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Abstract 

The massive increase in greenhouse gas emissions and air pollutants driven by rapid 

urbanization, economic expansion, and industrial growth has significantly 

contributed to the rising frequency of extreme weather and air pollution events. 

While many studies have predominantly attributed these extremes to anthropogenic 

emissions, alterations in large-scale circulation systems, influenced by climate 

change-induced atmospheric disturbances, may also play a critical role. This study 

examines the impacts of large-scale climate patterns on regional weather and air 

quality in Asia, a region where weather is profoundly shaped by large-scale 

circulation systems and where rapid changes in surface properties and 

anthropogenic emissions add substantial complexity. Through the integration of 

surface observations, satellite retrievals, reanalysis datasets, and climate model 

outputs, this research seeks to advance the understanding of these interactions and 

their broader implications. 

Dust in West and South Asia has been a major environmental issue due to its 

negative effects on air quality, food security, energy supply and public health, as 

well as on regional and global weather and climate. Yet a robust understanding of 

its recent changes and future projection remains unclear. On the basis of several 

high-quality remote sensing products, we detected a consistently decreasing trend 

of dust optical depth (DOD) in West and South Asia over the last two decades. In 

contrast to previous studies emphasizing the role of local land use changes, we 

attributed the regional dust decline to the continuous intensification of Arctic 

amplification driven by anthropogenic global warming. Arctic amplification results 

in anomalous mid-latitude atmospheric circulation, particularly a deepened trough 

stretching from West Siberia to Northeast India, which inhibits both dust emissions 

and their downstream transports. Large ensemble climate model simulations further 

support the dominant role of greenhouse gases induced Arctic amplification in 

modulating dust loading over West and South Asia. Future projections under 

different emission scenarios imply potential adverse effects of carbon neutrality in 
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leading to higher regional dust loading and thus highlight the importance of stronger 

anti-desertification counteractions such as reforestation and irrigation management. 

Dust loading over West and South Asia plays a crucial role in regulating South Asia 

summer monsoon precipitation patterns. In this study, we first identified a linear 

correlation between dust loading in West Asia and monsoon precipitation in South 

Asia. Leveraging this relationship, a regression model was developed to predict 

monsoon precipitation based on DOD in West Asia. Dust over the Arabian Sea and 

Arabian Peninsula plays a crucial role in regulating regional atmospheric 

circulation, thereby influencing moisture convergence and divergence patterns in 

South Asia. The impact of dust in West Asia on monsoon precipitation in South Asia 

was confirmed through both statistical and numerical models. A multiple linear 

regression (MLR) model was developed to predict DOD during the monsoon season, 

using recognized springtime sea surface temperature (SST) anomalies in the Pacific 

Ocean, North Indian Ocean, and North Atlantic Ocean as inputs. With these 

statistical models, monsoon precipitation can be forecasted one season in advance, 

enhancing agricultural planning, water resource management, and disaster 

preparedness and leading to more informed decision-making across various sectors.  

East Asia is another region impacted by monsoon weather, characterized by hot and 

humid summers. The wet bulb temperature (Tw) has gained considerable attention 

as a crucial indicator of heat-related health risks. We reported south-to-north 

spatially heterogeneous trends of Tw in China over 1979-2018. We found that actual 

water vapor pressure (Ea) changes play a dominant role in determining the different 

trend of Tw in southern and northern China, which is attributed to the faster warming 

of high-latitude regions of East Asia as a response to climate change. This warming 

effect regulates large-scale atmospheric features and leads to extended impacts of 

the South Asia high (SAH) and the western Pacific subtropical high (WPSH) over 

southern China and to suppressed moisture transport. Attribution analysis using 

climate model simulations confirms these findings. We further found that the entire 

eastern China, that accommodates 94% of the country’s population, is likely to 
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experience widespread and uniform elevated thermal stress at the end of this century. 

Our findings highlight the necessity for development of adaptation measures in 

eastern China to avoid adverse impacts of heat stress, suggesting similar 

implications for other regions as well. 

Therefore, we developed a prediction model for heat stress in East Asia. 

Considering the co-occurrence of ozone pollution during summer, and the amplified 

effects of heat and ozone pollution compound extremes on human health and food 

security, we created a model to predict this co-occurrence. On the basis of 

reconstructed daily O3 levels in China and meteorological reanalysis, we found that 

the interannual variability of the frequency of summertime co-occurrence of heat 

wave and O3 pollution in China is regulated mainly by a combination of springtime 

warming in the western Pacific Ocean, western Indian Ocean, and Ross Sea. These 

sea surface temperature anomalies impose influences on precipitation, radiation, 

etc., to modulate the co-occurrence, which were also confirmed with coupled 

chemistry–climate numerical experiments. We thus built a multivariable regression 

model to predict co-occurrence a season in advance, and correlation coefficient 

could reach 0.81 (P < 0.01) for the North China Plain. Our results provide useful 

information for the government to take actions in advance to mitigate damage from 

these synergistic co-stressors. 
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Chapter 1: General introduction 

1.1 Background 

1.1.1 Large-scale climate patterns 

Large-scale climate patterns refer to the recurring and persistent atmospheric and 

oceanic circulations that influence weather and climate variability over extensive 

geographical areas and time periods (Oñate-Valdivieso et al., 2020; Perlwitz et al., 

2017). These patterns include phenomena such as atmospheric pressure systems, 

ocean currents, and temperature anomalies that can span continents and oceans 

(Forchhammer & Post, 2004; Hallett et al., 2004). They play a crucial role in 

shaping regional and global climates by affecting temperature, precipitation, wind 

patterns, and even the frequency and intensity of extreme weather events (Grotjahn 

et al., 2016). They are important for predicting weather and climate and are often 

the cause of extreme weather events like storms and floods (Grotjahn et al., 2016; 

Hallett et al., 2004). 

The impacts of large-scale climate patterns on weather and air quality are profound 

(Kinney, 2008; Von Schneidemesser et al., 2015). These patterns can drive 

significant variations in weather conditions, leading to extremes such as heatwaves, 

cold spells, heavy precipitation, droughts, and storms (Moazami et al., 2019; Ohba 

& Sugimoto, 2019; Racah et al., 2017). For instance, shifts in atmospheric 

circulation driven by these patterns can result in prolonged periods of extreme 

temperatures or precipitation anomalies, which directly affect human activities, 

agriculture, water resources, and infrastructure (Kueppers & Snyder, 2012; Payne 

et al., 2020; R. Pausata et al., 2013). Moreover, large-scale climate patterns 

influence air quality by affecting the dispersion and concentration of pollutants. 

Variations in wind patterns and atmospheric stability can lead to episodes of poor 

air quality, such as smog and elevated levels of ground-level ozone (Baklanov et al., 

2016; Von Schneidemesser et al., 2015).  
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Climate change is altering the behavior and characteristics of large-scale climate 

patterns (Karl & Trenberth, 2003; Krinner & Flanner, 2018). As global temperatures 

rise due to increased greenhouse gas emissions, the frequency, intensity, and 

duration of some climate patterns are changing (Mann et al., 1998; Seager et al., 

2010). For instance, warming oceans can intensify certain climate patterns, leading 

to more extreme weather events (Cheng et al., 2022). Additionally, changes in the 

distribution of sea ice and snow cover can modify atmospheric circulation patterns, 

further influencing regional climates (Cohen et al., 2013; Vihma, 2014). The 

alteration of large-scale climate patterns due to climate change has significant 

implications for both weather and air quality (Jacob & Winner, 2009; Stott, 2016). 

For example, warmer temperature can enhance the formation of ground-level ozone, 

worsening air quality and increasing health risks (Fowler et al., 2008). Similarly, 

changes in precipitation patterns and the increased likelihood of extreme weather 

events can strain water resources, disrupt agriculture, and damage infrastructure. 

Understanding the dynamics of large-scale climate patterns and their interactions 

with climate change is crucial for predicting future climate variability and 

developing effective adaptation and mitigation strategies. By improving our 

knowledge of these patterns, we can better anticipate their impacts on weather, air 

quality, and ecosystems, and take proactive measures to reduce risks and enhance 

resilience. 

1.1.2 Regional weather and air quality extremes 

Regional weather and air quality are two major factors that directly impact 

agriculture, industry activities, transportation and human health (Burney & 

Ramanathan, 2014; Fiore et al., 2012; Kinney, 2008; Tessum et al., 2014). The 

dramatic global economic development has led to a rapid growth of population 

(Elmqvist et al., 2013) and a quick enlargement of energy requirements (Seto et al., 

2012). The booming human activities, accompanied by the combustion of large 

amounts of fossil fuels, and the accelerated process of urban expansion, have led to 

more frequent extreme weather and declined air quality (Kumar et al., 2017; 
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McDonough et al., 2020). The most common regional weather extremes are 

extreme heat and precipitation in recent decades (Donat et al., 2016; Lobell et al., 

2013; Lobell et al., 2012; Pendergrass, 2018). Extreme heat events, including 

heatwave and humid heat, have become a prominent cause of weather-related 

human mortality around the world during the past decades (Lüthi et al., 2023). 

Heatwave is characterized by low-term high temperature during hot seasons, 

leading to extreme pressure on human health, water resources, and increase risk of 

drought related air pollution event including dust and wildfire (Libonati et al., 2022). 

During the past serval years, recording breaking heatwave events hit almost 

everywhere of the world (Perkins-Kirkpatrick & Lewis, 2020; White et al., 2023), 

leading to increasing numbers of mortality in developing and developed countries 

(Chen et al., 2022; Y. Zhang et al., 2022). Extreme humid heat has arisen more 

attention in recent decades as more and more studies has demonstrated amplified 

threats to public health and ecosystem when compound heat-humidity occurs (Lesk 

et al., 2022; D. Li et al., 2020). During extreme heat events, humans can maintain 

a normal core body temperature through evaporative cooling, such as sweating 

(Parsons, 2006). However, high humidity decreases the effectiveness of this cooling 

process. When elevated air temperature is combined with high humidity, it can 

compromise the body's ability to cool itself, posing a significant risk to human 

health (Mora et al., 2017). Precipitation extreme is another regional weather 

extreme which causing significant damage through flooding and landslides 

(Davenport et al., 2021; Teale & Winter, 2024). If precipitation is extremely less, 

drought conditions may also bring threats to normal agriculture activities and air 

quality, subsequently affecting food security and public health (Tsanis et al., 2011; 

X. Wang et al., 2017).  

Air quality extremes, particularly high levels of particulate matter (PM2.5 and PM10) 

and ozone, are of critical concern due to their severe impacts on human health and 

the environment (Manisalidis et al., 2020). Particulate matter comprises tiny 

particles capable of penetrating deep into the lungs and entering the bloodstream, 
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contributing to respiratory and cardiovascular diseases, lung cancer, and premature 

death (Bonzini et al., 2010). Ground-level ozone exacerbates asthma, reduces lung 

function, increases susceptibility to respiratory infections, and can cause significant 

breathing difficulties (Lee et al., 2021). Prolonged exposure to these pollutants not 

only deteriorates quality of life but also escalates healthcare costs. Furthermore, 

poor air quality contributes to environmental degradation, harming wildlife, 

vegetation, and water resources (Manisalidis et al., 2020; Smith et al., 2013). Air 

pollution arises from the accumulation of emitted pollutants on a regional scale, 

increasing the overall pollutant burden (Kampa & Castanas, 2008). These emissions 

originate from both anthropogenic and natural sources (Popescu & Ionel, 2010; 

Viana et al., 2014). Under unfavorable dispersion conditions, pollutants accumulate 

in localized areas, forming severe air pollution events (Giovannini et al., 2020). 

Historically, China and India, as major developing nations, have faced significant 

air quality challenges (Gao et al., 2020). In recent years, reductions in 

anthropogenic emissions have led to notable declines in particulate matter 

concentrations (Hammer et al., 2020; Zhai et al., 2019; Zheng et al., 2018). Despite 

these improvements, natural sources such as dust storms and wildfires continue to 

contribute to particulate pollution (Kelly & Fussell, 2020; Yu & Ginoux, 2022). 

Moreover, ozone pollution has emerged as an urgent environmental issue in recent 

years, keeping these regions vulnerable to extreme air pollution events (Lu et al., 

2018; J. Zhang et al., 2019).  

1.1.3 Attribution analysis and seasonal predictions of weather and air quality 

Given the adverse effects of extreme weather and air quality, attribution analysis 

and reliable pre-seasonal predictions are of great importance for manager, 

policymaker and the public to prepare in advance to manage and mitigate the 

impacts of climate variability on regional weather and air quality (Gao et al., 2019; 

Gao et al., 2023). This involves a combination of observational data analysis, 

climate modeling, and advanced statistical techniques (Madolli et al., 2022).  

Attribution analysis involves identifying the contributions of different climate 
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patterns to observed weather and air quality anomalies (Faranda et al., 2022; Stott 

et al., 2016; Vautard et al., 2018). This process requires the use of advanced 

statistical methods and climate models to disentangle the effects of various climate 

drivers. Through attribution analysis, researchers can better understand the 

influence of large scale climate patterns such as El Niño-Southern Oscillation 

(ENSO), North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and 

other patterns on specific weather events and air quality issues (Fu et al., 2023; Lee 

et al., 2018; St. Jacques et al., 2014; Walsh & Patterson, 2022; Zhao et al., 2021). 

This knowledge is crucial for developing effective mitigation and adaptation 

strategies. For example, understanding the role of ENSO in driving severe droughts 

can inform water management practices and agricultural planning (Verner et al., 

2018; Watanabe et al., 2018). Attribution analysis can also help policymakers 

identify the most effective strategies for reducing the health and economic impacts 

of poor air quality, such as implementing stricter emissions regulations during 

periods of increased pollution risk.  

Seasonal prediction uses statistical and dynamical models to forecast the likely state 

of climate patterns and their potential impacts on regional scales (Schepen et al., 

2012). These predictions are based on the current state of the climate system, 

including sea surface temperatures, atmospheric pressure patterns, and other 

relevant factors (Derome et al., 2001; Doblas-Reyes et al., 2013; He et al., 2022; 

Klotzbach et al., 2020; Schepen et al., 2012). Seasonal forecasts can provide 

valuable information for decision-makers in sectors such as agriculture, water 

management, and public health. By anticipating the likely impacts of upcoming 

climate conditions, stakeholders can take proactive measures to reduce risks and 

enhance resilience. For instance, accurate seasonal forecasts of ENSO can help 

farmers plan for potential droughts or floods (Emerton et al., 2019), while 

predictions of NAO phases can guide winter preparedness efforts in Europe (Neves 

et al., 2019). Seasonal predictions can also inform public health strategies, such as 

issuing air quality advisories and implementing measures to reduce exposure to 
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pollutants during periods of increased risk (Li et al., 2011; Yin et al., 2022). The 

development of reliable seasonal predictions requires the integration of various data 

sources and modeling approaches. Observational data, such as satellite 

measurements of sea surface temperatures and atmospheric pressure patterns, 

provide critical inputs for statistical and climate models (Crespo et al., 2019; Li et 

al., 2011; Lloyd-Hughes & Saunders, 2002; Lu Shen & Loretta J Mickley, 2017). 

Advanced statistical techniques, such as machine learning and data assimilation, 

are used to enhance the accuracy of these predictions by incorporating additional 

data and improving the representation of key processes (Cohen et al., 2019; Gregory 

et al., 2023; J. Wang et al., 2021; Zhuang et al., 2024). The application of seasonal 

predictions extends beyond individual sectors, influencing a wide range of societal 

activities. The integration of seasonal predictions into decision-making processes 

can enhance the resilience of communities and economies to climate variability, 

reducing the risks and costs associated with extreme weather events and poor air 

quality. 

1.2 Research gaps 

Under the background of urbanization, human activities, and climate change, 

weather and air quality in some regions has become increasingly unstable and has 

even undergone systematic changes (Rummukainen, 2012). Many studies have 

attributed these changes to anthropogenic factors, including alterations in surface 

properties, anthropogenic heat and air pollutant emissions from industry, 

transportation and residential sectors (Baklanov et al., 2016; Z. Li et al., 2017; Tao 

et al., 2022; Xie et al., 2016). Additionally, these changes have been partially 

attributed to modifications in large-scale circulation due to climate change-induced 

disturbances in the atmosphere (Adams et al., 2021; Fiore et al., 2015; Kinney, 2008; 

Voigt et al., 2021; Zhang et al., 2012). However, due to the complexity of 

atmosphere-land system interactions, there remains significant uncertainty in 

attributing regional weather and air quality regulations and the development of 

accurate seasonal prediction. In Asia, regional weather is significantly influenced 
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capture the full complexity of climate variability (J. Li et al., 2016; Wang et al., 

2015). Numerical models have also been used for pre-seasonal prediction, offering 

a more detailed representation of atmospheric processes (Meehl et al., 2021). 

However, these models require substantial computational resources (Weyn et al., 

2021) and often struggle with accurately representing climate internal variability 

(Stacey et al., 2023; Wang et al., 2014), leading to suboptimal predictive 

performance. Recently, machine learning techniques have been adopted to generate 

seasonal predictions of regional weather and air quality (Chen et al., 2024; Kafy et 

al., 2021; J. Li et al., 2021). While these approaches show promise in improving 

prediction accuracy, they also require extensive training data and sophisticated 

algorithms, and their performance can vary depending on the specific application 

and region (Gibson et al., 2021; Liang et al., 2020). South Asia is a key region where 

weather is regulated by monsoon circulation (Turner & Annamalai, 2012). The 

monsoon system causes a temporally uneven distribution of precipitation, rendering 

the region highly vulnerable to precipitation extremes (Amrith, 2018; Guhathakurta 

et al., 2015; Prakash et al., 2015). Both excessive and deficient rainfall can lead to 

floods or desertification, imposing significant challenges to human health, food 

security, and economic development. This underscores the urgent need for accurate 

pre-seasonal predictions of monsoon precipitation in South Asia. Numerous efforts 

were dedicated to predicting monsoon precipitation in South Asia using statistical, 

empirical and dynamical models (Madolli et al., 2022). Statistical models has long 

been adopted by the India Meteorological Department (IMD) as an operational 

model for long range forecasting of South Asia Summer Monsoon (SASM) rainfall 

for over a century (Madolli et al., 2022). Nevertheless, extreme years were largely 

missed, partly as a result of neglect of regional factors. Monsoon precipitation in 

South Asia is further influenced by short-term regional forcings, such as 

anthropogenic aerosol and mineral dust, which are considered significant sources 

of uncertainty in pre-seasonal monsoon precipitation predictions (Guo et al., 2015; 

Jin et al., 2014; Z. Li et al., 2016; Sherman et al., 2021; Vinoj et al., 2014).  
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East Asia is another monsoon climate zone characterized by hot and humid 

summers, frequently experiencing compound extremes of heat and humidity. 

China's Tw has undergone rapid intensification since 1960s, primarily attributed to 

human induced climate change (C. Li et al., 2020; Ning et al., 2022; Wang & Sun, 

2021), exerting substantial heat stress on its vast population. However, both rising 

and falling trends in atmospheric moisture were identified across China. These 

multifaceted influences introduce uncertainties in understanding and attribution of 

historical and future variations of heat risk (Wang et al., 2019). This indicates that 

Tw is likely to change differently across regions under climate change, which has 

not been fully understood. Given the significance of heat stress with respect to 

human health and food security, a better understanding of how historical and future 

Tw evolves in different regions and the key driving factors would better assist 

mitigation and adaptation of heat stress.  

In addition, increase in summer temperatures has also led to significantly elevation 

of the frequency of heatwaves and the associated environmental issues (Dosio et al., 

2018; Vicente-Serrano et al., 2020). Concurrently, ozone pollution, particularly in 

the North China Plain (NCP), has intensified as high temperatures and strong solar 

radiation enhance photochemical ozone production (Wang et al., 2022). Previous 

studies have linked occurrences of heat waves or O3 extremes, separately, with 

large-scale atmospheric circulation or sea surface temperature (SST) anomalies 

(Ding et al., 2013; Lee & Lee, 2016; P. Wang et al., 2017; Wu et al., 2012; Yang et 

al., 2014; Yin et al., 2019; Yin & Ma, 2020). However, the climate factors 

modulating the co-occurrence of heat and O3 extremes at a regional level remain 

unclear and had only been the subject of limited studies (Meehl et al., 2018; Schnell 

& Prather, 2017; Schwarz et al., 2021; Xiao et al., 2022a). An amplified upward 

trend of the joint occurrences of heat and O3 extremes has been identified in China 

over 2013 to 2020 (Xiao et al., 2022a). Understanding the driving climate factors 

for its interannual variability would contribute to long-term planning of control of 

co-stressors, as well as developing reliable pre-seasonal predictions, is critical for 
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protecting human health and ecosystems. 

