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of emission spectrum in the presence of cadmium-(II) ion has demonstrated its 

potential metal ion sensing ability. 

Chapter 6 and 7 present the concluding remarks and the experimental data of the 

compounds of Chapter 2 to 5, respectively. 
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organic luminogens to real-world applications.19-21 For instance, the luminogens are 

required to be fabricated into a thin solid film as the emissive layer inside OLED 

devices. In the solid state, the absolute absence of solvent has pushed the 

concentration of the luminogens to the maximum and hence the ACQ effect becomes 

the worst which induces detriment on the quantum efficiency of the OLEDs. 

Moreover, the dye molecules are constrained in a very dilute concentration in order to 

refrain from the quenching of the light emission. The sensitivities of the sensory 

system are sacrificed and this ACQ problem has harmed the utilization of organic 

luminogens in the fluorescent sensory system.22 

 To tackle with the problems induced by ACQ effect, numerous efforts including 

molecular design, physical aspect and engineering processes have been made to 

prevent the aggregation of molecules. For example, bulky cyclics, branched chains 

and dendritic wedge could be introduced or non-conjugated transporting polymers, 

such as poly(methyl methacrylate) (PMMA), could be blended with the chromophores 

in order to avoid the close approach of molecules.23-31 However, the use of these 

non-conjugated entities will break the conjugation of the molecules with twisting of 

the conformation. The transparent polymer could act as a dilutant of luminogen 

density and a barrier to the charge transport, resulting in a drop of OLED efficiency. 

In contrast to hindering the aggregation of molecules, development of a 
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rotation of HPS is being restricted due to the physical constraint. The restriction of the 

intramolecular rotation (RIR) could be one of the possible origins in blocking the 

non-radiative decay channel and activating the radiative decay one, providing the 

luminescent features of the HPS in aggregation or solid state. In order to verify the 

hypothesis, a series of control experiments, including increasing viscosity, applying 

pressure and decreasing temperature, have performed to imitate the RIR process 

externally. The covalent bond was used to tie up the rotatable moiety to resemble RIR 

process internally. From both the external and internal control experimental results, 

the luminogen has turned into more emissive, offering the undeniable evidence to the 

hypothesis of mechanistic cause of AIE phenomenon.37 

 

1.2.3 AIE Fluorophores 

 Acquiring a mechanistic understanding on AIE, numerous kinds of luminogens 

could be developed based on the structural feature of one conjugated stator and 

several rotatable peripheral aromatic units, such as butadiene, pyran, fulvenes and 

polyarylated ethene derivatives (Fig. 1-4).38-44 In the following sections, more 

derivatives with AIE feature will be presented separately according to their molecular 

structures, including hydrocarbon, heterocyclic, supramolecular, polymeric and 

organometallic compounds. 
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Figure 1-4 Examples of the family of AIE active molecules. 
 

1.2.3.1 Hydrocarbon Luminogens 

A series of 8,8a-dihydrocyclopenta[a]indene derivatives was observed to have 

the AIE features by Wu and co-workers.45-46 Fig. 1-5 displays the structure of an 

example of 8,8a-dihydrocyclopenta[a]indene derivatives, 1, and its transformation in 

the emission profile with various water contents in THF/water mixture. 1 behaves as a 

typical AIE molecule, where the addition of large amount of water has turned on the 

emission of 1 and has increased the quantum yield of 1 by 73 times through the 

formation of aggregates. 1 with no heteroatom but only carbon and hydrogen is 

structurally similar to HPS. Wu has reported that RIR process is the source of the 

optical properties of 1. Through the inhibition of intramolecular rotation of three 

aromatic rings against 8,8a-dihydrocyclopenta[a]indene core in aggregation state of 1, 
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to widen the utilization of AIE luminophores. It is possible to red-shift the emission 

spectrum of the luminogens by extending the electronic conjugation or planarization 

of conformation. However, it will promote the intermolecular interaction and the 

chance of excimer formation. The alternate technique is by incorporation of 

heteroatoms to induce the polarization of electron cloud and the intramolecular charge 

transfer (ICT).51-53
 7 is one of the examples of AIE luminogens with heteroatom with 

the emission color beyond blue. From Fig. 1-8, the rise of fluorescence intensity with 

the increasing proportion of the non-solvent of 7, toluene, in the MeCN/toluene 

mixture demonstrated that 7 is obviously an AIE active pyridinium salt. In the 

photograph in the inset of Fig. 1-8, the powdery solid of 7 emits a yellow light, 

suggesting that the donor-acceptor interaction between amine and pyridinium unit has 

brought about the red-shift of emission color.54,55 

 

 

Figure 1-8 Molecular structure of 7 (Left) and the plot of photoluminescence 

intensity of 7 in acetonitrile/toluene mixture against the toluene fraction (Right). Inset: 

photograph of 7 in aqueous solution (Soln) and in solid powder form (Solid) taken 

under illumination of UV lamp.54 
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ink-jet printing at ambient condition. The simplest way to design the polymer with 

AIE properties is by the incorporation of the well-known AIE small molecules as 

pendant groups to the rigid polymer strand.63 Tang and co-workers have delivered 

their effort on the synthesis and the optical properties of monosubstituted 

polyacetylene with silole and tetraphenylethylene (TPE) moiety, where their 

molecular structures are displayed in Fig. 1-12.64-65 The chloroform solution of 16 

emits light with red color weakly from the polymer backbone at 652 nm. The addition 

of poor solvent, such as methanol, into its THF solution could slightly enhance the 

emission intensity, suggesting that 16 is AIE-inactive. It is believed that the silole 

pendants cannot pack well in the aggregated state with the direct attachment of silole 

unit to the rigid polyacetylene chain. On the contrary, the direct connection of TPE 

derivative to the polymer backbone (17) illustrates an aggregation-enhanced emission 

(AEE): the THF solution of 17 has a weak emission due to the conjugation between 

main chain polymer and TPE side group and the emission could be enhanced with the 

aggregation of polymer in the presence of water. Although the direct linkage of the 

AIE luminogens to the polymer backbone could favor the electronic conjugation, the 

exciton trap by structural defect in the skeleton of the polymer is also procured, which 

will diminish the emission efficiency. Through the insertion of the flexible alkyl 

spacer between polymer backbone and the AIE pendant group, the analogous 
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molecules is resumed to switch on the emission. As this luminescence turn-on/off is a 

non-destructive aggregation/deaggregation physical process, it provides a reversible 

and repeatable chemosensor.80,81 

 

 

Figure 1-14 Spot of (A) 1,4-diphenyl-1,2-bis(4-phenylphenyl)ethene (25) on TLC 

plate in Petri-dish set (B) without CHCl3 and (C) saturated with CHCl3 vapor. 

Photograph of (D) was taken after the organic vapor in (C) had been evacuated.80 

  

The chemosensor for detection of explosives has been developed from the 

utilization of an efficient AIE luminogen, 26. Nitroaromatics, such as 

2,4-dinitrotoluene (DNT) and 2,4,6-trinitrotoluene (TNT) are commonly used as 

explosives for industrial and military applications. Picric acid (PA) is used as the 

representative explosive as DNT and TNT are commercially unavailable. A strong 

emission is observed from the nanoaggregate of 26 prepared by the mixture of 1% of 

its THF solution to 99% water and is weakened with the addition of PA. A 

photoluminescence quenching constant (Ksv) of 1.67 x 10-5 M-1
 is given from the 
















































































































































































































































































































































































































































































