

MASTER'S THESIS

Development of an osteoclast-targeted cathespin K inhibitor for postmenopausal osteoporosis: in vitro evaluation and pharmacokinetic profile

Dai, Rongchen

Date of Award: 2020

Link to publication

General rights

Copyright and intellectual property rights for the publications made accessible in HKBU Scholars are retained by the authors and/or other copyright owners. In addition to the restrictions prescribed by the Copyright Ordinance of Hong Kong, all users and readers must also observe the following terms of use:

- · Users may download and print one copy of any publication from HKBU Scholars for the purpose of private study or research
- Users cannot further distribute the material or use it for any profit-making activity or commercial gain
- To share publications in HKBU Scholars with others, users are welcome to freely distribute the permanent URL assigned to the publication

Download date: 30 Nov, 2021

ABSTRACT

Background: Postmenopausal osteoporosis which results in a reduction of bone quality and bone density is one of the most prevalent diseases affecting people around the world. Cathepsin K (CatK) is one of the most potent proteases in lysosomal cysteine proteases family, of which main function is to mediate bone resorption. Currently, the Odanacatib (ODN) developed by Merck & Co. is the only Phase III CatK inhibitor candidate with high efficacy in treating postmenopausal osteoporosis. Unfortunately, the development of ODN was finally terminated due to the cardio-cerebrovascular adverse effects. In order to enhance the specificity of ODN to osteoclasts for suppression of bone resorption in postmenopausal osteoporosis, we have previously designed and synthesized (D-Asp₈)-ODN conjugate by linking ODN with a promising osteoclast-targeted moiety D-Asp₈. The data showed that D-Asp₈ could facilitate the conjugated ODN specifically approaching osteoclasts, with reduced distribution in non-bone tissues, to inhibit the functional CatK activity within bone tissues in healthy rats. In this thesis, we hypothesized that the in vitro antiresorptive effects of (D-Asp₈)-ODN conjugate were comparable with that of ODN. On the other hand, we also developed a QQQ-LC/MS method for quantitation of (D-Asp₈)-ODN conjugate in plasma, which will be a valuable tool to support further pre-clinical studies.

Aim: (1) To compare the antiresorptive effect between (D-Asp₈)-ODN conjugate and ODN *in vitro*. (2) To develop and validate a practicable method for pharmacokinetic profile of (D-Asp₈)-ODN conjugate in rats.

Materials and Methods: The cytotoxic effect of (D-Asp₈)-ODN conjugate and ODN were evaluated and compared by 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The effect of (D-Asp₈)-ODN conjugate and ODN on Receptor activator of nuclear factor κB ligand (RANKL)-induced osteoclasts formation and osteoclast function-related genes were

evaluated and compared by Tartrate-resistant acid phosphatase (TRAP) staining and quantitative real time polymerase chain reaction (qRT-PCR). The effect of (D-Asp₈)-ODN conjugate and ODN on osteoclast bone resorption activities were evaluated and compared by bone resorption pit assay. Moreover, the pharmacokinetic profile of (D-Asp₈)-ODN conjugate in rat plasma was determined by using triple quadrupole liquid chromatography–mass spectrometry (QQQ-LC/MS) system.

Result: The cytotoxicity of (D-Asp₈)-ODN conjugate was significantly lower than that of ODN on the murine macrophage RAW 264.7 cell line. (D-Asp₈)-ODN conjugate had no effect on RANKL-induced osteoclast formation, which was comparable with that of ODN. (D-Asp₈)-ODN conjugate had no effect on the mRNA level of CTSK, but it could upregulate the mRNA levels of ACP5 and OSCAR, which was comparable with that of ODN. (D-Asp₈)-ODN conjugate inhibited osteoclast bone resorption activity, which was comparable with that of ODN. The newly established QQQ-LC/MS protocol had good precision and accuracy for detecting (D-Asp₈)-ODN conjugate in rat plasma. Finally, the pharmacokinetic profile of (D-Asp₈)-ODN conjugate in rat plasma was determined. Following subcutaneous administration, the time to reach maximum concentration (T_{max}) was 1.0 h, the antibiotics area under the concentration time-curves from time zero to infinity ($AUC_{0-\infty}$) was found to be 27.78 ug·mL-1·h and the terminal half-life ($t_{1/2}$) was 1.4 h.