 

1.3 Research objectives 

To address the aforementioned research gaps, this study aims to investigate the 

impacts of large-scale climate patterns on regional weather and air quality and 

develop seasonal predictions of weather and air quality extremes. To achieve these 

objectives, we focus on the following four major goals: 

1. Investigate and attribute the impacts of large-scale atmospheric circulations on 

dust levels over West and South Asia. 

2. Develop pre-seasonal predictions of the South Asian monsoon precipitation 

through forecasting dust levels in West and South Asia. 

3. Attribute the impacts of large-scale atmospheric circulations on heat stress 

variations in China. 

4. Investigate and attribute the impacts of large-scale atmospheric circulations on 

the co-occurrence of heatwaves and ozone extremes in China, and develop 

seasonal predictions for these compound extremes. 

1.4 Dissertation outline 

This thesis is organized into eight chapters. Chapter 1 introduces the research 

background, highlights the research gaps, and outlines the objectives of this study. 

Additionally, it provides an overview of the thesis structure. Chapters 2 to 5 address 

the analyses corresponding to the research objectives outlined earlier, each 

described in detail below. Chapter 6 summarizes the main conclusions, highlights 

the significance of this study, acknowledges their limitations, and offers prospects 

for future research.  

Chapter 2 investigates the trend in dust loading across West and South Asia using 

three different products of satellite retrievals. The reanalysis products and historical 

model simulations from the Coupled Model Intercomparison Project Phase 6 
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(CMIP6) are adopted to attribute the detected trend in dust loading. Future shifts in 

dust loading in West and South Asia under different Shared Socioeconomic 

Pathway (SSP) scenarios are evaluated using CMIP6 experiments. This chapter is 

based on the results published in Proceedings of the National Academy of Sciences, 

entitled “Arctic amplification–induced decline in West and South Asia dust 

warrants stronger antidesertification toward carbon neutrality” (Fan Wang et al., 

2024). 

Chapter 3 explores the relationship between large-scale dust patterns in West Asia 

and monsoon precipitation in South Asia. Both statistical and numerical models are 

employed to establish and confirm the impact of dust originating in West Asia on 

monsoon precipitation patterns in South Asia. DOD during the monsoon season is 

predicted using a MLR model, with springtime SST anomalies in the Pacific Ocean, 

North Indian Ocean, and North Atlantic Ocean as predictors. By leveraging the 

established relationship between DOD and monsoon precipitation, this approach 

enables the prediction of monsoon precipitation based on DOD variations in West 

Asia. 

Chapter 4 analyzes variations in the wet-bulb temperature (Tw) across China from 

1979 to 2018 using surface observations. The dominant role of surface air 

temperature (T) and actual water pressure (Ea) changes in determining the trend of 

Tw in different regions of China are identified. Impacts of large-scale atmospheric 

features are discussed and attribution analysis using climate model simulations are 

further adopted to confirm the role of large scale factors. Future changes of Tw in 

China at the end of this century are also investigated using dynamical downscaled 

future projections. This chapter is based on the results published in Nature 

Communications, entitled “Uniformly elevated future heat stress in China driven 

by spatially heterogeneous water vapor changes” (F. Wang et al., 2024). 

Chapter 5 focuses on the co-occurrence of heatwaves and ozone pollution events 

(HWOP) in Central and Eastern China. It identifies the leading climate patterns that 



12 

 

drive the spatiotemporal variability of HWOP occurrence frequencies. Large-scale 

climate drivers are validated using numerical model experiments with the 

Community Earth System Model (CESM v2.1.3). Encouraged by the robustness of 

the identified teleconnections between co-occurrence events and SST anomalies, a 

regression-based statistical model is developed to predict summertime HWOP a 

season in advance. This chapter is based on the results published in Proceedings of 

the National Academy of Sciences, entitled “Large-scale climate patterns offer 

preseasonal hints on the co-occurrence of heat wave and O3 pollution in China” 

(Gao et al., 2023).  





14 

 

regulate surface energy balance and modulate monsoon duration and intensity of 

precipitation (Cruz et al., 2021; Nandini et al., 2022; Vinoj et al., 2014).  

High dust levels in West and South Asia are mainly due to strong local emission 

and long-distance transport (Banerjee et al., 2019; Ginoux et al., 2012). The dust 

emissions are highly sensitive to local conditions such as surface winds and soil 

moisture (Shi et al., 2021). The Arabian Peninsula and Tigris-Euphrates alluvial 

plain are prime emission sources in the Middle East, and the Thar Desert and the 

Indo-Gangetic Plain (IGP) are major sources of dust in the Indian subcontinent, 

collectively contributing to about 20% of global dust emission (Cao et al., 2015; 

Gandham et al., 2022; Ginoux et al., 2012; Tanaka & Chiba, 2006). Strong 

northwesterly winds forced by a wave of high pressure that funnels through the 

Persian Gulf between Saudi Arabia and Iran results in persistent sand and dust 

storms in West Asia in the spring and summer months (Badarinath et al., 2010). Due 

to extremely dry conditions and strong winds, 5-10 dust storms are generated 

annually over the Thar Desert and strike northwest India during the pre-monsoon 

season (Banerjee et al., 2021). Dust transported from the Northern Africa partially 

contributes to the high level of dust loading in West Asia and dust originating from 

the Middle East and the northeast Africa is another important source of dust in 

South Asia (Kaskaoutis et al., 2017). Dust generated from the arid and semi-arid 

regions in the Middle East can be transported thousands of kilometers from West 

Asia to northern India by the prevailing westerly winds (Badarinath et al., 2010; 

Mattis et al., 2002).  

Large scale atmospheric circulation is the key driving force that affects local 

emission conditions as well as the long-range transport processes of dust aerosols 

in West and South Asia. The mid-latitude circulation pattern is subject to the 

influence of major climate modes (directly or indirectly via teleconnection), such 

as sudden stratospheric warming, Arctic ice loss, ENSO, and the Indian Ocean 

Dipole (IOD) (Dai et al., 2022; Shao et al., 2013; Wu et al., 2015). Changes in large 

scale circulation directly modify the direction and magnitude of long-distance dust 
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transport (Shi et al., 2021; Yu et al., 2013), and also regulate emission processes by 

affecting regional precipitation, soil moisture and near surface wind speed and 

boundary layer stability (Kaskaoutis et al., 2012; Lodhi et al., 2013). For example, 

cooling in the Tibetan Plateau in conjunction with warming in the Southern India 

were shown to generate easterly wind anomalies, suppressing local dust emissions 

and dust transport from the Middle East and Sahara to India (Wei et al., 2022). Dust 

emissions in the Middle East, Southwest Asia, and the western Sahel were strongly 

influenced by the IOD through its impact on local rainfall and the shamal winds 

(i.e., northwesterly wind blowing over Iraq and the Persian Gulf) (Kaskaoutis et al., 

2012; Yu et al., 2015). Global climate has undergone significant changes in recent 

decades due to anthropogenic emission of greenhouse gases (GHG) and other 

pollutants (Crowley & Berner, 2001; Montzka et al., 2011). Anthropogenic climate 

change imposed perturbation on atmospheric circulation and monsoon rainfall 

patterns in West and South Asia (Cohen et al., 2014; Pandey et al., 2017; Turner & 

Annamalai, 2012). It is thus imperative to thoroughly analyze its subsequent 

impacts on the emission and transport processes of dust over these regions (depicted 

in Figure A.1A).  

Using satellite retrievals, reanalysis and surface observations, a majority of 

previous studies have reported declining trends in dust loading across West and 

South Asia (Asutosh et al., 2021; Jin & Wang, 2018; Pandey et al., 2017; Proestakis 

et al., 2018; Wenwen Xia et al., 2022), although some studies have suggested 

increasing (Nazish Khan & Sajid Akhter, 2022) or even reversing (Lakshmi et al., 

2019) trends over the past two decades. In this study, we adopted three high-quality 

satellite retrieval products to detect a consistently long-term decrease in dust 

loading over the broader region of West and South Asia in the last two decades (up 

to 2019). We truncated the time period to 2019, as reduced anthropogenic emissions 

in COVID-19 (especially in 2020) were suggested to perturb atmospheric 

circulation and rainfall patterns which could influence dust loading in this region 

(Wei et al., 2022; Yang et al., 2020). These three products, including the Infrared 
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Atmospheric Sounder Interferometer (IASI) dust optical depth (DOD), the Cloud-

Aerosol Lidar with Orthogonal Polarization (CALIOP) DOD, and the Moderate 

Resolution Imaging Spectroradiometer (MODIS) aerosol optical depth (AOD), 

feature high reliability, benefiting from well-established instruments, rigorous 

validation procedures, and broad scientific assessment (Capelle et al., 2018; Capelle 

et al., 2014; Levy & Hsu, 2015; Winker et al., 2004; Winker et al., 2007). Tindan et 

al. (2023) reported better performance in DOD retrieval using IASI compared to 

CALIOP because of stronger aerosol-cloud discrimination capabilities. Therefore, 

in this study, we use the IASI DOD as the primary dataset for detection of the recent 

trends in dust loading, while CALIOP DOD and MODIS AOD are presented as 

supporting data.  

Previous studies have primarily attributed the decline in dust loading in West and 

South Asia to increased regional rainfall and suppressed emissions (Asutosh et al., 

2021; Pandey et al., 2017), potentially driven by a local greening due to irrigation 

expansion (Jin & Wang, 2018; Wenwen Xia et al., 2022). However, we contend that 

there may be more influential contributors at the global scale to this widespread 

decrease in dust loading across such extensive spatial domains. Using the reanalysis 

products and historical model simulations from CMIP6, we attributed the recent 

decline in dust loading to the Arctic amplification related mid-latitude circulation 

changes. Large ensemble model simulations were used to further support the 

dominant role of GHG-induced Arctic amplification in modulating dust loading, 

rather than natural variability or local land use changes. Future shifts in dust loading 

in West and South Asia under different SSP scenarios were also evaluated, showing 

an increase in dust loading under the more aggressively mitigated scenarios. Our 

results raise awareness for potential dust loading enhancement in West and South 

Asia towards a low carbon future, highlighting the need to strengthen local anti-

desertification efforts as part of the broader climate mitigation strategies. 
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consistent spatial grid within the troposphere. The estimation of DOD in level 3 

data product was derived by analyzing level 2 dust extinction profiles over a 

uniform spatial grid (2° latitude × 5° longitude) throughout the troposphere, 

reaching an altitude of 12 kilometers. The creation of Level 3 datasets involved a 

systematic evaluation of atmospheric conditions, encompassing both sky conditions 

and lightning events, and was conducted on a monthly basis.  

We also used the CALIOP-based level 2 version 4.20 standard aerosol profile 

products (vertical and horizontal resolution: 60 m × 5 km, temporal resolution: 5.92 

s) to examine the vertical distribution of dust aerosols. We obtained extinction 

coefficient at 532 nm and aerosol subtypes for the present study. The hybrid 

extinction retrieval algorithms were used to retrieve aerosol extinction profiles, 

using the assumed lidar ratios appropriate for each aerosol type (Vaughan et al., 

2023; Young & Vaughan, 2009). In the present study, we segregated aerosol signals 

based on the “CAD (Cloud-Aerosol Discrimination) score” given in CALIPSO 

profile products (Vaughan et al., 2009; Vaughan et al., 2004). The sign and absolute 

value of CAD score determined the object type (positive: cloud; negative: aerosol) 

and the confidence level of the classification. We selected aerosol signals with CAD 

score less than -70 for the present study (Fuchs & Cermak, 2015). Additionally, 

aerosol profiles with extinction QC (Quality Control) flags of 0 and 1 were 

considered in the analysis, which help to reduce some large errors due to the non-

linear behavior of the AOD retrievals (Huang et al., 2015). The dust occurrence 

frequency (DOF) was calculated by dividing the total number of dust samples by 

the total number of CALIPSO measurements. The percentage change in DOF was 

the difference of DOF between first three consecutive years (2007-2009) and last 

three consecutive years (2017-2019) over the Middle East region. The daily version 

3 level 2 spectral deconvolution algorithm (SDA) retrieval of total and coarse mode 

AOD at 500nm from AERONET over 2008-2019 was also used in this study. It is 

a quality assured product with pre- and post-field calibration applied (automatically 
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cloud cleared and manually inspected). We only selected sites with over 75% data 

coverage in each year during the study period of 2008-2019. 

The monthly Level 3 global normalized difference vegetation index (NDVI) was 

retrieved by MODIS instrument aboard the Terra satellite. The spatial resolution of 

this dataset was 1km × 1km. Meteorological variables including monthly gridded 

surface temperature, 10m wind speed, soil moisture, geopotential height and u- and 

v-components of wind at various layers (100, 200, 850 hPa), vertical velocity at 500 

hPa, total precipitation, vertical integrated moisture divergence were taken from the 

European Centre for Medium-Range Weather Forecasts (ECMWF) Reanalysis 

version 5 (ERA5) dataset (Hersbach et al., 2020). The spatial resolution of all these 

variables was 0.25° × 0.25°. 

2.2.2 Climate model outputs 

The historical simulations driven by time evolving single forcing of GHG-only and 

aerosols-only from the Detection and Attribution Model Intercomparison Project 

(DAMIP) in CMIP6 were employed in this study to evaluate climate response to 

individual forcings (Gillett et al., 2016). We compared monthly gridded dust 

loading, geopotential heights, zonal and meridional winds, surface temperature, 

surface wind speed and soil moisture with observations to test attribution hypothesis. 

To cover the study period spanning from 2008 to 2019, following previous studies 

(Liu et al., 2021; Paik & Min, 2020), historical simulations were extended for 2015–

2019 using corresponding SSP245 scenario simulations as GHG-only and aerosols-

only simulations for 2015-2020 follow the SSP245 scenario (Gillett et al., 2016). 

We only adopted output from 2008 to 2014 in land use-only simulation because of 

data limitation. When multiple runs were available from a model, we utilized only 

the first run to ensure equal weighting for each model in this analysis. The model 

output was interpolated to 2° × 2.5° grids before further analysis. Due to the varying 

uncertainties in dust schemes across different models, we were limited in the 

number of models that could be reliably used for this research. To address this, we 

calculated the ensemble mean of outputs from all models to account for the broader 
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adopted the approach of Yu et al. (2015) and developed an approximate estimation 

of dust flux in the zonal direction by combining averaged zonal wind (from ERA5) 

beneath the dust layer height (from IASI) with total IASI DOD since we have 

limited information of vertical profiles of dust mass. 

2.2.4 CESM experiment 

CESM v2.1.3 was used to explore global dust radiative effects. The chosen 

component set (compset) for this study was FWHIST, the robustness of which has 

undergone extensive validation. FWHIST was configured with a horizontal 

resolution of 0.9° × 1.25° and 70 vertical layers. The Community Atmosphere 

Model version 6 (G. Danabasoglu et al., 2020) was used to simulate atmospheric 

physics, while the Whole Atmosphere Community Climate Model version 6 (A. 

Gettelman, M. J. Mills, et al., 2019) was used to describe tropospheric, stratospheric, 

mesospheric, and lower thermospheric chemistry. The Data Ocean Geophysical 

Model (Hurrell et al., 2008) was used to provide SSTs, which allows the 

applications of SST anomalies for sensitive experiments. Land processes were 

characterized by the Community Land Model version 5 [CLM5, (Lawrence et al., 

2019)], and other selections included the Sea Ice Model version 5 (Turner & Hunke, 

2015) for sea ice, the Model for Scale Adaptive River Transport (Li et al., 2013) for 

river runoff, the Community Ice Sheet Model Version 2 (Lipscomb et al., 2019) for 

land ice, and the Stub wave component for wave. Anthropogenic emissions were 

obtained from the Community Emissions Data System (Hoesly et al., 2018), while 

biomass-burning emissions were provided by (Van Marle et al., 2017). Biogenic 

emissions were calculated online using the Model of Emissions of Gases and 

Aerosols from Nature version 2.1 that was incorporated in the CLM5 model 

(Guenther et al., 2012). Here we incorporated a diagnostic calculation to quantify 

dust radiative influences by turning off dust radiative effect in CESM. 
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2.3 Results 

2.3.1 Decreased dust loading in West and South Asia 

Desert dust sources in West and South Asia are mainly concentrated in the border 

regions of India and Pakistan, and the Arabian Peninsula (Figure A.1A), whereas 

the transport of dust aerosols and severe dust outbreaks are frequently observed 

across west Asia and northern parts of south Asia in particular over the Indo-

Gangetic Plains (Figure A.1B). From 2008 to 2019, DOD over most parts of West 

and South Asia experienced decreasing trends, with the largest decline found in the 

IGP and the Persian Gulf Coast regions, and DOD over the Middle East also shows 

remarkable declines (Figure 2.1A). The DOD over the entire land region decreased 

significantly at an area-averaged rate of -0.0036 per year (-2.88%/year, p<0.01) 

(Figure 2.1C, E). There was an unusual enhancement of DOD in 2018 due to 

anomalous easterlies and droughts in the pre-monsoon seasons of South Asia 

(Banerjee et al., 2021). To verify the robustness of the changes, we divided the 

entire study period into two sub periods: Pre-period (2008-2013) and Post-period 

(2014-2019). In most parts of South Asia, DOD is at least 0.05 (50%) lower in the 

Post-period compared to the Pre-period (Figure 2.1B). Notably, DOD over Iraq can 

be 0.1 (75%) smaller in the Post-period than in the Pre-period. DOD over the oceans 

surrounding the Arabian Peninsula exhibits more significant decreasing trends with 

a spatially averaged rate of -0.0038 per year (-4.20%/year, p<0.01) (Figure 2.1D, 

F).  
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Figure 2.1 Temporal variations of dust optical depth (DOD). (A) Spatial 

distribution of DOD trend (1 per year) from 2008 to 2019. Black dots denote areas 

with significant trend (p < 0.05). (B) Spatial distribution of changes of DOD from 

the Pre-period (2008-2013) to the Post-period (2014-2019) period. Whited out areas 

in (A) and (B) are plateau regions with missing data. The spatial distributions of 

DOD changes in percentage are shown in Figure A.1C, D. (C) Time series of 

spatially averaged DOD anomalies over West and South Asia (land regions 

enclosed by purple dashed lines in A). (D) Time series of spatially averaged DOD 

anomalies over Northern India Ocean (ocean regions enclosed by blue dashed lines 

in B, including the Red Sea, the Gulf of Aden, the Arabian Sea, the Gulf of Oman, 
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the Persian Gulf, the Laccadive Sea and the Bay of Bengal). (E) Time series of 

percentage changes of spatially averaged DOD anomalies over West and South Asia 

lands as in (A). (F) Time series of percentage changes of spatially averaged DOD 

anomalies over the oceans around West and South Asia as in (B). 

Retrievals from MODIS also support decreasing trends in dust loading in West and 

South Asia (Figure 2.2), consistent with the trend detected in the IASI DOD product. 

Although the MODIS AOD includes contributions from all aerosol types, the 

aerosol loading is dominated by dust during the May-July pre-monsoon season over 

the source and transport regions in West and South Asia as represented in four boxes 

shown in Figure 2.2A. The time series depict a general decline over the longer 2003-

2019, indicating the trend over 2008-2019 detected in IASI DOD is not due to the 

spurious anomaly of 2008. The CALIOP DOD also shows a declining trend since 

2007 (Figure 2.2G-I), consistently in daytime and nighttime records as well as the 

surface and mid-troposphere. At higher troposphere, percentage change in dust 

occurrence frequency (DOF) exhibits positive values, which is associated with 

increased upward movement of air from Pre-period to Post-period. Total and coarse 

mode AOD in most sites of AERONET also show decreasing trends in West and 

South Asia over the study period (Figure 2.2K, Figure A.1H). The decreasing rates 

inferred from IASI DOD and AERONET AOD are generally consistent (Figure 

2.2L).  



