... iv
TABLE OF CONTENTS ... v
LIST OF TABLES ... ix
LIST OF FIGURES .. x
LIST OF SYMBOLS ... xi
LIST OF ABBREVIATIONS ... xii

CHAPTER 1 INTRODUCTION ... 1

1.1 Overview of pancreatic cancer .. 1
 1.1.1 Epidemiology ... 1
 1.1.1.1 Incidence .. 1
 1.1.1.2 Mortality .. 2
 1.1.1.3 Trends .. 3
 1.1.1.4 Survival ... 4
 1.1.2 Etiology and risk factors ... 4
 1.1.3 Pathologic classification of pancreatic cancer .. 5
 1.1.3.1 Histopathological classification of pancreatic cancer 6
 1.1.3.2 Molecular subtyping of pancreatic cancer ... 9
 1.1.4 Progression of pancreatic cancer ... 11
 1.1.4.1 Tumor plasticity and heterogeneity ... 11
 1.1.4.2 Formation of metastases ... 12
 1.1.5 Diagnosis and screening ... 13
 1.1.6 Current treatment ... 14
 1.1.6.1 Surgical management .. 15
 1.1.6.2 Radiation therapy .. 15
 1.1.6.3 Drug treatment .. 16
 1.1.6.4 Palliative care ... 21

1.2 Immune cells in the tumor microenvironment of pancreatic cancer 21
1.2.1 Innate immune cells in PC ... 27
 1.2.1.1 Dendritic cells ... 27
 1.2.1.2 Natural killer (NK) cells .. 27
 1.2.1.3 Macrophages ... 28
 1.2.1.4 Myeloid-derived suppressor cells 29
1.2.2 Adaptive immune cells in PC ... 29
 1.2.2.1 T cells .. 29
 1.2.2.2 B cells ... 32
1.3 Autophagy ... 32
 1.3.1 Process of autophagy .. 33
 1.3.2 The bipolarity of autophagy in cancer 36
 1.3.2.1 Tumor-suppressive role of autophagy 37
 1.3.2.2 Tumor-promoting role of autophagy 39
 1.3.3 A critical role for autophagy in pancreatic cancer 49
1.4 Overview of Calycosin ... 53
1.5 Overview of Isoliquiritigenin (ISL) ... 61
1.6 Hypothesis and objectives .. 67

CHAPTER 2 MATERIALS AND METHODS ... 69

2.1 Materials .. 69
2.2 Cell lines and cell culture .. 71
2.3 Assessment of cell viability by MTT assay 72
2.4 Assessment of apoptosis .. 72
2.5 Cell cycle analysis .. 73
2.6 Immunofluorescence assay for autophagy 73
2.7 Transmission Electron Microscopy ... 73
2.8 Measurement of intracellular ROS ... 74
2.9 Wound healing cell migration assay .. 74
2.10 Transwell matrigel invasion assay ... 74
2.11 Real-time polymerase chain reaction (RT-PCR) analysis 75
2.12 Western immunoblotting ... 76
2.13 Orthotopic tumor xenograft of pancreatic cancer cells 77
2.14 Subcutaneous tumor xenograft model of pancreatic cancer cells 78
2.15 Immunohistochemical (IHC) analysis of animal tissues 79
2.16 Immunofluorescence of animal tissues ... 80
2.17 Flow cytometric analysis of peripheral blood 80
2.18 Enzyme-linked immunosorbent assay (ELISA) 80
2.19 Statistical analysis ... 81

CHAPTER 3 THE DUAL ROLES OF CALYCOsin IN GROWTH INHIBITION AND METASTATIC PROGRESSION DURING PANCREATIC CANCER DEVELOPMENT: A “TGF-B PARADOX” ... 82

3.1 Results .. 82
 3.1.1 Calycosin inhibited pancreatic cancer cell growth 82
 3.1.2 Calycosin induced apoptosis in MIA PaCa-2 cells 84
 3.1.3 Calycosin induced S-phase cell cycle arrest in MIA PaCa-2 cells ... 86
 3.1.4 Calycosin promoted the migration of MIA PaCa-2 cells 88
 3.1.5 Calycosin increased tissue expression of pro-metastatic biomarkers in tumor sections from mice orthotopically-xenografted with pancreatic cancer cells 90
 3.1.6 Calycosin activated the TGF-β1-induced Raf/MEK/ERK pathway during EMT promotion .. 93
 3.1.7 Calycosin promoted polarization of M2 macrophages in the tumor microenvironment ... 95

3.2 Discussion and summary .. 97

CHAPTER 4 ISOLIQUERITIGENIN INHIBITED THE PROGRESSION OF PANCREATIC CANCER THROUGH THE BLOCK OF AUTOPHAGY AND ENHANCING OF ANTICANCER IMMUNITY .. 102

4.1 Results .. 102
 4.1.1 ISL inhibited the growth of pancreatic cancer cells 102
 4.1.2 ISL increased the formation of autophagosomes 104