Continuous methods for convex programming and convex semidefinite programming
Qian, Xun

Date of Award: 2017

Link to publication

General rights
Copyright and intellectual property rights for the publications made accessible in HKBU Scholars are retained by the authors and/or other copyright owners. In addition to the restrictions prescribed by the Copyright Ordinance of Hong Kong, all users and readers must also observe the following terms of use:

• Users may download and print one copy of any publication from HKBU Scholars for the purpose of private study or research
• Users cannot further distribute the material or use it for any profit-making activity or commercial gain
• To share publications in HKBU Scholars with others, users are welcome to freely distribute the permanent URL assigned to the publication
Abstract

In this thesis, we study several interior point continuous trajectories for linearly constrained convex programming (CP) and convex semidefinite programming (SDP). The continuous trajectories are characterized as the solution trajectories of corresponding ordinary differential equation (ODE) systems. All our ODE systems are closely related to interior point methods.

First, we propose and analyze three continuous trajectories, which are the solutions of three ODE systems for linearly constrained convex programming. The three ODE systems are formulated based on an variant of the affine scaling direction, the central path, and the affine scaling direction in interior point methods. The resulting solutions of the first two ODE systems are called generalized affine scaling trajectory and generalized central path, respectively. Under some mild conditions, the properties of the continuous trajectories, the optimality and convergence of the continuous trajectories are all obtained. Furthermore, we show that for the example of Gilbert et al. [Math. Program., 103, 63-94 (2005)], where the central path does not converge, our generalized central path converges to an optimal solution of the same example in the limit.

Then we analyze two primal dual continuous trajectories for convex programming. The two continuous trajectories are derived from the primal-dual path-following method and the primal-dual affine scaling method, respectively. Theoretical properties of the two interior point continuous trajectories are fully studied. The optimality and convergence of both interior point continuous trajectories are obtained for any interior feasible point under some mild conditions. In particular, with proper choice of some parameters, the convergence for both continuous trajectories does not require the strict complementarity or the analyticity of the objective function.

For convex semidefinite programming, four interior continuous trajectories defined by matrix differential equations are proposed and analyzed. Optimality and convergence of the continuous trajectories are also obtained under some mild conditions.
We also propose a strategy to guarantee the optimality of the affine scaling algorithm for convex SDP.

Keywords: Ordinary differential equation; Interior point method; Continuous trajectory; Affine scaling; Convex programming; Convex semidefinite programming.
Table of Contents

Declaration i
Abstract ii
Acknowledgements iv
Table of Contents vii
List of Tables viii
List of Figures ix

Chapter 1 Introduction 1
1.1 Convex Programming ... 2
1.2 Semidefinite Programming ... 8
1.3 Preliminaries .. 14
 1.3.1 Some Lemmas .. 14
 1.3.2 Notation ... 16
1.4 Outline of the Thesis ... 16

Chapter 2 Two Primal Interior Point Continuous Trajectories for Convex Programming 19
2.1 Fundamental Properties of The Continuous Trajectories 20
2.2 Optimality of The Cluster Point(s) 35
2.3 Convergence of The Continuous Trajectories 39
2.4 A Preliminary Solution Scheme and Numerical Results 45

Chapter 3 First-order Primal Affine Scaling Continuous Trajectory for
Convex Programming

3.1 Fundamental Properties of The Continuous Trajectory 52
3.2 Optimality of The Cluster Point(s) 59
3.3 Convergence of The Continuous Trajectory 60

Chapter 4 Two Primal-Dual Interior Point Continuous Trajectories for Convex Programming

4.1 The Weighted Primal-Dual Path-Following Continuous Trajectory . . 63
 4.1.1 Fundamental Properties of The Weighted Primal-Dual Path-
 Following Continuous Trajectory 65
 4.1.2 Optimality of The Cluster Point(s) 70
 4.1.3 Convergence of The Weighted Primal-Dual Path-Following Con-
 tinuous Trajectory .. 71
4.2 The Extended Primal-Dual Affine Scaling Continuous Trajectory . . 78
 4.2.1 Fundamental Properties of The Extended Primal-Dual Affine
 Scaling Continuous Trajectory ... 78
 4.2.2 Optimality of The Cluster Point(s) 79
 4.2.3 Convergence of The Extended Primal-Dual Affine Scaling Con-
 tinuous Trajectory .. 79

Chapter 5 Four Primal Interior Point Continuous Trajectories for Convex Semidefinite Programming

5.1 Fundamental Properties of The Continuous Trajectories 82
5.2 Optimality of The Cluster Point(s) 94
5.3 Convergence of The Continuous Trajectories 98

Chapter 6 Primal Affine Scaling Algorithm for Convex Semidefinite Programming

6.1 Properties of The Affine Scaling Direction 108
6.2 A New Step Size Rule ... 110
6.3 Optimality of The Affine Scaling Algorithm 111
6.4 A Special Case of Problem (P₃) ... 117

Chapter 7 Summary ... 120
7.1 Conclusion ... 120
7.2 Future Research ... 121

Bibliography ... 123

Curriculum Vitae .. 132