25 

 

 

Figure 2.2 Temporal variations of MODIS AOD, CALIOP DOD and 

AERONET AOD. (A) Spatial distribution of MODIS AOD trend (1 per year) from 

2003 to 2019. Black dots denote areas with significant trends (p < 0.05). (B) Spatial 

distribution of CALIOP DOD trend (1 per year) from 2007 to 2019. Black dots 
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denote areas with significant trends (p < 0.05). Time series of spatially averaged 

MODIS AOD over the Thar Desert (C), Baluchistan & Afghanistan (D), Northern 

Arabian Sea (E) and Persian Gulf (F) during May-July from 2003 to 2019. Time 

series of spatially averaged daily (G), daytime (H) and nighttime (I) CALIOP DOD 

over the Middle East (12°N-38°N, 32°E-62°E, red box in B) from 2007 to 2019. (J) 

Percentage decrease in dust occurrence frequency (DOF, calculated using 

CALIPSO dust profiles) over the Middle East (red square in B) from the first three 

years (2007-2009) to the last three years (2017-2019). (K) Spatial distribution of 

AERONET AOD trend (1 per year) from 2008 to 2019. (L) Time series of 

AERONET AOD and IASI DOD anomalies at AERONET sites over West and 

South Asia from 2008 to 2019. 

2.3.2 DOD decline due to global warming induced Arctic amplification 

Figure 2.3A shows that most regions in Europe, North Africa, West Asia and South 

Asia have experienced warming in the Post-period compared to the Pre-period. 

Moreover, the Arctic is warming at a faster rate than the rest of the planet, a 

phenomenon well known as Arctic amplification (Serreze & Barry, 2011). We 

quantify the variation of Arctic amplification intensity (AAI) from 2008 to 2019 by 

calculating differences in the annual average surface temperature anomalies 

between the pan-Arctic (60°-90°N) and the entire northern hemisphere (0°-90°N) 

((Fang et al., 2022), Figure 2.3B). We note a general increase in AAI over 2008-

2019, which reduces the thermal contrast between the Arctic and the Northern 

Hemisphere. AAI has been documented to have been increasing since the center of 

the second half of the 20th century and has become more pronounced after 2000 

(Ballinger, 2020; Cohen et al., 2014; England et al., 2021; You et al., 2021; Zhang 

et al., 2021). As a result, Arctic amplification exerts profound impacts on the mid-

latitude circulation pattern by perturbing storm tracks, the position and structure of 

the jet stream, and planetary wave activity (Cohen et al., 2014; Petoukhov et al., 

2013). The correlation coefficient (R) between Arctic-NH thermal contrast and dust 

loading in West and South Asia is found to be as high as 0.77 (p<0.01), which is 
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indicative that the decline in dust loading over West and South Asia may have a 

potential connection with the reduced Arctic-NH thermal contrast. We also explored 

potential impacts of other meteorological oscillations, including El Niño/La Niña, 

Madden-Julian Oscillation (MJO), IOD, and Arctic Oscillation (AO) (Figure A.2). 

However, none of them matched the trends of dust over 2008-2019.  

 

Figure 2.3 Surface warming, Arctic amplification intensity, land-sea 

temperature contrast and zonal wind. (A) Spatial distribution of surface 

temperature changes from Pre-period to Post-period. (B) Time series of Arctic 

amplification intensity anomalies over the 2008-2019 period. (C) Time series of 

averaged zonal wind at 850 hPa over the 2008-2019 period in the main dust 

transport region of West and South Asia (20°N-30°N, 40°E-70°E, black dashed 

square in A). (D) Time series of land-sea temperature contrast over the 2008-2019 

period. Land areas and sea areas are delineated in Figure 2.1A and B. 
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Arctic amplification affects atmospheric circulation, which consequently regulates 

dust transport. In the upper atmosphere, Arctic amplification weakens the polar jet 

stream by reducing the thermal contrast between the Arctic and mid-latitudes, 

favoring larger amplitude planetary (Rossby) waves (Francis & Vavrus, 2012; 

Screen & Simmonds, 2014). This allows cold polar air to move further south, 

bringing disturbances to the mid-latitude atmospheric circulation (Cohen et al., 

2014). To verify the impacts of Arctic amplification on dust activities in India and 

its source regions, we show the differences in large scale atmospheric circulation 

between the Pre-period and the Post-period (Figure 2.4). We observe a cooling in 

surface temperature in West Siberia (Figure 2.3A), which corresponds to decreased 

pressure level in the upper atmosphere, generating a deepened trough stretching 

from West Siberia to Northeast India (Figure 2.4A). Northwesterly winds behind 

the trough bring cold air from high-latitude regions, leading to elevated pressure in 

the lower atmosphere (see the purple line in Figure 2.4B). As a result, easterly and 

southeasterly wind anomalies are found over the Middle East, South Asia and the 

Indian Ocean, which reduce dust transport from Northeast Africa to the Middle East 

and further to the Indian subcontinent (Figure 2.4B). The zonal mean wind from 

20°N to 30°N indicates easterly wind anomalies throughout the lower troposphere 

(Figure 2.4C). Particularly at the surface level, we also observe a decreasing trend 

of zonal wind in the main dust transport region of West and South Asia (Figure 

2.3C), which is also coupled with the regional land-sea warming contrast. 

Compared with sea surface temperatures in the Arabian Sea, the land surface 

temperature of the Arabian Peninsula exhibits a significantly higher increase 

(Figure 2.3A). The land-sea temperature contrast defined as surface temperature 

difference between the Arabian Peninsula and the Arabian Sea shows an increasing 

trend (Figure 2.3D). This regional warming disparity leads to an intensified sea-

breeze-like circulation, partially contributing to the easterly wind anomaly and 

effectively suppressing the transport of dust from the Middle East to South Asia.  
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Figure 2.4 Spatial distribution of changes in geopotential height, atmospheric 

circulation and temperature. (A) Spatial distribution of geopotential height and 

wind changes at 100 hPa. The brown line represents the location of trough. (B) 

Spatial distribution of averaged DOD over the 2008-2019 period and wind changes 
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at 850 hPa. The climatology of wind vectors is shown in Figure A.1B. Purple lines 

indicate increased geopotential height of 8 dagpm at 850 hPa. (C) Changes of zonal 

mean air temperature and wind from 20°N to 30°N (as in the box of Figure 2.3A). 

Vertical velocity is amplified by a factor of 10 for clarity. 

Apart from transport processes, anomalies in atmospheric circulation can also 

disrupt hydrological cycles and surface winds, therefore modifying dust emission 

and deposition processes in West and South Asia. The spatial distribution of dust 

emission index (DEI) over the period of 2008-2019 shows that dust emissions are 

more intense in the Thar Desert, Middle East and North Africa (Figure A.3A), in 

line with previous studies (Chappell et al., 2023; Kok et al., 2021). DEI generally 

decreases in West and South Asia, particularly in the Middle East and border regions 

of India and Pakistan (Figure A.3B). Dust emissions in these arid and semi-arid 

regions are predominantly influenced by soil wetness, surface wind speed and 

vegetation coverage (Ginoux et al., 2012; C. Wu et al., 2022). Dust emission in the 

Middle East is the major dust source of this region (Figure A.4A) because of low 

soil water content (Figure A.4B) and high surface winds (Figure A.4C) in the 

Arabian peninsula. Same conditions are also observed in border regions of India 

and Pakistan (Figure A.5). Here we show that there is an increased NDVI, elevated 

soil moisture and weakened 10m wind speeds around the Persian Gulf (Figure A.6B, 

C, D), contributing to a remarkable decrease in dust emissions in this region (Figure 

A.6A). Similarly, we find that soil moisture increases and 10m wind speed 

decreases in border regions in northeastern India (Figure A.6F, G). However, these 

changes are comparatively less significant than those observed in the Middle East. 

The combination of enhanced soil wetness and weakened surface wind in these 

regions suppresses the amount of potential dust that can be emitted into the 

atmosphere, contributing to the lower dust loading observed during the Post-period.  

We also detect enhanced precipitation over certain parts of the oceans surrounding 

the Middle East and South Asian subcontinent (Figure A.7A, D), contributing to a 

stronger deposition. Southeasterly wind anomalies bring abundant moisture from 
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the Indian Ocean to the Middle East (Figure A.7B), accompanied by enhanced 

vertical velocity (Figure A.7C), causing a remarkable enhancement in precipitation 

in this region (Figure A.7A). The changes in both sources and sinks, accompanied 

by a decline in remote transport, lead to a more significant decline in DOD over the 

oceans (Figure 2.1F). We selected three sections in this region in Figure 2.5A, 

denoted as section S1 (15°-35°N, 40°E), S2 (15°-35°N, 62°E) and S3 (15°-35°N, 

73°E), to quantify anomalies of dust flux transported to the Middle East and South 

Asia over the 2008-2019 period. Dust transport fluxes at these three sections mostly 

display negative anomalies during the Post-period (Figure 2.5B, C and D). 

 

Figure 2.5 Annual dust flux anomalies. (A) DEI, atmospheric circulation at 850 

hPa and locations of three sections (blue line S1: 15°-35°N, 40°E, yellow line S2: 

15°-35°N, 62°E and purple line S3: 15°-35°N, 73°E). Vertically integrated dust flux 

anomalies at section (B) S1, (C) S2 and (D) S3. 

2.3.3 Attribution analysis of DOD decline  

While the changes of dust loading and its transport and emissions (both in terms of 

linear trend during the entire period, as well as the epoch difference between the 

Pre-period and the Post-period) are consistent with the AAI trend and the diagnosed 

trends of circulation and regional climate, we further verify the causality by 
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attribution analysis based on CMIP6 model experiments. GHG-only forcing 

simulations show consistent decreasing trend of dust loading in West and South 

Asia, while aerosols-only and land use-only forcings simulations produce increased 

dust in West Asia (Figure A.8). As limited models in CMIP6 provide dust loading 

output and substantial uncertainties remain in modeling dust processes (A. Zhao et 

al., 2022), we opt to compare the ensemble mean atmospheric circulation and 

surface meteorological conditions with observed patterns to strengthen the 

attribution. The historical and GHG-only model results are consistent, and both are 

in good agreement with the circulation changes shown in the reanalysis from the 

Pre-period to the Post-period with respect to geopotential height and wind patterns 

(Figure 2.6A-D). AAI derived from historical and GHG-only simulation also show 

similar trends with the ERA5 reanalysis during the period of 2008-2019 (Figure 

A.9). Note the main trough shown in Figure 2.6A, C are in similar location as in the 

reanalysis. Correspondingly, the lower atmospheric circulation over West and South 

Asia exhibits an easterly wind anomaly (Figure 2.6B, D). Elevated soil moisture 

and weakened surface wind speeds around the Persian Gulf and in border regions 

of northeastern India are also detected from GHG-only model results (Figure A.10A, 

D and Figure A.11A, D). The aerosols-only simulations exhibit different patterns of 

geopotential height and circulation in both the upper and lower layers (Figure 2.6E, 

F), which do not resemble the diagnosed main circulation patterns that drive dust 

changes. Furthermore, even with reduced surface wind speeds, soil moisture 

exhibits opposite changes to the patterns in reanalysis data in West Asia and border 

regions of India and Pakistan (Figure A.10B, E and FigureA11B, E). 
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Figure 2.6 Spatial distribution of geopotential height and atmospheric 

circulation changes. Spatial distribution of changes in geopotential height and 

wind from the Pre-period to the Post-period in West and South Asia at (A) 100 hPa 

and (B) 850 hPa from historical all forcing experiments. (C) and (D) are from GHG-

only forcing experiments. (E) and (F) are from aerosols-only forcing experiments. 

Previous studies highlighted the contributions of local land use changes to the 

decline of dust loading in West and South Aisa (Jin & Wang, 2018; Wenwen Xia et 

al., 2022), and here we also evaluate the response of dust loading to the land use-
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only forcing. As the land use forcing simulations were only extended to 2014, we 

conducted a similar analysis from 2008 to 2014 with the results obtained from 

historical simulations covering the same period (Figure A.12). Land use forcing 

induces an unfavorable atmospheric circulation condition for declining dust loading 

over West and South Asia, which is not in line with the patterns observed in both 

reanalysis and historical simulations. Soil moisture and surface wind speeds from 

land use-only model results also show inconsistency with patterns in reanalysis data 

(Figure A.10C, F and FigureA11C, F).  

Responses of dust loading in West and South Asia to an extreme CO2 concentration 

enhancement are also evaluated to further support our primary conclusion of 

attributing DOD decline in these regions to Arctic amplification. Average dust 

loading over West and South Asia during the longer period of 1979-2014 decreases 

when CO2 concentrations are 4 times higher than the historical values, particularly 

in South Asia (Figure A.13A). The annual load of dust over West and South Asia is 

consistently lower in most years during this period (Figure A.13B), with decreased 

zonal wind anomaly (Figure A.13C) caused by consistently increased AAI (Figure 

A.13B) and land-sea temperature contrast (Figure A.13C). Large scale atmospheric 

circulation also shows a similar weaker low-pressure center over West Siberian in 

the upper atmosphere and a high-pressure center over the Iranian Plateau in the 

lower atmosphere (Figure A.13E, F), creating easterly wind anomalies that inhibits 

dust transport from the Middle East to South Asia.  

2.4 Summary and Discussion  

While some previous studies demonstrated the influence of land management 

practices on dust loading reduction in West and South Asia (Asutosh et al., 2021; 

Jin & Wang, 2018; Pandey et al., 2017; Wenwen Xia et al., 2022), our research 

provides an additional dimension to this understanding by shedding light on the role 

of climate change-induced alterations in atmospheric circulation. Undoubtedly 

local land management remains a vital contributor to dust loading dynamics, and 
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our findings, by showing the indirect effect of circulation on local rainfall and soil 

moisture, corroborate the efficacy of sustained vegetation expansion in mitigating 

dust emissions. However, the novel insight from our analysis is the increasingly 

dominant influence of circulation change on the broader global climate context. 

Changes in atmospheric circulation patterns, driven by global climate dynamics 

shifts, have emerged as the principal driver behind the observed recent dust 

reductions in West and South Asia. Similar results, that emphasize the dominant 

role of changes in atmospheric circulation apart from local land management, have 

also been detected in other dust-vulnerable regions of the world such as East Asia 

(Liu et al., 2020; Mao, Gong, et al., 2011; Mao, Ho, et al., 2011), North Africa 

(Moulin et al., 1997; Salvador et al., 2014) and West Australia (De Deckker, 2019; 

Ekström et al., 2004).  

Since dust aerosols are net climate coolers, we used CMIP6 simulation outputs and 

conducted CESM simulations to explain how declining dust affects temperature and 

AAI. We find that reduced aerosols cause warming in mid-latitudes of northern 

hemisphere but create less influences on the Arctic (Figure A.14A), which 

decreases AAI from 2008-2019 (Figure A.14B). Our CESM simulations also 

confirm that radiative effects of dust are limited to high dust loading areas (Figure 

A.15), suggesting that declines in dust in West and South Asia might not affect 

Arctic warming to enhance AAI. This feedback is masked by continuously 

increasing amount of GHGs. The decreasing dust loading in West and South Asia 

may be considered as a positive trend, but it still underscores the ongoing need to 

address dust issues in this region. The shift in dust loading caused by Arctic 

amplification under the background of global warming in recent years provides 

hints on potentially negative impacts on the environment in West and South Asia 

with global efforts to curb future warming (Figure A.16). Dust loading declines 

after 2020 under the high warming SSP585 scenario at the end of 21st century due 

to higher GHG levels (Figure A.16). However, dust loading over West and South 

Asia is projected to decrease until around 2050 and then increase towards the end 
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of this century under the SSP126 scenario (Figure A.16), which is highly associated 

with changes in GHG emissions under this scenario. Overall, the dust loadings in 

the cleaner SSP126 scenario which reaches carbon neutrality by mid-century is 

higher than SSP585 projection by at least 10% in 2100s.  

These model projections suggest a possible increase in dust loading in West and 

South Asia under a global “sustainability” scenario with anthropogenic radiative 

forcing decreasing in the future. Therefore, we argue that in addition to controlling 

GHG emissions, more local efforts need to be devoted to countering desertification 

in West and South Asia to reduce potential natural dust emissions. In arid and semi-

arid regions, continued desertification due to human activities could worsen 

airborne dust level, even when weather conditions are not conducive for dust 

emission (Kundu & Dutta, 2011; Mainguet, 2012). Although natural sources 

contribute more significantly to total dust loading, rapid urbanization and 

industrialization, along with increased construction activities, road dust and 

vehicular emissions, also contributed to high levels of anthropogenic dust emissions 

in West and South Asia in recent decades (W. Xia et al., 2022; Yadav et al., 2017). 

Recent declines in total DOD did not necessarily imply an improved surface air 

quality in the future, and more attention is still needed to monitor urban-level dust 

concentration.  

Besides, a decrease in dust load may contribute positively to dust exposure and 

respiratory health, it could also result in increased warming over the coming critical 

decades (Lelieveld et al., 2019; Nair et al., 2023). Partly due to the continuous 

decline in dust loading under the SSP585 scenario, the surface temperature of West 

and South Asia tends to increase at a faster rate in the later years of 21st century, 

and the temperature differences can reach as high as ~0.4°C (Figure A.17A). While 

with high dust aerosol under the SSP126 scenario, surface temperature of West and 

South Asia are generally lower than the global mean (Figure A.17B). Debnath et al. 

(Debnath et al., 2023) concluded that 30%-60% decrease in dust loading over West 

and South Asia in June-July-August-September season of 2017 led to 15-30 W m-2 



37 

 

increase in clear-sky surface net radiation. Asutosh et al. (Asutosh et al., 2021) 

reported that the 17% decline in DOD over the North-Western part of India from 

2001-2015 led to increases in the top and bottom of the atmosphere shortwave 

radiative forcing (7 and 11.6%, respectively), but an overall decline in the 

atmospheric heating and atmospheric radiative forcing (~16%). Based on our 

CESM simulation results, annual average surface air temperature in West and South 

Asia increases about 0.15 °C in 2008 if dust loading declines to zero. All these 

results suggest that residents in West and South Asia are likely to experience higher 

temperature if the declining trend persists. Such increase in temperature due to 

declining dust could amplify health harms under the context of rapid ongoing 

urbanization and increasing GHGs. 
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Chapter 3: Dominant influence of West Asia dust on 

South Asia monsoon precipitation enables pre-seasonal 

prediction 

3.1 Introduction  

The annual hydrological cycle in South Asia is dominated by clear dry and wet 

seasons due to the onset and demise of the South Asian Summer Monsoon (SASM) 

(Goswami et al., 1999; Goswami & Mohan, 2001). Approximately 80% of 

precipitation in India falls during the monsoon season (June to September, JJAS), 

serving as the life blood of more than one sixth of the world’s population. Climate 

change is making SASM patterns increasingly erratic and potentially detrimental, 

featuring more intense rainfall and prolonged dry spells (Singh et al., 2014; Turner 

& Annamalai, 2012). From 1979 to 2022, summer monsoon precipitation increased 

by a substantial 40% over Northwest India (Joseph et al., 2024). On top of mean 

precipitation, extreme precipitation and consequent flooding received greater 

concerns regarding their impact on society and infrastructure (Ali et al., 2019; Singh 

& Kumar, 2013). More than 1000 deaths were reported in Maharashtra, India during 

the catastrophic flooding event of 2005 (Singh & Kumar, 2013). The famine that 

led to 5.5 million deaths in India in 1877 was also associated with 30% lower 

monsoon rainfall (Madolli et al., 2022). It is thus of prime importance to better 

foresee monsoon precipitation in India to protect infrastructure, preserve lives and 

minimize economic detriment. 