Conclusion: (D-Asp₈)-ODN conjugate had no effect on RANKL-induced osteoclast formation, which was comparable with ODN. The antiresorptive effect of (D-Asp₈)-ODN conjugate was comparable with that of ODN. On the other hand, a new QQQ-LC/MS protocol has been established for the pharmacokinetic profile of (D-Asp₈)-ODN conjugate in rat.

Keywords: Postmenopausal osteoporosis, Cathepsin K, Drug Development, Conjugation, (D-Asp₈)-ODN conjugate, Osteoclast, Pharmacokinetic profile, QQQ-LC/MS

Table of Contents

DECLARATION	i
ABSTRACT	ii
ACKNOWLEDGEMENTS	iv
Table of Contents	v
List of Tables	viii
List of Figures	ix
List of Abbreviation	x
CHAPTER 1 BACKGROUND	1
1.1 Introduction of osteoporosis	1
1.1.1 Pathology	1
1.2 Anti-resorptive Therapy	1
1.3 Cathepsin K as a new target in anti-resorptive drugs development	2
1.4 Current Cathepsin K inhibitor candidates	3
1.5 Role of CatK in bone	4
1.5.1 CatK and bone cells	4
1.5.2 CatK and skeletal diseases	6
1.6 Role of CatK beyond bone	12
1.6.1 Central nervous system (CNS)	12
1.6.2 Cardiovascular system	15
1.6.3 Respiratory system	20
1.6.4 Other organs and systems	22
1.7 Concluding remarks	26
1.8 Our previous studies	27

CH	APTER 2 AIMS OF STUDY	. 29
CH	APTER 3 MATERIALS AND METHODS	. 30
	3.1 Cell culture	. 30
	3.2 MTT assay	. 30
	3.3 RANKL induction	. 30
	3.4 TRAP staining	. 31
	3.5 Bone resorption pit assay	. 31
	3.6 Reverse transcription and quantitative real-time PCR (qRT-PCR)	. 32
	3.7 QQQ-LC/MS quantification	. 32
	3.8 Preparation of standard solutions	. 32
	3.9 QQQ-LC/MS Method validation	. 33
	3.9.1 Calibration curves and low limit of quantitation	. 33
	3.9.2 Stability	. 33
	3.9.3 Recovery and matrix effects	. 33
	3.9.4 Plasma pharmacokinetic studies in rats	. 34
	3.10 Statistical analysis	. 34
CH	APTER 4 RESULTS	. 35
	4.1 The cytotoxic effect of (D-Asp ₈)-ODN conjugate on RAW 264.7 cells is significantly lower than that of ODN	. 35
	4.2 (D-Asp ₈)-ODN conjugate has no effect on RANKL-induced osteoclasts formation from RAW 264.7 cells, which is comparable with that of ODN	. 36
	4.3 The effect of (D-Asp ₈)-ODN conjugate on osteoclast function-related gene comparable with that of ODN	
	4.4 The inhibitory effect of (D-Asp ₈)-ODN conjugate on osteoclasts bone resorption is comparable with that of ODN	. 39
	4.5 The pharmacokinetic profiles of (D-Asp ₈)-ODN conjugate in rats	. 41

4.5.1 Calibration curves and lower limit of quantitation	41
4.5.2 Precision	42
4.5.3 Stability	43
4.5.4 Recovery and matrix effect	43
4.5.5 Plasma pharmacokinetic studies	44
CHAPTER 5 CONCLUSIONS AND DISCUSSIONS	46
CHAPTER 6 PROSPECTIVE WORKS	49
Reference	
CURRICULUM VITAE	