A multitude of efforts were dedicated to predicting SASM precipitation using 

statistical, empirical and dynamical models (Madolli et al., 2022). Statistical models 

typically employ regressions with sea surface temperature (SST) and atmospheric 

indices such as El Niño and Southern Oscillation (ENSO) and Indian Ocean Dipole 

(IOD) one season ahead as predictors (Gerlitz et al., 2016; J. Li et al., 2016; Wang 

et al., 2014; Webster & Hoyos, 2004; T. Zhang et al., 2022). This method has long 

been adopted by the India Meteorological Department (IMD) as an operational 
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model for long-range forecasting of SASM rainfall for over a century (Madolli et 

al., 2022). Nevertheless, extreme years were largely missed, partly triggered by the 

neglect of intraseasonal fast forcings. Monsoon precipitation in South Asia is 

further influenced by short-lived regional forces, such as anthropogenic aerosols 

and mineral dust (Guo et al., 2015; Jin et al., 2014; Z. Li et al., 2016; Sherman et 

al., 2021; Vinoj et al., 2014). South Asia is a global aerosol pollution hotspot, and 

elevated aerosol loading there, mainly contributed by human activities, has been 

linked to observed precipitation decreases since the latter half of the 20th century 

(Bollasina et al., 2011; Bollasina et al., 2014; Ganguly et al., 2012a, 2012b; Kishore 

et al., 2022; Undorf et al., 2018). The role of mineral dust in SASM precipitation 

was also highlighted over the past two decades (Alam et al., 2014; Xiong et al., 

2020). Jin et al. (2016) detected that 70% of the total rainfall in summer increase 

over South Asia and surrounding oceans was due to dust in season, with dust from 

the Middle East contributing to 77% of this increase. Studies have reported that dust 

over West Asia and the Arabian Sea in the monsoon season exerts large-scale 

convergence over the Arabian Peninsula and increases dust and moisture 

transported to India, leading to enhanced SASM rainfall (Ghosh et al., 2023; Jin et 

al., 2021; Solmon et al., 2015; Vinoj et al., 2014). Monsoon favors dust transport to 

the Arabian Sea, further enhancing the elevated heat pump (EHP) effect to promote 

precipitation in a positive feedback loop (Jin et al., 2015; Lau & Kim, 2006; Vinoj 

et al., 2014). Our previous research revealed a recent decreasing trend of dust over 

South and West Asia, and we attributed it to Arctic amplification under increased 

presence of greenhouse gases (GHG) (Fan Wang et al., 2024). Concurrently, SASM 

precipitation over the past two decades exhibits significant increasing and 

decreasing trends (Figure B.1A). We demonstrated previously the seasonal 

predictability of Indian wintertime aerosol pollution (Gao et al., 2019) and co-

occurrence of heat and ozone extremes in China (Gao et al., 2023; Gao et al., 2024; 

Xiao et al., 2022a). Considering the potential linkage between dust and precipitation 

and the critical influence that weather and climate exert on dust emissions, transport 
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and deposition (Ginoux et al., 2012; Fan Wang et al., 2024; C. Wu et al., 2022), we 

contend that it is conceivable to foresee SASM anomalies by developing a pre-

seasonal prediction of dust levels. In light of ongoing efforts to improve predictions 

of seasonal to interannual climate variability, the predictability has the potential to 

be extended.   

This study aims to establish a pre-seasonal prediction of SASM precipitation 

through the forecast of dust levels in West Asia. We initially identified significant 

trends in dust optical depth (DOD) over West Asia and precipitation in South Asia 

during the same period, establishing a strong linear link between dust and SASM 

using both statistical and numerical models. The leading modes of spatiotemporal 

variations of dust were detected using empirical orthogonal function (EOF) 

decomposition, which were further associated with springtime sea surface 

temperature (SST) anomalies in the Pacific Ocean, southern Indian Ocean, and 

tropical southern Atlantic Ocean. Both causality tests and coupled ocean-

atmosphere model experiments confirmed these teleconnections and a 

multivariable linear regression (MLR) model was then constructed to predict dust 

levels using identified springtime SST anomalies. Given the strong relationship 

between dust levels in West Asia and SASM precipitation, we can foresee SASM 

precipitation one season in advance. 

3.2 Materials and Methods 

3.2.1 Satellite retrievals and reanalysis data 

Daily gridded precipitation data at a spatial resolution of 0.25° × 0.25° in JJAS from 

2008 to 2019 were obtained from the National Oceanic and Atmospheric 

Administration (NOAA) Climate Prediction Center (CPC) Global Unified Gauge-

Based Analysis of Daily Precipitation dataset 

(https://www.psl.noaa.gov/data/gridded/data.cpc.globalprecip.html). Data quality 

was ensured by combining all information from CPC with the optimal interpolation 

objective analysis technique (Chen et al., 2008; Xie et al., 2007). Daily gridded 
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dust and precipitation outputs under this experiment. Due to the uncertainty of dust 

emissions in different models (Aryal & Evans, 2021; A. Zhao et al., 2022), we could 

explore how precipitation changes under different dust responses to the same 

forcing of GHG emissions. 

3.2.3 Coupled model experiments 

We conducted both regional and global coupled climate-chemistry model 

simulations to examine responses of precipitation to aerosols. WRF-Chem version 

3.9.1 was configured over West and South Asia with 120 × 100 horizontal grids at 

50 × 50 km resolution and 27 vertical layers. Gas phase chemistry and aerosol 

chemistry were simulated with the Regional Atmospheric Chemistry Mechanism 

(RACM, Stockwell et al., 1997) and the Goddard Chemistry Aerosol Radiation and 

Transport model (GOCART, Chin et al., 2000). The Air Force Weather Agency 

(AFWA) dust emission scheme was adopted to simulate dust emissions from the 

surface (LeGrand et al., 2019). The Grell 3D Ensemble cumulus scheme (Grell, 

1993) and the Morrison 2–moment microphysics scheme (Morrison et al., 2009) 

were used to simulate aerosol-cloud interactions and precipitation. Other main 

selected physical schemes included the Noah land surface model (Tewari et al., 

2004), the Yonsei University planetary boundary layer scheme (Noh et al., 2006), 

the RRTM longwave radiation (Mlawer et al., 1997) and the Goddard shortwave 

radiation (Chou et al., 1998) schemes. Since we only focused on precipitation 

responses to dust changes, anthropogenic and biogenic emissions were not included. 

The 6-hourly National Centers of Environmental Prediction (NCEP) final analysis 

(FNL) dataset (https://rda.ucar.edu/datasets/d083002/) was adopted as 

meteorological initial and boundary conditions. Four experiments, named DUST_H, 

DUST_H_NDRE, DUST_L and DUST_L_NDRE, were performed for the whole 

monsoon season (JJAS) in 2018 when abnormal turning points of DOD and 

precipitation occurred simultaneously. DUST_H was simulated using the original 

dust emission intensity which led to relatively high dust loading, while dust 

emission was decreased by 15% in DUST_L. Since dust loading in the atmosphere 
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is influenced by multiple processes in addition to emission, the net change in 

loading is not exactly equal to the decreased emission. Accordingly, ~ 30% 

reduction in dust loading over West Asia and the Arabian Sea was found in DUST_L 

simulation, which was comparable to the observed dust decline from 2018 to 2019. 

DUST_H_NDRE and DUST_L_NDRE were conducted using the same settings as 

DUST_H and DUST_L, respectively, but without aerosol direct radiative effect. 

The difference between DUST_H and DUST_L represents the impact of reduced 

dust, while the difference between DUST_H_NDRE and DUST_L_NDRE reflects 

the aerosol indirect effect of dust. The aerosol direct radiative effect of dust can be 

derived by comparing these two differences.  

CESM v2.1.3 (CESM2) was employed to investigate the responses of dust loading 

to changes in springtime SST patterns. The selected component set (compset) was 

FHIST, the robustness of which has been validated extensively (A. Gettelman, C. 

Hannay, et al., 2019). FHIST was configured with a horizontal resolution of 0.9° × 

1.25° and 70 vertical layers. The Community Atmosphere Model version 6 (G. 

Danabasoglu et al., 2020) was used to simulate atmospheric processes. The Data 

Ocean Geophysical Model (Hurrell et al., 2008) was used to provide SSTs, which 

allows the applications of SST anomalies for sensitivity experiments. Land 

processes were characterized by the Community Land Model version 5 (CLM5, 

Lawrence et al., 2019), and other selections included the Sea Ice Model version 5 

(Turner & Hunke, 2015) for sea ice, the Model for Scale Adaptive River Transport 

(Li et al., 2013) for river runoff, the Community Ice Sheet Model Version 2 

(Lipscomb et al., 2019) for land ice, and the Stub wave component for wave. 

Anthropogenic emissions were obtained from the Community Emissions Data 

System (Hoesly et al., 2018), while biomass-burning emissions were provided by 

Van Marle et al. (2017). Biogenic emissions were calculated online using the Model 

of Emissions of Gases and Aerosols from Nature (MEGAN) version 2.1 (Guenther 

et al., 2012). Corresponding to the decomposed climate modes, four sets of 

simulations were designed with springtime (MAM) SST, namely CESMCTRL, 
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3.3 Results 

3.3.1 Decline in West Asia DOD dominates precipitation changes in South 
Asia 

During the monsoon seasons from 2008 to 2019, precipitation primarily occurs over 

South Asian subcontinent excluding Pakistan (Figure B.1A). Low dust loading is 

thus found over South Asia, but high DOD exists over West Asia and the Arabian 

Sea (Figure B.1B). From 2008 to 2019, changes in annual monsoon precipitation 

vary spatially across South Asia, with notable decreasing trend in North India but 

increasing trend in Bangladesh (Figure 3.1A). The leading mode of monsoon 

precipitation (EOF1), accounting for ~ 40.2% of the variance, aligns spatially with 

observed trends (Figure 3.1B). Significant spatial correlation between precipitation 

trends and EOF1 is identified (0.71, P < 0.01). Over the study period, the principal 

component of EOF1 (PC1) exhibits an increasing trend (Figure 3.1C). In line with 

the observed decline in DOD over West Asia and the Arabian Sea (Figure 3.1D), 

regression of DOD on PC1 also reveals significant negative coefficients in these 

regions (Figure 3.1E). The mean DOD in West Asia (defined as DODWA, land 

regions enclosed by the blue line in Figure 3.1D) displays a notably decreasing 

trend of -0.013 year-1, significantly correlating with PC1 (-0.73, P < 0.01) and 

surpassing correlations of PC1 with any other potential atmospheric systems or SST 

indices that were explored before (Table B1). The correlation coefficient between 

DODWA and SASM precipitation reveals significant correlations in North India 

(positive) and West India and Bangladesh (negative) between DODWA and gridded 

precipitation (Figure 3.1F). Composite analysis of precipitation between high and 

low DODWA years displays similar spatial patterns of precipitation changes across 

South Asia (Figure B.2), underscoring the potential role of dust in influencing 

interannual variations of SASM precipitation.  
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Figure 3.1 Monsoon precipitation and dust optical depth (DOD). (A) Spatial 

distribution of monsoon precipitation trend from 2008 to 2019. Black dots denote 

areas with significant trend (P < 0.05). (B) Spatial distribution of the first leading 

mode (EOF1) of monsoon precipitation. (C) Time series of the principal component 

of EOF1 (PC1) and average DOD over West Asia (DODWA, blue line-circled 

regions in D). (D) Spatial distribution of DOD trend from 2008 to 2019. Only girds 

with significant trend (P < 0.05) are displayed. (E) Regression of DOD on PC1. (F) 

Spatial distribution of correlation between detrended DODWA and detrended 

monsoon precipitation. Black dots denote areas with significant trend (P < 0.05). 

To illustrate how DODWA influences SASM precipitation, changes in 

meteorological variables from the Pre- (2008-2013) and Post- (2014-2019) periods 

are shown in Figure 3.2. During monsoon months, winds blow from the Arabian 

Sea and the Bay of Bengal toward the India subcontinent, transporting large 

amounts of water vapor to the land and resulting in moisture convergence over 

North India and Bangladesh (Figure 3.2A). The reduction in DOD over West Asia 

regulates surface temperature and vertical thermal profile, resulting in changes in 

vertical velocity (Jin et al., 2021; Jin et al., 2014; Jin et al., 2015; Vinoj et al., 2014). 

As DODWA reduction can cause surface heating and cooling in mid-troposphere, we 
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observe an enhancement of convective lifting at low troposphere, particularly over 

land regions (Figure 3.2B). This leads to a high-pressure system at 850 hPa over 

West Asia and the northern part of the Arabian Sea and its coastal areas (Figure 

3.2C), where divergent flow favors the northwesterly wind anomaly over North 

India and easterly wind anomaly over the Arabian Sea (Figure 3.2C, D). The 

northwesterly wind anomaly over North India reduces water vapor transport further 

into the inland regions, enhancing moisture divergence over North India while 

increasing the transport of water vapor to Bangladesh (Figure 3.2E). Affected by 

decreased vertical velocity over North India simultaneously (Figure 3.2F), 

precipitation declines in North India but increases in Bangladesh.  

 

Figure 3.2 Climatic average and changes in meteorological variables. A Spatial 

distribution of average vertical integral of moisture divergence (VIMD) and 

atmospheric circulation at 850 hPa during the period of 2008-2019. Changes in 

zonal mean vertical velocity from 40°E to 70°E (B), and zonal mean wind and wind 

speed from 15°N to 25°N (D) between the Pre- (2008-2013) and Post- (2014-2019) 

period. Vertical velocity in D is amplified by a factor of 10 for clarity. Spatial 

distribution of changes in atmospheric circulation at 850 hPa (C), VIMD (E) and 

vertical velocity at 500 hPa (F) between the Pre- and Post- period.  
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Intensified SASM precipitation could be also associated with the warming climate 

(Kishore et al., 2022). However, contrasting trends in dust loading and precipitation 

under the same GHGs forcing in the sixth version of the Model for Interdisciplinary 

Research on Climate (MIROC6) (Figure B.3A, consistent with our observations in 

Figure B.3D) and the Meteorological Research Institute Earth System Model 

Version 2.0 (MRI-ESM2.0) (Figure B.3B, E) suggest the critical role of dust 

variations in precipitation responses, rather than global warming. Dust loading in 

the Norwegian Earth System Model (NorESM2) shows generally decreasing trend 

across the domain but increases over the center of the Arabian Peninsula (Figure 

B.3C). Precipitation exhibits similar changes as that in MRI-ESM2.0 model (Figure 

B.3D), highlighting the remote effect of dust increase in West Asia on SASM 

precipitation. To further confirm the dominant role of sub-seasonal dust loading on 

monsoon precipitation over South Asia, we applied the nonhydrostatic WRF-Chem 

model that considers the direct and indirect effects of dust to explore the impacts of 

DODWA reduction on precipitation changes in South Asia. Because dust loading in 

the atmosphere is influenced by various processes, including emission, transport 

and deposition, a series of sensitivity tests were conducted to replicate observed 

dust changes. Ultimately, we found that after reducing dust emissions by 15% in 

WRF-Chem model, simulated dust over West Asia declines by ~35%, which is close 

to the observed dust decline in 2019 compared to 2018 (34.3%, from 0.239 to 0. 

0.157) (Figure B.4A, B). Precipitation exhibits similar spatial responses to dust 

reduction as those observed in precipitation changes between 2018 and 2019 

(Figure B.4C, D). Declined dust loading leads to an easterly wind anomaly over the 

entire area and weakens monsoon circulation (Figure B.5A). This inhibits moisture 

transport further inland in South Asia, resulting in decreased cloud cover and 

precipitation over inland regions (Figure B.5B). Precipitation changes in South Asia 

are predominantly driven by the direct radiative effect of dust reduction (Figure 

B.4E). The indirect effect of dust reduction generally results in decreased 

precipitation due to a decline in cloud condensation nuclei and ice nuclei and is 
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more pronounced in the eastern regions (Figure B.4F), where dust loading is 

comparatively higher during the monsoon season (Figure B.1B). Jin et al. (2016) 

also found dust-induced changes in SASM precipitation were largely attributed to 

direct effects on heating the mid-to-upper troposphere over West Asia based on 

WRF-Chem ensemble experiments. Solmon et al. (2015) utilized the Regional 

Climate Mode version 4 (RegCM4) model to reproduce similar SASM precipitation 

responses to the absence of dust over South and West Asia.  

3.3.2 Leading modes of DOD and associated pre-seasonal SST anomalies 

Considering the established relationship between dust and precipitation and given 

that PC1 of precipitation variations is more strongly correlated with DODWA than 

any previously explored factors (Table S1), pre-seasonal knowledge of dust loading 

possesses great promise for predicting SASM rainfall. The first two leading modes 

of DOD (EOF1 and EOF2) account for 56% and 12% of the total variance, 

respectively (Figure 3.3). EOF1 and EOF2 are statistically distinguishable 

according to the criterion proposed by North et al. (1982) (Figure B.6). The spatial 

distribution of EOF1 reveals negative values across the entire domain, and PC1 

generally increases from 2008 to 2019 (Figure 3.3A, C). This mode is associated 

with the significant decreasing trend of DOD during this period (Figure 3.1D). 

EOF2 exhibits positive values over West Asia but negative values over the Arabian 

Sea (Figure 3.3B). The PC of EOF2 (PC2) exhibits strong interannual variations 

(Figure 3.3D).  
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Figure 3.3 Features of the first two leading modes. Spatial distribution of EOF1 

(A) and EOF2 (B) of dust optical depth (DOD). Time series of PC1 (C) and PC2 

(D) and related sea surface temperature indices. 

To identify corresponding SST indices that can be adopted as predictors, we 

calculated correlations of SST during the monsoon season (JJAS), springtime 

(March, April and May, MAM) and wintertime (December, January and February, 

DJF) with each PC. SST anomalies observed in winter show less connection with 

PCs and show rarely significant correlation with PC2 (Figure B.7). The correlation 

map for spring SST anomalies closely resembles that for the monsoon season 

(Figure 3.4), suggesting that springtime SST may serve as a basis for seasonal 

predictions. For PC1, a robust positive phase of the Pacific Decadal Oscillation 

(PDO) is detected over the Pacific Ocean (Mantua & Hare, 2002), with warming 

over the eastern North Pacific, while cooling over the central and western North 
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Pacific (Figure 3.4A). The correlation coefficient between PC1 and PDO index is 

0.62 (P < 0.05). These significant climatic anomalies usually persist from spring 

through the summer (Dai, 2013; Wang et al., 2012), as suggested by an even higher 

correlation coefficient (0.71, P < 0.05) in spring (Figure 3.4B). The positive phase 

of PDO often coincides with a warmer Indian Ocean (Krishnamurthy & 

Krishnamurthy, 2014; Yang et al., 2007). Consequently, we detected a significant 

correlation between SST anomalies over the southern Indian Ocean (SIO, 30°S-0°, 

30°E-90°E) and PC1, with correlation coefficients of 0.70 (P < 0.05) and 0.82 (P < 

0.05) in JJAS and MAM, respectively. Areas exhibiting significant correlation 

between PC2 and JJAS SST are primarily located in the tropical northern Atlantic 

Ocean (Figure 3.4C), where the SST anomaly is commonly used to define the 

Tropical Northern Atlantic Index (TNA, 5°N-25°N, 15°W-55°W) (Enfield et al., 

1999). The correlation coefficient between TNA and PC2 reaches 0.72 (P < 0.05). 

This summertime SST anomaly usually originates from the tropical southern 

Atlantic Ocean warming in spring motivated by the northward shift of the Atlantic 

intertropical convergence zone (ITCZ) (Enfield & Mayer, 1997; Xie & Carton, 

2004) and the Atlantic Meridional Overturning Circulation (AMOC) (Baringer et 

al., 2017; Buckley & Marshall, 2016). We also find a significant correlation 

between springtime Tropical Southern Atlantic index (TSA, 20°S-0°, 25°W-5°E) 

and PC2 (0.58, P < 0.05) (Figure 3.4D).  
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divergence, precipitation, soil moisture, 10m wind speed and dust emission index 

(DEI) during the monsoon season against each SST signal (Figure B.8). For PC1, 

affected by the positive phase of PDO, descending motion typically prevails over 

the western Pacific Ocean (Krishnamurthy & Krishnamurthy, 2014; R. Zhang et al., 

2017), leading to an easterly wind anomaly in the lower troposphere over the 

Arabian Sea and an southeasterly wind anomaly over the eastern Arabian Peninsula 

(Figure B.8A). The coinciding Indian Ocean warming also decreases the land-sea 

thermal gradient, which weakens monsoon circulation and leads to an easterly wind 

anomaly over the Arabian Sea (Roxy et al., 2015). Our previous study also detected 

the contribution of warming in the Indian Ocean to a potential weakening of the 

monsoon circulation over India (Gao et al., 2018). The direct impact of this 

atmospheric circulation anomaly is the suppression of west-to-east dust transport 

over West Asia and the Arabian Sea. In addition to transport processes, anomalies 

in atmospheric circulation also regulate hydrological cycles and surface winds, 

thereby modifying dust emission processes in West Asia (Fan Wang et al., 2024). 

The prevailing wind direction over the Arabian Peninsula, the major source of dust 

in West Asia, is northeast (Figure 3.2A). Due to the enhancement of the 

southeasterly wind anomaly, surface wind speed in this region declines (Figure 

B.8B). The southeasterly wind anomaly also reduces moisture divergence (Figure 

B.8A) and enhance the wetness around the Persian Gulf (Figure B.8C). Changes in 

both wind and moisture conditions contribute to the reduction of dust emissions 

(Figure B.8D). Consequently, dust loading across the entire region exhibits a 

decreasing trend. For PC2, the positive tropical northern Atlantic Ocean SST 

anomaly generates quasi-stationary Rossby wave trains over mid-latitude Eurasia 

(Wu et al., 2009; Zhu et al., 2023), stimulating anomalous anticyclone enhancement 

over the Arabian Peninsula (Liu et al., 2023) (Figure B.8E). The exacerbated hot 

and dry conditions resulting from descending flow reduce soil moisture (Figure 

B.8G), leading to increased dust emission (Figure B.8H) even though surface wind 

speed decreases (Figure B.8F). Warm tropical northern Atlantic Ocean also induces 
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a tropically-confined response consisting of low level easterly wind anomalies over 

the Indian Ocean (Li et al., 2008) (Figure B.8E), which inhibits dust transport to the 

Arabian Sea. Consequently, a positive response and a slightly negative response of 

DOD can be observed over the Arabian Peninsula and the Arabian Sea, respectively 

(Figure 3.3C).  

To further verify the proposed mechanism of springtime SST anomalies' impacts on 

monsoon season DOD, we imposed these SST anomalies (Figure B.9E) in the 

CESM2 model to examine the influences of the positive phase of PDO and tropical 

southern Atlantic Ocean SST anomalies. Because there is no soil water content 

variable for all kinds of land use in CESM2, we adopted surface water flux (positive 

indicates moisture going into the atmosphere) to quantify ground wetness changes. 

Consistent with the results from statistical analysis, the springtime positive phase 

of PDO contributes to an easterly wind anomaly over West Asia (Figure 3.5A), 

leading to a reduction in dust transport. Changes in atmospheric circulation due to 

the PDO anomaly also lead to reduced surface wind speed (Figure 3.5B) and 

increased water flux into the ground (Figure 3.5C), contributing to the decline in 

dust emissions over West Asia (Figure 3.5D). Accordingly, the simulated responses 

of DOD are consistent with the spatial distribution of EOF1. The tropical southern 

Atlantic Ocean SST anomaly results in an anticyclone anomaly over the Arabian 

Peninsula (Figure 3.5E), where descending motion contributes to dry surface 

conditions (Figure 3.5G), elevating surface dust emission (Figure 3.5H). As a result, 

spatial distribution of DOD response to springtime tropical southern Atlantic Ocean 

SST anomaly is in line with that from EOF2, characterized by a significant elevation 

of dust loading over the Arabian Peninsula but a slight decrease over the Arabian 

Sea (Figure 3.5E). Consistent spatial distributions of simulated DOD responses to 

springtime positive phase of PDO and warming over the tropical southern Atlantic 

Ocean confirm the linkages between the detected pre-seasonal signals and monsoon 

season dust loading in West Asia. 
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on the predicted DODWA, we generated a two-step gridded seasonal prediction for 

precipitation in South Asia (regions enclosed by the purple line in Figure 3.1A) 

using the established linear regression model. This model provides reliable 

monsoon precipitation predictions during the period over 2008-2019, with a R2 

value to be 0.89 (P < 0.01), and the root mean square error (RMSE) and the mean 

error (ME) to be 195.98 mm and 118.77 mm, respectively (Figure 3.6B). 

Independent validation of the model, using DODWA and monsoon precipitation 

predictions for 2020, further confirms its accuracy. The predicted DOD value and 

spatial distribution of precipitation in 2020 is close to the observation (Figure 3.6A, 

C; Figure B.10A, B). The R2, RMSE, and ME values for the predicted precipitation 

are 0.85 (P < 0.01), 296.00 mm, and 184.05 mm, respectively (Figure 3.6C). The 

MLR and linear regression model could be updated by including observations from 

2020 to make predictions for 2021, and this process could continue for subsequent 

years. However, since DOD data from the Infrared Atmospheric Sounding 

Interferometer (IASI) Metop-A ended in 2021, we did not update the models 

annually for further independent evaluations and solely evaluated the prediction 

performance of precipitation. Based on the current model, monsoon precipitation 

predictions from 2020 to 2024 also align closely with observed values (Figure 3.6D; 

Figure B.10C, D), with a R2 of 0.84. 
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Figure 3.6 Pre-seasonal dust optical depth (DOD) and monsoon precipitation 

predictions. (A) Time series observed and predicted DOD over West Asia. (B) 

Density scatters plot of observed and predicted monsoon precipitation over South 

Asia during the period over 2008-2019. (C) Density scatter plot of observed and 

predicted monsoon precipitation over South Asia in 2020. (D) Density scatter plot 

of observed and predicted monsoon precipitation over South Asia during the period 

over 2020-2024. 

3.4 Summary and Discussion 

Monsoon precipitation is crucial for water resource management, drought and 

flooding hazard mitigation, and food security in South Asia, yet a reliable pre-

seasonal prediction has not been well established. One of the reasons is the 

ignorance of local short-lived climate forces. In this study, we identified a linear 

correlation between dust loading in West Asia and SASM precipitation. Leveraging 

this relationship, a regression model was developed to predict monsoon 
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precipitation based on DOD in West Asia. Dust over the Arabian Sea and Arabian 

Peninsula plays a crucial role in regulating monsoon circulation, thereby 

influencing moisture convergence and divergence patterns in South Asia. The 

impact of dust in West Asia on SASM precipitation was confirmed through both 

statistical and numerical models. A MLR model was developed to predict DOD 

during the monsoon season, using recognized springtime SST anomalies in the 

Pacific Ocean, southern Indian Ocean, and tropical southern Atlantic Ocean as 

inputs. With these statistical models, monsoon precipitation can be forecasted for 

one season in advance, benefiting agricultural planning, water resource 

management, and disaster preparedness and offering more informed decision-

making across various sectors. 

Predicting Indian summer monsoon precipitation has long posed challenges in 

tropical climate forecasting. Despite extensive efforts to enhance predictive model 

accuracy, advancements in physical–empirical models have remained limited in 

recent decades (Wang et al., 2014). A primary issue is that models based on pre-

seasonal atmospheric and oceanic signals frequently fail to capture the immediate 

response of precipitation to intra-seasonal disturbances, such as aerosols (Lau et al., 

2008). Given the significant role of dust loading over West Asia in influencing 

SASM precipitation and the strong linear correlation between them, our results 

provide an indirect method to foresee precipitation using pre-seasonal forecast of 

monsoon season dust levels. Previous efforts of pre-seasonal predictions of SASM 

precipitation achieved skill scores ranging from 0.47 to 0.7 (Gerlitz et al., 2016; J. 

Li et al., 2016; Wang et al., 2014; Webster & Hoyos, 2004; T. Zhang et al., 2022). 

While a direct comparison is challenging due to differences in evaluation regions 

and time ranges, our results demonstrate an improvement in predictability, 

highlighting the potential of dust-based predictors in advancing SASM 

precipitation forecasts.  

As anthropogenic aerosol emissions decline, natural aerosols are expected to play 

an increasingly important role in shaping both regional and global climates (Gomez 
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et al., 2023; Mahowald et al., 2024). Unlike the irregularity of anthropogenic 

emissions, natural aerosol emissions are primarily governed by regional weather 

patterns and surface conditions, making their atmospheric concentrations more 

predictable. Further efforts are needed to develop more reliable seasonal predictions 

for natural aerosols to enhance the understanding of their interactions with climate 

and regional air quality. Since 2012, the NCEP Climate Forecast System (CFS) 

Version 2 has been incorporated into the operational models of the IMD 

(Krishnamurthy, 2017). However, evaluations of CFSv2’s performance in 

forecasting the Indian Summer Monsoon have pointed out its low accuracy in 

predicting SASM precipitation (Jiang et al., 2013; Krishnamurthy, 2017; Pokhrel et 

al., 2016; Ramu et al., 2016), significantly affected by the interannual variability 

including interdecadal Pacific oscillation and ENSO (Huang et al., 2020; Saha et 

al., 2019; Wang et al., 2015). To address this concern, many studies have adopted a 

multi-model ensemble approach by combining the most skillful dynamical seasonal 

models for the region, which has effectively improved prediction accuracy 

(Chowdary et al., 2014; Jie et al., 2017; Krishnamurti & Kumar, 2012; Stacey et al., 

2023). In recent years, machine learning-based monsoon prediction models 

utilizing artificial neural networks have also been developed (Krakauer, 2019; Miao 

et al., 2019; Sahai et al., 2000; Singh & Borah, 2013). These approaches offer 

potential for further development to improve the accuracy of pre-seasonal 

predictions. 
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Chapter 4: Uniformly elevated future heat stress in China 

driven by spatially heterogeneous water vapor changes 

4.1 Introduction 

Unprecedented heat extremes have been ravaging the globe in recent years 

(Bartusek et al., 2022; Rousi et al., 2022; Thompson et al., 2022; Tuholske et al., 

2021). July 2023 was confirmed as the hottest month on record, ~1.5 °C warmer 

than the pre-industrial level (Di Capua & Rahmstorf, 2023). Elevated heat stress 

has emerged as a prominent global climate concern and the upward trend is 

expected to intensify due to ongoing global warming (Masson-Delmotte et al., 

2021). The impact of heat stress is mediated by moisture levels, and metrics are 

critical for risk assessment of moist heat with respect to human health and food 

security (Ebi et al., 2021; Sherwood, 2018). Wet bulb temperature (Tw), a 

synthetical variable combining temperature and humidity, is widely adopted to 

characterize extreme heat events and limit thresholds are set for survivability (35°C, 

(Budd, 2008; Stull, 2011)). Heat and humidity together put people at greatly 

increased risks as elevated Tw hampers body's ability to sweat, potentially leading 

to heat stroke within a few hours (Blazejczyk et al., 2012; d'Ambrosio Alfano et al., 

2014; Sherwood & Huber, 2010). Significant health consequences, encompassing 

both morbidity and mortality, materialize at considerably lower Tw values, in 

contrast to those with conventional air temperature metrics (Buzan & Huber, 2020; 

Raymond et al., 2020; Vecellio et al., 2022).  

Amplified summertime Tw over past decades was well documented (Speizer et al., 

2022; Willett & Sherwood, 2012) and it was projected to further rise in a 

continuously warming world, particularly in tropical and mid-latitude regions, 

which are home to roughly half of the world's population (Coffel et al., 2018; C. Li 

et al., 2017; Zhang et al., 2023). As Tw considers the influence of humidity, its 

variation is fundamentally governed by the interplay between air temperature and 

atmospheric moisture (Wang et al., 2019; Willett & Sherwood, 2012). Notable 
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warming of land surface temperature has been extensively observed since 1900 (Ji 

et al., 2014), while shifts in atmospheric moisture exhibit considerable spatial 

heterogeneity, influenced by multiple factors including topography, vegetation, and 

climate patterns (Cui et al., 2022; S.-Y. Li et al., 2020; Oyama & Nobre, 2003; 

Santer et al., 2007; Van der Ent et al., 2010). These multifaceted influences 

introduce uncertainties in understanding and attribution of historical and future 

variations of heat risk (Wang et al., 2019).  

China is one of world’s largest countries in terms of land areas where topography, 

land use and climate exhibit significant interregional diversities (Domrös & Peng, 

2012; Liu et al., 2003; Ren et al., 2012). Owing to its lower latitudes, dense forest 

cover, and the impact of the East Asia summer monsoon, southern China typically 

experiences more pronounced heat stress, characterized by higher Tw values, during 

summer months compared with other parts of the country (Hu et al., 2017; Luo & 

Lau, 2017). China's Tw has undergone rapid intensification since 1960s, primarily 

attributed to human induced climate change (C. Li et al., 2020; Ning et al., 2022; 

Wang & Sun, 2021), exerting substantial heat stress on its vast population. However, 

both rising and falling trends in atmospheric moisture were identified across China. 

For example, notable decreases in atmospheric moisture were found in South China 

during 1961–2014 (L. Lin et al., 2020) and Southwest China during 1979–2013 (C. 

Zhang et al., 2017), and increasing tendencies were confirmed in the Yangtze River 

basin during 1961-2005 (Zhang et al., 2008). This indicates that Tw is likely to 

change differently across regions under climate change, which has not been fully 

understood. Given the significance of heat stress with respect to human health and 

food security, a better understanding of how historical and future Tw evolves in 

different regions and the key driving factors would better assist mitigation and 

adaptation of heat stress, particularly for populous country like China.  

In this study, we report different observed Tw variations over 1979-2018 between 

northern and southern China, and we find the dominant role of Ea changes in 

determining the different trend of Tw in southern China from northern China. We 
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Land use dataset in China was obtained from National Tibetan Plateau Data Center 

(https://data.tpdc.ac.cn). The data generation relied on Landsat Thematic Mapper 

™ /Enhanced Thematic Mapper (ETM) Remote Sensing Images, and it was 

produced through manual visual interpretation. The data set included seven periods: 

the end of 1980s, 1990, 1995, 2000, 2005, 2010 and 2015. The spatial resolution of 

this dataset was 30m. We determined conversion time when the first time the station 

location grid changed to urban land use. 

4.2.2 Statistical Analysis 

We adopted EOF analysis to decompose spatiotemporal variations of Tw during the 

period of 1979-2018 in China. Student T-test was used to detect the statistical 

significance of the regression coefficient and correlation coefficient. We also 

employed empirical decomposition method (EMD) decomposition on Tw variations 

to separate internal natural variability and external anthropogenic forcing. EMD is 

a data-adaptive multiresolution technique to decompose non-linear and non-

stationary signals by separating them into physically meaningful components at 

different resolutions (Huang et al., 1998). Decomposed signals can be considered 

as periodic oscillations with different frequencies (Lee & Ouarda, 2011; Wu et al., 

2007), while the residual can capture impacts of external forcings (Loehle & 

Scafetta, 2012). Additionally, we conducted EOF analysis on external signals to 

obtain the dominant patterns or modes of variability and linked them to the 

contributions of each anthropogenic factor including GHG, AER and LU. 

We also conducted composite analysis on latitude and longitude of the SAH and 

WPSH of years when extreme northward/southward and westward/eastward 

movements of the SAH and WPSH occurred. The extreme movements of the SAH 

and WPSH were defined as those latitudes and longitudes that were larger than one 

standard deviation. The probability density functions (PDFs) for changes of Ea in 

areas with and without land use conversion were computed based on normal 

distribution using the following equation, 
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4.2.4 Dynamical downscaling of current and future Tw in China 

In this study, we also used the Weather Research and Forecasting model coupled 

with Chemistry (WRF-Chem) version 3.6.1 to predict current and future regional 

climate of China with horizontal grid resolutions of 36 km × 36 km. The chemistry 

of air pollutants and their interactions with regional climate were also included. 

Gas-phase and aerosol chemistry were modelled by the Carbon-Bond Mechanism 

version Z (CBMZ) (Zaveri & Peters, 1999) and the 8-bin version of the Model for 

Simulating Aerosol Interactions and Chemistry (MOSAIC) (Zaveri et al., 2008). To 

address underprediction of sulfate in China, heterogeneous reactions were 

integrated based on Meng Gao et al. (2016). Other physical parameterizations were 

aligned with those in M. Gao et al. (2016), including Lin microphysics (Lin et al., 

1983), RRTM long wave radiation (Mlawer et al., 1997), Goddard short wave 

radiation (Chou et al., 1998), Noah land surface model (Niu et al., 2011), and the 

Yonsei University planetary boundary layer parameterization (Hong et al., 2006).  

The historical simulation spanned five years from 2010 to 2014 (referred to as Hist). 

Meteorological initial and boundary conditions for Hist were derived from the 6-

hourly NCEP FNL (Final) analysis data (https://rda.ucar.edu/datasets/ds083-2/), 

provided at a resolution of 1.0° × 1.0°. For the future simulation, a timeframe of 

five years, ranging from 2096 to 2100, was considered for both the SSP2-4.5 and 

SSP5-8.5 scenarios (O'Neill et al., 2016). SSP2-4.5 represents a medium pathway 

for future greenhouse gas emissions and incorporates an additional radiative forcing 

of 4.5 W m-2 by 2100. SSP5-8.5 symbolizes a fossil-fueled development trajectory, 

accompanied by intensified fossil fuel exploitation and an energy-intensive global 

lifestyle, with an additional radiative forcing of 8.5 W m-² by the year 2100. 

Meteorological initial and boundary conditions for the future downscaling 

simulation were sourced from a bias corrected CMIP6 global dataset, encompassing 

18 models from the CMIP6 under the SSP2-4.5 and SSP5-8.5 scenarios (Xu et al., 

2021). Chemical initial and boundary conditions were maintained at 2010 levels 

using Community Atmosphere Model with Chemistry (CAM-chem) model outputs 
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both northern and southern China exhibit statistically significant increasing trends 

(Figure 4.1C). Yet the rate of increasing Tw in northern China (0.23 K/decade) is 

much higher than that of southern China (0.07 K/decade). Average Tw for four major 

urban populous agglomerations, namely Beijing-Tianjin-Hebei (BTH), Yangtze 

River Delta (YRD), Sichuan Basin (SCB) and Pearl River Delta (PRD), also display 

distinctively upward trends (Figure 4.1D). BTH, situated in northern China, 

exhibits the lowest initial value of Tw, whereas experiences the most rapid increase, 

with a remarkable rate of 0.16 K/decade.  

 

Figure 4.1 Spatiotemporal variations of wet bulb temperature (Tw) in China. 

(A) Spatial distribution of average summertime Tw during the period from 1979 to 

2018. Black squares represent four key agglomerations: Beijing-Tianjin-Hebei 

(BTH, 38°N-41°N, 115°E-120°E), Yangtze River Delta (YRD, 29°N-33°N, 118°E-

123°E), Sichuan Basin (SCB, 29°N-32°N, 103°E-107°E) and Pearl River Delta 

(PRD, 21°N-23°N, 112°E-115°E). (B) Spatial distribution of Tw trend during the 

period from1979 to 2018. Only sites with significant trend (P < 0.05) are displayed. 

Black dashed line indicates the latitude of 33°N. (C) Time series of average Tw 
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anomaly of northern and southern stations during the period from 1979 to 2018. (D) 

Time series of average Tw of BTH, YRD, SCB and PRD during the period from 

1979 to 2018. Source data are provided as a Source Data file. 

4.3.2 Key player of faster warming of high-latitudes in changing moisture 
and attribution analysis 

Since Tw is determined by the combined influences of T and Ea, variations in T and 

Ea can be used to explain Tw variations observed over the preceding decades. 

Sensitivity of Tw to T and Ea suggests that increasing Ea yields a more pronounced 

enhancement of Tw, particularly evident when T is relatively low (Figure C.5). 

Changes in Tw when either T or Ea varied but the other factor fixed at year 1979 

highlight that Ea changes are responsible for the observed different Tw trends in 

southern China (Figure 4.2 and Figure C.6). Over the study period of 1979-2018, 

Ea trends exhibit a distinct North-South divide, characterized by higher 

enhancement over northern stations (a rate of 0.16 hPa/decade) but a lower rate over 

southern stations that contracted by declining Ea (Figure 4.2, Figure C.3C, D). Ea is 

subject to the influences of several factors including surface evaporation and water 

vapor dispersion, which in turn can be affected by variables such as surface 

temperature, land use, precipitation, and atmospheric circulation (Koster et al., 2004; 

Sandholt et al., 2002; Savenije, 1995). Over northern China, significant increasing 

trends in evaporation are identified (Figure 4.3A). However, southern China 

witnesses a decreasing trend in evaporation (Figure 4.3A) alongside a concurrent 

trend of moisture divergence (Figure 4.3B). These two factors synergistically lead 

to a reduction in Ea within that region. Apart from atmospheric processes, land use 

changes also exert impacts on Ea (Gordon et al., 2005). China's rapid urbanization 

since 1979 has converted natural land to impervious urban areas, reducing water 

evaporation (Asokan et al., 2010; Liu et al., 2014). The PDF of Ea changes indicates 

that Ea is more likely to decrease in areas with land use conversion (Figure C.7A). 

Many stations in southern China experienced such conversion during the period of 

1979-2018 (Figure C.7B), which may partly contribute to Ea decline. 
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Figure 4.2 Air temperature (T) and water vapor (Ea) variations. (A) Spatial 

distribution of T variations during the period from 1979 to 2018. Only sites with 

significant trend (P < 0.05) are displayed. Black dashed line indicates the latitude 

of 33°N. (B) Time series of average T anomaly of northern and southern stations 

during the period from 1979 to 2018. (C) Spatial distribution of Ea variations during 

the period from 1979 to 2018. Only sites with significant trend (P < 0.05) are 

displayed. Black dashed line indicates 33°N. (D) Time series of average Ea anomaly 

of northern and southern stations during the period from 1979 to 2018.  
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Figure 4.3 Change in meteorological variables. Spatial distributions of changes 

in surface evaporation (A), vertical integrated moisture divergence (B), surface 

temperature (C) and total precipitation (D) over 1979-2018. Black dots denote areas 

with significant trend (P < 0.05). 

To understand the underlying mechanism and factors causing Tw variations in 

preceding decades, we conducted an EOF analysis on Tw during the period of 1979-

2018. The first leading mode of EOF, accounting for 42.7% of the total variance, 

shows consistent Tw changes across China with observed trend of Tw variations, 

characterized by faster increasing rate in northern China (Figure C.8A). In line with 

the significant positive changes revealed by regression of Ts on PC1 (Figure 4.4A), 

Ts also shows significantly increasing trend during the period of 1979-2018 (Figure 

4.4B) over the high-latitude regions of East Asia. The more rapid warming in this 

arid region may be due to its low heat capacity (Ji et al., 2014) and lower 

anthropogenic aerosol emissions compared to lower latitudes (Samset et al., 2018). 

These observations can be further supported by the findings of surface air 
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Figure 4.4 Connection between surface temperature (Ts) and the first leading 

mode (PC1) of empirical orthogonal function. (A) Regression of Ts on the first 

leading mode. Black dots denote areas with significant correlation (P < 0.05). (B) 

Ts trend over 1979-2018. Black dots denote areas with significant correlation (P < 

0.05). (C) Time series of PC1 and average Ts anomaly of the northern region in East 

Asia (NEA, 33°N-50°N, 80°E-120°E, red boxes in A and B). The scatter plot 

between Ts anomalies in NEA and PC1 in each year from 1979 to 2018. 

We further quantified the contributions of different external forcings to Tw changes. 

Although the CMIP6 historical simulation cannot fully capture certain decreases of 

Tw in southern China, different increasing rates of Tw between northern and 

southern China (0.3 K/decade higher in northern China) can be found (Figure 

C.16B). We find the dominant influence of greenhouse gases (GHG) on variations 

of Tw (Figure C.17, Figure C.18A, approximately 63%), followed by aerosols (AER, 

~ 24%) (Figure C.17, Figure C.18B). GHG dominates Tw changes across China, 

except in the northeastern desert regions (Figure C.18E), with a more pronounced 

effect over South China (Figure C.18A). Natural factors (NAT) and land use (LU) 

play a relatively minor role (Figure C.18C, D). In line with Figure C.7, LU exerts a 
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et al., 2022; N. Zhao et al., 2022), they display similar spatial diversity that Tw in 

northern China increases faster than that in southern China.  

 

Figure 4.5 Spatial distribution of wet bulb temperature (Tw) and its future 

shifts. Spatial distribution of summertime average Tw over 2010-2014 (Hist) (A) 

and over 2096-2100 under the SSP2-4.5 (B) and SSP5-8.5 (C) scenarios from 

WRF-Chem simulations. The red line indicates the location of the Heihe–

Tengchong Line (and internationally as the Hu line) that divides the area of China 

into two parts with contrasting population densities. Spatial distribution of 

differences in summertime average Tw between SSP2-4.5 and Hist (SSP2-4.5 - Hist) 

(D) and SSP5-8.5 and Hist (SSP5-8.5 - Hist) (E) from WRF-Chem simulations. 

In accordance with historical trends, simulated increases in T display a subtle 

absence of distinction between northern and southern regions (Figure C.22A, B). In 

contrast, there are notable spatial differences in Ea changes, characterized by a more 

pronounced elevation in northern China (Figure C.22C, D). This phenomenon can 

be attributed to anticipated shifts in atmospheric systems (Figure C.23, Figure C.24). 

Under a warming climate, both SAH and WPSH exhibit substantial intensification, 

with a notable increase in central pressure (Figure C.23). This leads to zonal nearing 

of these two systems and weakened tropical easterly jet (Chen & Zhai, 2016) but 

accelerated westerly winds over subtropical regions at upper troposphere (Wang, 

2020; Zhang et al., 2024) (Figure C.25C, D). The accelerated westerly wind 
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enhances the eastward propagation of Kelvin waves (Xie et al., 2009; Xue et al., 

2018) and convergence of cross-equatorial flows (Hastenrath, 2002; Sun et al., 

2022). As a result, the descending motion is intensified over tropical regions (Tomas 

& Webster, 1997) and consequently anomalous anticyclone is found over the Bay 

of Bengal and South China Sea at lower troposphere (Figure C.25E, F, G, H). 

Similar atmospheric circulation anomaly has been observed during the extreme dry-

wet contrast event between southern and northern China in 2020 (Du et al., 2022; 

K. Wang et al., 2024). Accordingly, influenced by the air flow at the ridge of 

anticyclone, more water vapor is transported to the Pacific Ocean instead of to 

southern China, different from the enhanced moisture transport from the Pacific 

Ocean to northern China (Figure C.25). Under both the SSP2-4.5 and SSP5-8.5 

scenarios, the increase in Tw resulting from changes in Ea is notably more 

substantial than that by T across most regions of China (Figure 4.6). The impact of 

elevated Ea contributes roughly twice the influence of T to increased Tw, particularly 

in humid and semi-humid areas.   

 

Figure 4.6 Spatial distribution of air temperature (T) induced and water vapor 

(Ea) induced changes of wet bulb temperature (Tw). Spatial distribution of T 

induced (A) and Ea induced (B) changes of Tw under the SSP2-4.5 scenario (SSP2-
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4.5 - Hist) from WRF-Chem simulations. Spatial distribution of T induced (C) and 

Ea induced (D) changes of Tw under the SSP5-8.5 scenario (SSP5-8.5 - Hist) from 

WRF-Chem simulations. 

4.4 Summary and Discussion  

Tw has gained considerable attention as a pivotal metric to characterize heat risks 

on public health (Heo et al., 2019; Xiao et al., 2022b; Y. Xu et al., 2020). Yet spatial 

heterogeneity of historical and future Tw variations in China and the underlying 

reasons have not been well understood. In this study, we revealed the spatially 

differentiated historical Tw changes in China, characterized by a faster rise of Tw 

and a more pronounced aggravation of heat stress in northern China. We found the 

dominant role of changes in Ea and attributed such heterogeneity to declining Ea 

across most of the southern areas, which was associated with faster warming in 

high-latitude regions of East Aisa. A faster warming of high-latitudes of East Asia 

regulates atmospheric features, leading to extended impacts of the SAH and WPSH 

over southern China and suppressed moisture transport under global warming. 

Dynamical downscaled future projections further demonstrate the findings from 

historical records that future Tw variations will mainly be regulated by changes in 

Ea, which exhibit south-to-north spatial heterogeneity under a warming climate. 

Accordingly, the entire eastern China where 94% of China’s population live is likely 

to experience widespread and uniform elevated thermal stress at the end of this 

century, particularly under the SSP5-8.5 scenario. These findings necessitate 

development of adaptation measures to avoid adverse impacts of heat stress, in 

addition to investments in renewables.  

While multi-model ensembles (MME) data helps mitigate internal climate 

variability, the influence of low-frequency variability (Jiang et al., 2023), such as 

the Interdecadal Pacific Oscillation (IPO) and the Atlantic Multidecadal Oscillation 

(AMO), could still impact the long-term trend of Tw in attribution analysis due to 

the relatively short period considered in this study (Zhang et al., 2020b). The 
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alignment of EMD analysis (Figure C.19) and EOF decomposition (Figure C.20) 

on observed Tw variations with the results obtained from attribution analysis (Figure 

C.17) underscores the relatively small impact of internal climate variability on Tw 

variations during the study period, indicating minor impacts on main findings. Our 

study is still limited by computational resources. A five-year average of downscaled 

future climate could be influenced by internal climate variability, leading to 

uncertain projections. Using data from the CMIP6 experiments listed in Table C.1, 

we reveal significant increasing trends in Tw across China under the SSP245 and 

SSP585 scenarios from 2015 to 2100 (Figure C.26). Notably, we observe a 

pronounced south-north difference, particularly under the SSP585 scenario, 

indicating that the non-uniform enhancement of Tw due to global warming is 

reasonably robust. Regional downscaling covering longer decades would contribute 

to better projections for China if computational resources permit.  

Our study holds several important implications for understanding the evolving 

dynamics of Tw and its driving factors in China. The acceleration of Tw increases in 

northern China challenges the conventional understanding of China's regional 

summer climates, which historically categorized the south as hot and humid and the 

north as dry (Ding, 1992; Han & Wang, 2007; Wang & He, 2015). This shift in 

perception holds significant implications for climate adaptation and policy 

development, prompting a reevaluation of strategies to address evolving heat stress 

patterns. The examination of East Asia's climatic systems' impact on regional 

climate patterns provides valuable insights into the larger-scale mechanisms that 

shape Tw trends. Our findings contribute to the broader understanding of climate 

change's intricate impacts on heat stress in a specific geographic context.  

By dissecting the interplay between T and Ea, our study sheds light on the important 

influence of Ea, particularly under specific temperature conditions. This 

understanding is crucial for accurate heat stress assessments and efforts of disaster 

preparedness. Under the background of global warming, China confronts an 

ongoing rise in heat extremes (Lu & Chen, 2016; Sun et al., 2016; Wang & Yan, 
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2021; X. Yang et al., 2017). The elevation of air temperature is accompanied by a 

surge in the occurrence of compound extremes, including extreme heat wave 

coupled with drought (Kong et al., 2020; Lin et al., 2015; Sun et al., 2014), regional 

compound heat and precipitation extremes (S. Wu et al., 2021; Yu et al., 2018; Zhou 

et al., 2014), and cooccurrence of heat wave and ozone pollution (Gao et al., 2023; 

Xiao et al., 2022b). A profound understanding of dominant factors in these heat-

induced natural disasters is pivotal in devising more effective strategies to mitigate 

and address these challenges.  
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Chapter 5: Large-scale climate patterns offer pre-

seasonal hints on the co-occurrence of heat wave and O3 

pollution in China 

5.1 Introduction 

Heat waves and air pollution are two prominent threats, both of which have been 

reported to cause public health and ecosystem crises, particularly under rapid 

urbanization and global warming (Jackson et al., 2010; Y. Xu et al., 2020). Heat 

waves, defined as consecutive days of excessively high atmosphere-related heat 

stress (Meehl & Tebaldi, 2004; Robinson, 2001), adversely influence human health 

by impacting respiratory and cardiovascular systems. Heat waves are linked with 

high O3 episodes that harm human health and vegetation (Jerrett et al., 2009; 

Lippmann, 1989; Sandermann Jr, 1996). In warm seasons, heat waves and extreme 

O3 events often occur simultaneously due to common driving meteorological 

conditions, i.e., stagnant high-pressure systems that favor accumulation of heat and 

O3 precursors (Schnell & Prather, 2017). Besides, complex chemistry–climate 

feedbacks through biogenic emissions (source) and uptake by plants (sink) could 

exacerbate co-occurrence of heat wave and O3 extremes (M. Lin et al., 2020). It is 

imperative to understand driving factors for the co-occurrence of heat and 

O3 extremes, as accumulating evidence suggests amplified health outcomes beyond 

the sum of individual effects (Stafoggia et al., 2008; Willers et al., 2016; Zanobetti 

& Peters, 2015). Analitis et al. (2014) reported that the number of daily deaths 

during heat wave episodes was 54% higher on high O3 days compared with low 

O3 days. 

Previous studies have linked occurrences of heat waves or O3 extremes, separately, 

with large-scale atmospheric circulation or sea surface temperature (SST) 

anomalies (Ding et al., 2013; Lee & Lee, 2016; P. Wang et al., 2017; Wu et al., 2012; 

Yang et al., 2014; Yin et al., 2019; Yin & Ma, 2020). For instance, Wu et al. (2012) 
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demonstrated that the frequency and variability of summertime heat waves over 

North America was closely associated with SST anomalies in the tropical Atlantic 

and tropical western Pacific in spring and ENSO phase change. L. Shen and L. J. 

Mickley (2017) showed that O3 concentration in Eastern United States was linked 

with warm tropical Atlantic SST and cold northeast Pacific SST, as well as positive 

SLP anomalies over central Pacific and negative SLP anomalies over the Atlantic 

and North America. However, the climate factors modulating the co-occurrence of 

heat and O3 extremes at a regional level remain unclear and had only been the 

subject of limited studies (Meehl et al., 2018; Schnell & Prather, 2017; Schwarz et 

al., 2021; Xiao et al., 2022a). 

With roughly one-sixth of the world’s population and rapid energy-intensive 

development, China is facing the dual challenge of air pollution and climate change 

(Shen & Varis, 2001; Q. Zhang et al., 2019). Central and Eastern China, especially 

the NCP, experienced improved PM2.5 air quality over past years due to the 

implementation of the most stringent clean air policy, but now suffers from largest 

increases in summertime O3 exposure (Lu et al., 2020). O3 concentrations in the 

NCP enhanced at almost twice the average pace across China (K. Li et al., 2020). 

An amplified upward trend of the joint occurrences of heat and O3 extremes has 

been identified in China over 2013 to 2020 (Xiao et al., 2022a). Understanding the 

driving climate factors for its interannual variability would contribute to long-term 

planning of control of co-stressors. Characterizing interannual variability also 

enables prediction which could allow sufficient time for mitigation of the 

interactive damages from joint exposure (Andrews, 1974; Lau & Yang, 1996; Lee 

et al., 2015; L. Shen & L. J. Mickley, 2017; Vitart & Robertson, 2018). Previously, 

we demonstrated the possibility of seasonal prediction of wintertime aerosol 

pollution in India (Gao et al., 2019). Considering the strong linkages between 

O3 level and climate patterns, we argue here that it may also be possible to predict 

co-occurrence of heat waves and O3 pollution, potentially up to several years in 
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5.2.2 Meteorological Reanalysis. 

We used hourly gridded 2m air temperature (T2m) at the same spatial resolution of 

0.1° × 0.1° and over the same period of 2005 to 2021 from ERA5-Land dataset 

(Hersbach et al., 2020; Muñoz-Sabater et al., 2021) to determine occurrences of 

heat waves. Following the standard set by the China Meteorological Administration, 

we defined occurrences of heat waves when daily maximum T2m exceeds 35 °C for 

at least three consecutive days (Chen & Li, 2017). After days of high O3 and heat 

waves were defined separately, we calculated the frequency (number of days) of 

their co-occurrences (both heat waves and O3 pollution occurred on the same day) 

in each month of summers (JJA) over 2005 to 2021. We then averaged the days of 

co-occurrence in each grid over 2005 to 2021 to obtain the spatial distribution of 

HWOP frequency (days/year) and summed up the number of co-occurrence in 

Central and Eastern China region to derive interannual and inter-monthly variations 

(Figure 5.1). 

To understand the co-occurrence-associated climate factors, we also obtained 

surface variables of monthly SLP, SST, 10m u-component of wind (U10m), and 10m 

v-component of wind (V10m), as well as mid-tropospheric variables of monthly 

geopotential height (Z500), u-component of wind (U500), and v-component of wind 

(V500) at 500 hPa from the ECMWF ERA5 dataset (Hersbach et al., 2020). All of 

these variables were at a spatial resolution of 0.25° × 0.25°. 

5.2.3 Statistical Analysis. 

We adopted EOF analysis to decompose spatiotemporal variations of HWOP 

frequency over 2005 to 2021 in Central and Eastern China. We focus on the first 

three modes, and EOF1, EOF2, and EOF3 were significantly separated (North et 

al., 1982). To remove the impacts of anthropogenic emissions, we detrended HWOP 

frequency using the EMD method for each grid. The EMD method decomposes the 

input spatiotemporal variation into several intrinsic mode functions (IMF) and a 

residue (Huang et al., 1998). Given the minimum frequency of the last IMF, we 

considered it as the signal of anthropogenic emissions and removed it. The signal 
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of anthropogenic emissions includes the impacts of both the trends of O3 precursor 

emissions and changes in aerosols. It was concluded that both decreases in 

PM2.5 and unmitigated emissions of volatile organic compounds drove the increase 

in O3 (K. Li et al., 2020). Regarding the influence of aerosol loadings on 

O3 formation, changes in heterogeneous reactions were found to play a more 

important role than the increase in photolysis rates due to lower aerosols (K. Li et 

al., 2020; Liu & Wang, 2020). We also conducted composite analysis on SST of 

months when high and low HWOP frequencies occurred to confirm the role of SST. 

The high and low HWOP frequencies were defined as those larger than one SD. 

SST was deseasonalized by subtracting its respective monthly mean annual cycles 

at each grid point before composite. 

5.2.4 CESM Experiments. 

CESM v2.1.3 was used to explore how HWOP responds to changes in springtime 

(MAM) SST patterns. The selected compset was FWHIST, the robustness of which 

has been validated extensively (A. Gettelman, C. Hannay, et al., 2019). FWHIST 

was configured with a horizontal resolution of 0.9° × 1.25° and 70 vertical layers. 

The Community Atmosphere Model version 6 (G. Danabasoglu et al., 2020) was 

used to simulate atmospheric physics, while the Whole Atmosphere Community 

Climate Model version 6 (A. Gettelman, M. J. Mills, et al., 2019) was used to 

describe tropospheric, stratospheric, mesospheric, and lower thermospheric 

chemistry. The Data Ocean Geophysical Model (Hurrell et al., 2008) was used to 

provide SSTs, which allows the applications of SST anomalies for sensitive 

experiments. Land processes were characterized by the Community Land Model 

version 5 [CLM5, (Lawrence et al., 2019)], and other selections included the Sea 

Ice Model version 5 (Turner & Hunke, 2015) for sea ice, the Model for Scale 

Adaptive River Transport (Li et al., 2013) for river runoff, the Community Ice Sheet 

Model Version 2 (Lipscomb et al., 2019) for land ice, and the Stub wave component 

for wave. Anthropogenic emissions were obtained from the Community Emissions 

Data System (Hoesly et al., 2018), while biomass-burning emissions were provided 
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we find consistently dominant role of heat waves in co-occurrence (Figure D.3). 

The total frequency of HWOP for the study area (Figure 5.1A) exhibits notable 

interannual variability (Figure 5.1 B and C). Relatively higher frequencies occur in 

2005, 2006, 2009, 2010, 2012, 2017, and 2019, while lower values appear in 2008, 

2014, and 2015, partially due to relatively lower air temperature (Figure D.4). 

Detrended frequencies empirical mode decomposition (EMD in Figure 5.1B) show 

a different variation from the original one (ori in Figure 5.1B) after 2013 due to the 

implementation of Air Pollution Prevention and Control Action Plan (Q. Zhang et 

al., 2019). K. Li et al. (2020) argued that anthropogenic emission contributed 

negatively to O3 anomalies over 2013 to 2016 but positively over 2017 to 2019, 

which is in line with our detected and removed signal of anthropogenic emissions. 

 

Figure 5.1 Spatial distribution and temporal variation of HWOP frequency. (A) 

Spatial distribution of mean HWOP frequency in summer (days/year) over 2005 to 

2021 in Central and Eastern China. (B) Interannual variation of original (blue line) 

and detrended (red line) HWOP frequencies (# per month) in Central and Eastern 

China. (C) Intermonthly variation of original (blue bars) and detrended (red bars) 

HWOP frequencies (# per month) in Central and Eastern China. Pink rectangle 

denotes areas of the NCP, while the area inside the domain represents Central and 

Eastern China. 
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5.3.2 Dominant Modes of HWOP Frequency. 

EOF analysis on detrended monthly HWOP frequency over 2005 to 2021 suggests 

that the first three modes contribute 36%, 8%, and 6% to the total variance (Figure 

D.5). The significance test of the EOF eigenvalues confirms that the first three 

patterns are significantly separated. Considering the lower contributions of other 

modes, here we focus only on the first three modes. The spatial distribution of EOF1 

shows a dipole feature between northern and southern regions, with negative values 

in the NCP but positive values in the Yangtze River Basin (YRB) (Figure 5.2A). 

The corresponding PC of EOF1 (PC1) exhibits strong interannual variation, with 

lower values over 2013 to 2015, but higher values in other years (Figure 5.2D). We 

also find opposite values between June and July-August, which is associated with 

the location of the rain belt in summer in Central and Eastern China. Rain belt is 

commonly located in the YRB (~ 25°N to 30°N) in June in Eastern China, yet 

Northern China experiences sunny and hot weather at the same time (Figure D.6). 

As East Asia Summer Monsoon (EASM) marches northwards, rain season starts in 

Northern China, while continuous hot weather begins in the YRB (Figure D.6) (Dai 

et al., 2003; Ding et al., 2020). March of EASM and associated movement of rain 

belt cause the north–south shift of weather, which is represented by the toggling of 

positive and negative PC values. EOF2 shows positive values in most regions 

(Figure 5.2B), except to the southwest of the NCP, indicating that sunny and hot 

weather is dominant for PC2, particularly in Beijing, Tianjin, Hebei, and Inner 

Mongolia. The PC of EOF2 mode (PC2) presents generally negative values before 

2017 but positive values after 2017 (Figure 5.2E). EOF3 displays a positive 

sensitivity extending from North China to Northeast China but negative responses 

in other areas (Figure 5.2C). The variation of PC3 is similar to that of PC2, with 

more positive values in recent years (Figure 5.2F). 
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Figure 5.2 Spatial and temporal variations of the first three leading modes 

inferred by EOF analysis. Spatial patterns of HWOP frequency of (A) EOF1, (B) 

EOF2, and (C) EOF3. Intermonthly variation of HWOP frequency of (D) PC1, (E) 

PC2, and (F) PC3. PC values represent average over the entire domain. 

5.3.3 Warming in the Western Pacific Ocean and Excited Pacific Subtropic 
High Dipole 

To identify associated atmospheric patterns with the first three dominant modes, 

regression of anomalies of SLP, Z500, and wind on corresponding levels for each PC 

was performed. For PC1, SLP shows positive anomalies in land with the center 

(EASLP, 40°N to 55°N, 110°E to 130°E) located in Northeastern China (yellow box 

in Figure 5.3A). This enhanced pressure center is significantly associated with PC1 

(r = 0.63, P < 0.01). Wind anomalies around the enhanced pressure center allow 

more cold air to flow from higher latitudes to the NCP, creating unfavorable 

conditions for the occurrence of high temperature. Pacific Subtropical High (PSH, 

also known as Hawaiian High) is the major system that affects summertime weather 

conditions in China, and it is conventionally measured by Z500 (Zhou et al., 2009). 

Regression of PC1 on Z500 (Figure 5.3B) reveals a dipole mode of PSH with 

weakened Western Pacific Subtropic High (WPSH, 17°N to 25°N, 120°E to 160°E) 
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Figure 5.4 Correlations between the first three modes and springtime SST. (A) 

PC1–MAM SST correlation; the mean SST within the yellow box is defined as 
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SSTwp. (B) PC2–MAM SST correlation; the mean SST within the yellow box is 

defined as SSTwi. (C) PC3–MAM SST correlation; the mean SST within the yellow 

box is defined as SSTRoss. Positive values mean rising SST leads to increased 

HWOP frequency and negative values mean rising SST leads to reduced HWOP 

frequency. Black dots denote areas with significant correlation (P < 0.05). 

5.3.4 Warming in the Western Indian Ocean and Associated Northward 
WPSH. 

For PC2, SLP exhibits negative values in the middle and high latitudes of the 

Eurasian continent, with the center (NASLP, 55°N to 62°N, 78°E to 95°E) located in 

western Siberia (Figure 5.3C). PSH is enhanced over the ocean and positive values 

extend westward (Figure 5.3C). An intensified pressure center (EA500, 43°N to 

50°N, 113°E to 125°E) appears in Northeastern China, which can be considered as 

the northward shift of the WPSH (Figure 5.3D). As a result, Central and Eastern 

China, especially northern regions, are under the control of a high-pressure system, 

which creates favorable conditions (e.g., sunny weather and low wind speeds) for 

accumulation of heat and O3 precursors (T. Wang et al., 2017). Both weakened 

center of SLP and intensified center of Z500 correlate with PC2, with correlation 

coefficients of –0.44 and 0.39 (P < 0.05), respectively. 

We find that SST in the western Indian Ocean (40°E to 60°E, 10°S to 10°N) is 

associated with PC2 (Figure 5.4B), and we define SSTwi as the average SST within 

this region. The correlation coefficient between SSTwi and PC2 is 0.42 (P < 0.01). 

The IOD is an irregular oscillation of SSTs and related atmospheric circulation in 

the Indian Ocean, and the strength of IOD is commonly represented by the 

difference in SST between the west (50°E to 70°E, 10°S to 10°N) and southeast 

(90°E to 110°E, 10°S to 0°) Indian Ocean (the dipole mode index, DMI). Both DMI 

and SSTwi are highly correlated with atmospheric patterns (i.e., 0.60 and 0.63 for 

EA500, respectively; P < 0.01), suggesting potentially important influences on 

HWOP in Central and Eastern China. The IOD is able to stimulate easterly 

acceleration over the tropical Indian Ocean (Pan & Lu, 2022), which may enhance 
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the cross-equatorial flows (CEFs). Anomalous CEFs increase the westerly flow 

over the eastern Indian Ocean and western Pacific (Figure D.10B) and further 

enhance the anticyclonic anomaly circulation from North China to Japan 

(Figure 5.3E), forming the northward extremity of the WPSH (Ding et al., 2019). 

Although the found SST pattern in the Indian Ocean is not a typical IOD mode, the 

intensified DMI by increased SSTwi could exert similar influences on atmospheric 

circulation anomalies as IOD. 

5.3.5 Warming in the Ross Sea and Associated Southward WPSH 

For PC3, SLP shows an increasing tendency over land with higher values located 

on ~60°N (Figure 5.3E). Pressure exhibits opposite patterns around 30°N, with 

positive values in the South but negative values in the North (Figure 5.3F). This is 

associated with the southward shift of the WPSH. Southward WPSH may weaken 

East Asian monsoon and reduce moisture transport to northern regions. As a result, 

we observe significantly increased precipitation/decreased SWD in the middle 

regions of Central and Eastern China but decreased precipitation/increased SWD in 

Northeast China (Figure D.8E). This is consistent with the spatial distribution of 

PC3 that the signal is negative in most areas of Central and Eastern China but 

positive in the northeastern regions (Figure 5.2C). Areas with significant correlation 

between PC3 and springtime SST are located mainly in the mid-high latitudes of 

the Southern hemisphere (Figure 5.4C). Consistently, Ledley and Huang (1997) 

reported a statistically significant relationship between Ross Sea warming and 

equatorial ocean warming. We select SST of the Ross Sea (SSTRoss, 70S to 80S, 

158W to 170E) as the signal of ocean warming of the Southern hemisphere. The 

correlation coefficient between SSTRoss and PC3 reaches 0.48 (P < 0.01). 

Springtime SST anomalies propagate northward from the Antarctic region, 

resulting in widespread increases in SST throughout the Southern hemisphere and 

the Indian Ocean in summer (Figure D.9F). SST anomalies over these regions 

enhance westerly wind at 30°N (Figure D.10C) and induce a weakened WPSH in 
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East Asia, which is unfavorable for moisture transport from the low-latitude regions 

to North China (Qian & Zhou, 2014). 

5.3.6 Numerical Model Verification Using CESM Experiments 

Considering the model deficiency in capturing long-term observed variations of 

SST, we imposed these SST anomalies in the CESM2 model to verify proposed 

influences of warming in the western Pacific Ocean, western Indian Ocean, and 

Ross Sea. As shown in Figure 5.5, simulated responses of HWOP to SST anomalies 

are generally consistent with those from EOF decomposition, confirming the 

observed relationship between SST anomalies and HWOP frequency in Central and 

Eastern China. SSTwp anomalies enhance easterly wind in regions around 30°N and 

increase moisture transport to the NCP, leading to suppressed SWD (Figure D.12A), 

reduced air temperature, and lower O3 (Figure D.12D and G). We imposed only 

changes in SSTs of the western Pacific Ocean (5°N to 25°N, 110°E to 

160°E, Figure 5.4A) in the simulation, yet warming or cooling associated with PC1 

is widespread. This causes strengthened NPSH located to the west in the simulation 

(Figure D.13). As a result, anomalous easterly wind over China partially moves 

southward, causing insufficient moisture transport to the NCP but increased 

moisture transport to the southern region (Figure D.13A). Although we find shifted 

responses to some extent in the southern region, our simulation results confirm that 

warming in the west Pacific Ocean could excite Pacific Subtropic High dipole and 

lead to corresponding responses of HWOP frequency. In contrast, SSTwi anomalies 

weaken monsoon in East Asia, resulting in warming land and increasing 

O3 concentration, especially in the NCP (Figure D.12E and H), which is in line with 

the spatially positive values of EOF2 in Figure 5.2B. SSTRoss anomalies excite an 

anticyclone enhancement in the NCP, which are favorable for warm and dry 

conditions (Figure D.12F and I). 
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Figure 5.6 Multivariable regression modeling. Time series of annual (A) and 

monthly (B) HWOP frequency anomaly in Central and Eastern China. Time series 

of annual (C) and monthly (D) HWOP frequency anomaly over the NCP. 

Observations are represented in blue. Predictions using the MLR model are 

indicated in red. 

5.4 Summary and Discussion 

The link between climate patterns and heat waves or O3 pollution in China has been 

well documented, yet the understanding of their joint occurrence has received less 

attention. In this study, we identified three leading modes of spatiotemporal 

distribution of HWOP frequency in China. We linked these three modes with Pacific 

Subtropic High dipole, northward WPSH, and southward WPSH, through which 

precipitation and SWD are modulated (Figure D.8) to affect HWOP frequency. 

Although the formation of O3 pollution can be affected by biogenic emissions of 

VOCs (BVOCs) (M. Lin et al., 2020) and drought conditions in the previous 

year are likely to suppress BVOCs (Figure D.14 and D15), HWOP frequency is 

mainly controlled by precipitation in the same year considering a larger correlation 
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between HWOP and soil water for the same year (Figure D.16 and D17). Further, 

we recognized the important roles of springtime SST anomalies in the western 

Pacific Ocean, the Indian Ocean, and the Ross Sea. The SST influences on HWOP 

were examined with both statistical analysis and SST-driven numerical simulations. 

A statistical model was also established accordingly to foresee co-occurrence of 

heat and O3 extremes at least a season in advance. 

Using 15 y of surface observations, (Schnell & Prather, 2017) revealed features of 

co-occurrence of temperature, O3, and particulate matter extremes in the United 

States. Despite that the compounding effects of heat and O3 extremes on vulnerable 

population groups have been realized, the characteristics and predictive potential 

have not been well understood in China. One major reason is the lack of long-term 

daily observations of ground-level O3 concentrations. We overcome such limitation 

by reconstructing a daily O3 dataset using a sophisticated machine learning 

approach. Our results are also affected by our definition of extremes based on 

absolute values, and we examined how alternative absolute thresholds and 

percentile thresholds would make a difference. As shown in Figure D.18, using 

alternative absolute thresholds yielded similar interannual variations. Although 

using percentile thresholds changes spatial distribution of HWOP frequency, 

relatively consistent interannual variations were found for our concerned NCP 

region where residents are exposed to high co-occurrence of heat waves and 

O3 pollution. 

Under a warming climate, heat waves and O3 pollution are projected to become 

more intense over most global land areas with greater maximum temperatures until 

the end of this century (Meehl et al., 2018). The summer of 2022 witnessed record-

breaking heat waves in places around the world, including megacities, where local 

emissions are substantial to form O3 pollution. How to avoid the harm by these 

synergistic co-stressors is a challenge, and our results have important operational 

implications. Daily global SSTs observed by satellite and in situ platforms, such as 

buoys and ships, are being offered continuously by multiple agencies, such as 
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National Oceanic and Atmospheric Administration. This operational data in spring 

could be substituted into the statistical model we built to predict potential HWOP 

extremes in the following summer. This allows a season or several months in 

advance for Ministry of Ecology and Environment of China (MEE) to take actions. 

If predictions suggest more HWOP extremes in the coming summer or months, the 

MEE could issue warnings in their operational services so that agriculture or other 

related sectors or people who are sensitive to these extremes could be prepared 

ahead. The MEE could also optimize their management plan for air pollutants and 

greenhouse gases to face the incoming extremes by setting more stringent control 

targets or organizing sources of electricity generation. 

The influences of rapidly changing anthropogenic emissions and other factors can 

be further considered in the future to improve the capability of our prediction. We 

also noticed from analysis that heat waves play more decisive roles in the co-

occurrence. In addition to reducing emissions of air pollutants to improve air quality, 

controlling emissions of greenhouse gases to slow down or curb warming is also 

vital to reduced exposure to co-occurrence of co-stressors. The influences of 

emission pathways on future changes in the joint occurrence of heat waves and 

O3 pollution are not discussed in this study, which deserves future explorations. 

Previously, carbon reduction and air pollution control were usually considered 

separately, while co-mitigation of heat waves and air pollution requires a synergy 

to address this challenge. 
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Chapter 6: Summary and future work 

6.1 Summary  

In this thesis, we investigated the impacts of large-scale climate patterns on regional 

weather and air quality. By utilizing numerical models and climate model 

ensembles, we attributed changes in regional weather and air quality to large-scale 

factors. Based on the identified large-scale climate patterns, MLR models were 

developed to predict regional weather and air quality one season in advance. 

We focus on South Asia and East Asia, where monsoon weather significantly 

dominates summertime weather and air quality conditions. The first objective was 

aiming to robustly understand recent changes and future projection of dust loading 

over West and South Asia. On the basis of several high-quality remote sensing 

products, we detected a consistently decreasing trend of dust loading in West and 

South Asia over the last two decades. In contrast to previous studies emphasizing 

the role of local land use changes, here, we attribute the regional dust decline to the 

continuous intensification of Arctic amplification driven by anthropogenic global 

warming. Arctic amplification results in anomalous mid-latitude atmospheric 

circulation, particularly a deepened trough stretching from West Siberia to 

Northeast India, which inhibits both dust emissions and their downstream transports. 

Large ensemble climate model simulations further support the dominant role of 

greenhouse gases induced Arctic amplification in modulating dust loading over 

West and South Asia. Future projections under different emission scenarios imply 

potential adverse effects of carbon neutrality in leading to higher regional dust 

loading and thus highlight the importance of stronger anti-desertification 

counteractions such as reforestation and irrigation management. 

Due to the potential impacts of dust decline on South Asia's summer monsoon 

precipitation, we identified a linear correlation between dust loading in West Asia 

and monsoon precipitation in South Asia. Dust over the Arabian Sea and Arabian 

Peninsula plays a crucial role in regulating regional atmospheric circulation, 



100 

 

thereby influencing moisture convergence and divergence patterns in South Asia. 

The impact of dust in West Asia on monsoon precipitation in South Asia was 

confirmed through both statistical and numerical models. An MLR model was 

developed to predict DOD during the monsoon season, using recognized springtime 

SST anomalies in the Pacific Ocean, North Indian Ocean, and North Atlantic Ocean 

as inputs. Leveraging the relationship between DOD and monsoon precipitation, a 

regression model was developed to predict monsoon precipitation based on DOD 

in West Asia. With these statistical models, monsoon precipitation can be forecasted 

one season in advance, enhancing agricultural planning, water resource 

management, and disaster preparedness and leading to more informed decision-

making across various sectors.  

Since climate change-induced large-scale climate pattern changes have reshaped 

weather and air quality conditions in South Asia, we then investigated the impact 

of large-scale climate patterns on regional weather and air quality in another 

monsoon region, East Asia, in the context of global warming. We revealed the 

spatially differentiated historical Tw changes in China, characterized by a faster rise 

of Tw and a more pronounced aggravation of heat stress in northern China. We 

found the dominant role of changes in Ea and attributed such heterogeneity to 

declining Ea across most of the southern areas, which was associated with faster 

warming in high-latitude regions of East Aisa. A faster warming of high latitudes of 

East Asia regulates atmospheric features, leading to extended impacts of the SAH 

and WPSH over southern China and suppressed moisture transport under global 

warming. Dynamical downscaled future projections further demonstrate the 

findings from historical records that future Tw variations will mainly be regulated 

by changes in Ea, which exhibit south-to-north spatial heterogeneity under a 

warming climate. Accordingly, the entire eastern China where 94% of China’s 

population live is likely to experience widespread and uniform elevated thermal 

stress at the end of this century, particularly under the SSP5-8.5 scenario. These 
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findings necessitate development of adaptation measures to avoid adverse impacts 

of heat stress, in addition to investments in renewables.  

To develop a seasonal prediction model for summertime weather and air quality, 

considering the potentially increased heat stress and ozone pollution in East Asia, 

we identified three leading modes of spatiotemporal distribution of HWOP 

frequency in China. We linked these three modes with Pacific Subtropic High dipole, 

northward WPSH, and southward WPSH, through which precipitation and SWD 

are modulated to affect HWOP frequency. Further, we recognized the important 

roles of springtime SST anomalies in the western Pacific Ocean, the Indian Ocean, 

and the Ross Sea. The SST influences on HWOP were examined with both 

statistical analysis and SST-driven numerical simulations. We thus built a 

multivariable regression model to predict co-occurrence a season in advance, and 

correlation coefficient could reach 0.81 (P < 0.01) for the North China Plain. Our 

results provide useful information for the government to take actions in advance to 

mitigate damage from these synergistic co-stressors. 

Our results highlight the substantial influence of large-scale climate patterns on dust 

levels, monsoon precipitation, heat extremes, ozone pollution, and their co-

occurrence. By leveraging these relationships, we can effectively attribute regional 

weather and air pollution extremes and develop predictive models to support the 

mitigation and prevention of their adverse impacts. Our findings also provide 

valuable implications for local governments. Policymakers can utilize these insights 

to implement proactive strategies to mitigate the adverse effects of extreme weather 

events and climate-induced challenges, thereby minimizing economic losses and 

enhancing community resilience. By integrating scientific findings and practical 

applications from this research, regions can develop more effective climate 

adaptation and mitigation strategies, promoting sustainable development and 

improving quality of life. 
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This thesis contributes significantly to the literature and science by advancing the 

understanding of how large-scale climate patterns impact regional weather and air 

quality. It challenges existing paradigms by attributing the decline in dust loading 

in West and South Asia to Arctic amplification due to anthropogenic global 

warming, rather than local land use changes. This insight redefines the drivers of 

regional dust dynamics and emphasizes the broader climatic influences. The 

research establishes a vital link between dust loading in West Asia and monsoon 

precipitation in South Asia, demonstrating how dust affects atmospheric circulation 

and moisture patterns, enabling seasonal forecasting that benefits agricultural 

planning and disaster preparedness. Furthermore, the thesis reveals spatial 

variations in heat stress across China, highlighting the faster rise of Tw and 

increased heat stress, particularly in northern regions, due to declining evaporation 

and rapid warming in high-latitude areas. It also identifies patterns in HWOP 

frequency, linked to oceanic and atmospheric influences, and develops predictive 

models for these events' co-occurrence. These findings provide policymakers with 

actionable insights for proactive strategies to mitigate climate impacts, supporting 

sustainable development and enhancing community resilience. By integrating 

scientific discoveries with practical applications, the thesis promotes effective 

climate adaptation and mitigation strategies, fostering improved quality of life and 

economic stability. 

6.2 Future work 

In Chapter 2, a decrease in dust load may contribute positively to dust exposure and 

respiratory health, it could also result in increased warming over the coming critical 

decades (Lelieveld et al., 2019; Nair et al., 2023). Such increase in temperature due 

to declining dust could amplify health harms under the context of rapid ongoing 

urbanization and increasing GHGs. Future work is needed for mitigating potentially 

increased heat risks. Although natural sources contribute more significantly to total 

dust loading, rapid urbanization and industrialization, along with increased 

construction activities, road dust and vehicular emissions, also contributed to high 
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levels of anthropogenic dust emissions in West and South Asia in recent decades 

(W. Xia et al., 2022; Yadav et al., 2017). Recent declines in total DOD did not 

necessarily imply an improved surface air quality in the future, and more attention 

is still needed to monitor urban-level dust concentration.  

In Chapter 3, we established an improved MLR model to predict monsoon 

precipitation one season in advance. Since 2012, the NCEP CFS Version 2 has been 

incorporated into the operational models of the IMD (Krishnamurthy, 2017). 

However, evaluations of CFSv2’s performance in forecasting the Indian Summer 

Monsoon have pointed out its low accuracy in predicting monsoon precipitation 

across South Asia (Jiang et al., 2013; Krishnamurthy, 2017; Pokhrel et al., 2016; 

Ramu et al., 2016), significantly affected by interannual variability (Huang et al., 

2020; Saha et al., 2019; Wang et al., 2015). To address this concern, many studies 

have adopted a multi-model ensemble approach, combining the most skillful 

dynamical seasonal models for the region, which has effectively improved 

prediction accuracy (Chowdary et al., 2014; Jie et al., 2017; Krishnamurti & Kumar, 

2012; Stacey et al., 2023). In recent years, machine learning-based monsoon 

prediction models utilizing artificial neural networks have also been developed 

(Krakauer, 2019; Miao et al., 2019; Sahai et al., 2000; Singh & Borah, 2013). These 

approaches could be further evaluated to offer potential for development to improve 

the accuracy of pre-seasonal predictions. 

In Chapter 4, we investigated future Tw changes under different scenarios. While 

MME data helps mitigate internal climate variability, the influence of low-

frequency variability (Jiang et al., 2023), such as IPO and AMO, could still impact 

the long-term trend of Tw in attribution analysis due to the relatively short period 

considered in this study (Zhang et al., 2020b). Regional downscaling covering 

longer decades would contribute to better projections for China if computational 

resources permit. The elevation of air temperature is accompanied by a surge in the 

occurrence of compound extremes, including extreme heat wave coupled with 

drought (Kong et al., 2020; Lin et al., 2015; Sun et al., 2014), regional compound 
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heat and precipitation extremes (S. Wu et al., 2021; Yu et al., 2018; Zhou et al., 

2014), and cooccurrence of heat wave and ozone pollution (Gao et al., 2023; Xiao 

et al., 2022b). Future works to promote the understanding of dominant factors in 

these heat-induced natural disasters is pivotal in devising more effective strategies 

to mitigate and address these challenges.  

In Chapter 5, we developed a pre-seasonal prediction of HWOP using SST indices, 

the influences of rapidly changing anthropogenic emissions and other factors can 

be further considered in the future to improve the capability of our prediction. The 

influences of emission pathways on future changes in the joint occurrence of heat 

waves and O3 pollution are not discussed in this study, which deserves future 

explorations.  
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Appendix A for Chapter 2 

 

Figure A.1 Topographic map, spatial distribution of DOD, atmospheric 

circulation and DOD changes. (A) Topographic map of West and South Asia. (B) 

Spatial distribution of DOD and wind vectors at 850 hPa. (C) Spatial distribution 
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of DOD percentage changes from 2008 to 2019. Black dots denote areas with 

significant trend (p < 0.05). (D) Spatial distribution of percentage changes of DOD 

from the Pre-period (2008-2013) to the Post-period (2014-2019). (E) Spatial 

distribution of MODIS AOD. (F) Spatial distribution of CALIOP DOD. (G) Spatial 

distribution of AERONET total AOD trend (1 per year) from 2008 to 2019. (H) 

Spatial distribution of AERONET coarse mode AOD trend (1 per year) from 2008 

to 2019. 

 

Figure A.2 Variations of DOD anomalies and meteorological oscillations. Time 

series of DOD anomalies and Oceanic Niño Index (A), Madden-Julian Oscillation 

Phase (B), Dipole Mode Index (C) and Arctic Oscillation Index (D) over the 2008-

2019 period. Data were taken from the Climate Prediction Center 

(https://www.cpc.ncep.noaa.gov/). 
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Figure A.3 Spatial distribution of dust emission index (DEI) and its changes. 

(A) Spatial distribution of average DEI over the 2008-2019 period. (B) Spatial 

distribution of percentage changes of DEI from the Pre-period to the Post-period. 
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Figure A.4 Spatial distribution of average patterns in West Asia. Spatial 

distribution of (A) average DEI, (B) soil water (SW), (C) 10m winds speed (WS10) 

and (D) normalized difference vegetation index (NDVI) over the 2008-2019 period. 

 

Figure A.5 Spatial distribution of average patterns in South Asia. Spatial 

distribution of (A) average DEI, (B) soil water (SW), (C) 10m winds speed (WS10) 

and (D) normalized difference vegetation index (NDVI) over the 2008-2019 period. 
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Figure A.6 Dust emission index (DEI), soil water (SW), 10m winds speed (WS10) 

and normalized difference vegetation index (NDVI) changes. Spatial 

distribution of (A) DEI, (B) SW, (C) WS10 and (D) NDVI changes from the Pre-

period to the Post-period in West Asia. Spatial distribution of (E) DEI, (F) SW, (G) 

WS10 and (H) NDVI evolutions in South Asia. Black dashed squares indicate major 

dust source regions. 

 

Figure A.7 Spatial distribution of precipitation, vertically integrated moisture 

divergence and vertical velocity changes. Spatial distribution of (A) total 

precipitation (PRECIP), (B) vertically integrated moisture divergence (VIMD) and 

(C) vertical velocity at 500 hPa (W500) changes from Pre-period to Post-period in 

West Asia. Spatial distribution of (D) PRECIP, (E) VIMD and (F) W500 changes 

from the Pre-period to the Post-period in South Asia. 
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Figure A.8 Spatial distribution of dust trends. Spatial distribution of dust trends 

from 2008 to 2019 in West and South Asia from historical from GHG-only (A) and 

aerosols-only (B) forcing experiments. (C) Spatial distribution of dust trends from 

2008 to 2014 in West and South Asia from land use-only forcing experiments. 

 

Figure A.9 Arctic amplification intensity trend. Time series for Arctic 

amplification intensity anomalies derived from (A) ERA5, (B) all forcing 

simulation, (C) GHG-only simulation and (D) aerosols-only simulation over the 

2008-2019 period.  
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Figure A.10 Soil water changes. Spatial distribution of changes in soil water from 

the Pre-period to the Post-period in West Asia from GHG-only (A), aerosols-only 

(B) and land use-only forcing (C) experiments. (D), (E) and (F) are in South Asia. 

Black dashed squares indicate major dust source regions. 

 

Figure A.11 Surface wind speed changes. Spatial distribution of changes in 

surface wind speed from the Pre-period to the Post-period in West Asia from GHG-

only (A), aerosols-only (B) and land use-only forcing (C) experiments. (D), (E) and 

(F) are in South Asia. Black dashed squares indicate major dust source regions. 
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Figure A.12 Spatial distribution of geopotential height and atmospheric 

circulation changes. Spatial distribution of changes in geopotential height and 

wind from 2008-2011 to 2012-2014 at (A) 100 hPa and (B) 850 hPa from historical 

all forcing experiments. (C) and (D) are from land use-only forcing experiments. 
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Figure A.13 Model simulated responses of dust loading, AAI, land-sea 

temperature contrast and atmospheric circulation to different amounts of CO2 

concentration. (A) Spatial distribution of difference in the dust loading between 

AMIP and AMIP-4×CO2 (AMIP-4×CO2 minus AMIP). Time series of differences 

in the dust loading in West and South Asia (land regions enclosed by purple dashed 

lines in Figure 1A) and AAI (B), land-sea temperature contrast anomalies (C), and 

average zonal wind at 850 hPa in the main dust transport region of West and South 

Asia (purple square in F) (D) between AMIP and AMIP-4×CO2 (AMIP-4×CO2 

minus AMIP) over the 1979-2014 period. Spatial distribution of difference in 

geopotential height and wind at (E) 250 hPa and (F) 850 hPa between AMIP and 
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AMIP-4×CO2 (AMIP-4×CO2 minus AMIP). The brown line represents the location 

of trough. 

 

Figure A.14 Surface temperature variations. (A) Spatial distribution of surface 

temperature trend and (B) time series for Arctic amplification intensity anomalies 

over the 2008-2019 period from aerosols-only forcing experiments. (C) Spatial 

distribution of surface temperature trend and (D) time series for Arctic amplification 

intensity anomalies over the 2008-2019 period from GHG-only forcing 

experiments. 
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Figure A.15 Dust distribution and radiative forcing. (A) Spatial distribution of 

dust burden. (B) Spatial distribution of changes in downwelling solar radiation at 

the surface by removing dust radiative effect. (C) Spatial distribution of changes in 

downwelling longwave radiation at the surface by removing dust radiative effect. 

(D) Spatial distribution of changes in surface air temperature by removing dust 

radiative effect. 
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Figure A.16 Dust loading under future scenarios. Load of dust over West and 

South Asia (areas enclosed by purple dashed lines in Figure 1A) from 2020 to 2100 

under the SSP126 and the SSP585 scenarios in CMIP6. 

 

Figure A.17 Changes of surface temperature under future scenarios. Changes 

of surface temperature from 2020 to 2100 in West and South Asia and global under 

the SSP585 (A) and SSP126 (B) scenarios in CMIP6. 

Table A.1 A list of CMIP6 models used to evaluate dust responses to GHG-only, 

aerosols-only and land use-only forcings. GHG-only and aerosols-only forcing 

simulations are from 2008 to 2019.  Land use-only forcing simulations are from 

2008 to 2014. 

Forcing 
Name 

Model Name Developer Resolution 
(lat × lon) 

Reference 

GHG-only, 
aerosols-

only 

NorESM2-LM Norwegian 
Meteorological 
Institute, Norway 

1.875° × 2.5° Seland et al. 
(2020) 

GHG-only, 
aerosols-

only 

MIROC6 Atmosphere and Ocean 
Research Institute, 
Japan 

1.40° × 1.40° Tatebe et al. 
(2019) 

GHG-only, 
aerosols-

only 

MRI-ESM2-0 Meteorological 
Research Institute, 
Japan 

1.125° × 
1.125° 

Yukimoto et al. 
(2019) 

Land use- IPSL-CM6A- Institute Pierre-Simon 1.25° × 2.5° Boucher et al. 
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Appendix B for Chapter 3 

 

Figure B.1 Monsoon season precipitation and dust optical depth (DOD). Spatial 

distribution of total precipitation (A) and average DOD (B) from June to September 

during the period over 2008-2019.  

 

Figure B.2 Composites of monsoon precipitation. (A) The composite differences 

of monsoon precipitation between high and low DODWA. (B) The composite 

differences of detrended monsoon precipitation between high and low DODWA. 
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Figure B.3 Dust loading (DUST) and precipitation (PR) trend from CMIP6. 

Variations of DUST (A) and PR (D) over the period of 2008-2019 from the hist-

GHG experiment simulated by MIROC6 in CMIP6. Variations of DUST (B) and 

PR (E) over the period of 2008-2019 from the hist-GHG experiment simulated by 

MRI-ESM2-0 in CMIP6. Variations of DUST (C) and PR (F) over the period of 

2008-2019 from the hist-GHG experiment simulated by NorESM2-LM in CMIP6. 
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Figure B.4 Dust loading and precipitation changes. (A) Spatial distribution of 

dust loading changes between DUST_L and DUST_H. (B) Spatial distribution of 

dust loading changes in percentage between DUST_L and DUST_H. (C) Spatial 

distribution of observed total monsoon precipitation changes between 2018 and 

2019. (D) Spatial distribution of simulated total monsoon precipitation changes 

caused by dust reduction. (E) Spatial distribution of simulated total monsoon 

precipitation changes caused by direct radiative effect of dust reduction. (F) Spatial 

distribution of simulated total monsoon precipitation changes caused by indirect 

effect of dust reduction. 
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Figure B.5 Dust loading and precipitation changes. (A) Changes in atmospheric 

circulation at 850 hPa between DUST_L and DUST_H. (B) Spatial distribution of 

total cloud cover changes between DUST_L and DUST_H. 

 

Figure B.6 Eigenvalues of the first six EOF modes of DODWA. 

 

Figure B.7 Correlations between the first three modes and sea surface 

temperature (SST). (A) Correlation between PC1 and wintertime (DJF) SST. (B) 
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Correlation between PC2 and DJF SST. Black dots denote areas with significant 

correlation (P < 0.05). 

 

Figure B.8 Regression of meteorological and dust emission index (DEI) on 

springtime SST indices. Spatial distribution of regression of vertical integral of 

moisture divergence (VMID) and atmospheric circulation at 850 hPa (A), 10m wind 

speed (WS10m) (B), soil water content (SW) (C) and DEI (D) on PDO. Spatial 

distribution of regression of VMID and atmospheric circulation at 850 hPa (E), 

WS10m (F), SW (G) and DEI (H) on TNA. 

 

Figure B.9 Regression of springtime sea surface temperature (SST) on PCs. 

Spatial distribution of regression of monsoon season SST on PC1 (A) and PC2 (B). 
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Figure B.7 Pre-seasonal monsoon precipitation predictions. Spatial distribution 

of observed (A) and predicted (B) monsoon precipitation over South Asia in 2020. 

Spatial distribution of observed (C) and predicted (D) annual monsoon precipitation 

over South Asia during the period over 2020-2024. 

Table B.1 Correlation between the principal component of the first leading mode 

and sea surface temperature indices 

Indices R Reference 

Niño 3.4 0.19 (P = 0.54) 

Ihara et al., 2007; Hrudya et 
al., 2021; Krishnamurthy 

and Goswami, 2000 

Niño 3 -0.02 (P = 0.95) 

Niño 4 0.49 (P = 0.11) 

Dipole Mode Index (DMI) 0.20 (P = 0.52) 

Southern Oscillation index 
(SOI) 

-0.33 (P = 0.28) 
Krishnamurthy and 

Goswami, 2000 
Atlantic Multidecadal 

Oscillation (AMO) 
-0.35 (P = 0.27) 

Krishnamurthy and 
Krishnamurthy, 2016 
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Pacific Decadal 
Oscillation (PDO) 

0.59 (P = 0.05) 
Krishnamurthy and 

Krishnamurthy, 2014; 
Krishnan and Sugi, 2003 

North Atlantic Oscillation 
(NAO) 

0.19 (P = 0.54) Goswami et al., 2006 
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Appendix C for Chapter 4 

 

Figure C.1 Site number, wet bulb temperature and surface temperature 

changes. (A) Number of surface observation stations. (B) Time series of average 

wet bulb temperature in China from 1960 to 2018. (C) Time series of surface 

temperature anomaly from 1850 to 2020. Global surface temperature data were 

obtained from the National Centers for Environmental information 

(https://www.ncei.noaa.gov/access/monitoring/climate-at-a-glance/global/time-

series). 
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Figure C.2 Historical average and variations of wet bulb temperature (Tw). 

Spatial distribution of average summertime Tw calculated following method from 

Stull (Stull, 2011) (adopted in this study) (A), Davies-Jones (Davies-Jones, 2008) 

(B), and Krakauer et al. (Krakauer et al., 2020) (C) based on ERA5 data. Spatial 

distribution of trend of summertime Tw calculated following method from Stull 

(Stull, 2011) (D), Davies-Jones (Davies-Jones, 2008) (E), and Krakauer et al. 

(Krakauer et al., 2020) (F) based on ERA5 data. Black dots denote areas with 

significant trend (P < 0.05). 

 

Figure C.3 Wet bulb temperature (Tw) variations. (A) Spatial distribution of Tw 

variations over 1979-2018 from homogenized data from Argiriou et al (2023) and 

Li et al (2020). Only sites with significant trend (P < 0.05) are displayed. (B) Spatial 



129 

 

distribution of Tw variations over 1979-2018 from homogenized data from 

observations in this study. Only sites with significant trend (P < 0.05) are displayed. 

 

Figure C.4 Wet bulb temperature (Tw) and water vapor (Ea) variations. Spatial 

distribution of Tw (A) and Ea (B) variations over 1979-2018 from observations. 

Only sites with significant trend (P < 0.05) are displayed. (C) Spatial distribution of 

Tw variations over 1981-2018 from GSDM-WBT. Only sites with significant trend 

(P < 0.05) are displayed. Spatial distributions of Tw (D) and Ea (G) from HadISDH 

over 1979-2018. Black dots denote areas with significant trend (P < 0.05). Spatial 

distributions of Tw (E) and Ea (H) from ERA5 over 1979-2018. Black dots denote 

areas with significant trend (P < 0.05). Spatial distributions of Tw (F) and Ea (I) from 

MERRA2 over 1980-2018. Black dots denote areas with significant trend (P < 0.05). 
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Figure C.5 Sensitivity of wet bulb temperature (Tw) to 2m air temperature (T2) 

and water vapor (Ea). The dashed black line indicates saturated water vapor 

pressure. 
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Figure C.6 Air temperature (T), water vapor (Ea) and induced wet bulb 

temperature (Tw) variations. (A) Spatial distribution of T variations during the 

period from 1979 to 2018. Only sites with significant trend (P < 0.05) are displayed. 

(B) Spatial distribution of Ea variations during the period from 1979 to 2018. Only 
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sites with significant trend (P < 0.05) are displayed. (C) Spatial distribution of T 

induced Tw variations during the period from 1979 to 2018. Only sites with 

significant trend (P < 0.05) are displayed. (D) Spatial distribution of Ea induced Tw 

variations during the period from 1979 to 2018. Only sites with significant trend (P 

< 0.05) are displayed. Percentage contribution of Tw induced by T (E) and Ea (F) to 

total Tw changes during the period of 1979-2018. (G) Dominant role of T and Ea on 

Tw changes. Red indicates the dominant role of T, while blue indicates the dominant 

role of Ea. 

 

Figure C.7 Land use changes and the impacts on water vapor (Ea). (A) 

Probability density function (PDF) for changes of Ea in areas with (red line) and 

without (black line) land use conversion. (B) Spatial distribution of temporal 

evolution of stations' land use transition from natural to impervious urban areas.  

 

Figure C.8 Empirical orthogonal function (EOF) analysis of wet bulb 

temperature (Tw). Spatial (A) and temporal variations (B) of the first leading mode 

inferred by EOF analysis. 
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Figure C.9 Global surface temperature variations. Spatial distribution of surface 

air temperature variations during the period from 1979 to 2014 under GHG-only 

(A) and aerosols-only (B) forcing conditions. Black dots denote areas with 

significant trend (P < 0.05). 
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Figure C.10 Regression of atmospheric features on the first leading mode. 

Regression of geopotential height and circulation at 100 hPa (A), 500 hPa (B), 700 

hPa (C) and 850 hPa (D) on the first leading mode. Red dots denote areas with 

significant correlation (P < 0.05). Blues solid lines in A and B indicate 

climatologically averaged locations of the South Asia high (SAH, represented by 

16760-dagpm line) and the western Pacific subtropical high (WPSH, represented 

by 5880-dagpm line), respectively. Blues dashed lines in A and B indicate varied 

locations of the SAH and WPSH, respectively. Regression of vertical velocity at 

700 hPa (E) and 850 hPa (F) on the first leading mode. Positive values indicate 

descending motion. Black dots denote areas with significant correlation (P < 0.05). 

 

Figure C.11 Variations of locations of the South Asia high (SAH) and the 

western Pacific subtropical high (WPSH) systems. Time series of monthly 

longitude (A) and latitude (B) of the eastward ridge point (ERP) of the SAH over 

the period from 1979 to 2018. Time series of monthly longitude (C) and latitude (D) 

of the westward ridge point (WRP) of the WPSH over the period from 1979 to 2018. 
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Figure C.12 Correlations of the South Asia high (SAH) and the western Pacific 

subtropical high (WPSH) with variations of wet bulb temperature (Tw). 

Correlations of the detrended latitudes of the SAH eastward ridge point (ERP) (A) 

and WPSH westward ridge point (WRP) (B) with variations of detrended Tw. 

Correlations of the detrended longitudes of the SAH ERP (C) and WPSH WRP (D) 

with variations of detrended Tw. Only sites having significant trend with 95% and 

higher confidence level are displayed. 
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Figure C.13 Composite analysis of wet bulb temperature (Tw). The composite 

differences of Tw between northward and southward movement of the eastward 

ridge point (ERP) of the South Asia high (SAH) (A) and the westward ridge point 

(WRP) of the western Pacific subtropical high (WPSH) (B). The composite 

differences of Tw between westward and eastward movement of the SAH ERP (C) 

and WPSH WRP (D). 
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Figure C.14 Atmospheric systems and their evolutions. Spatial distribution of 

average summertime geopotential height on 100 hPa (A), 500 hPa (C), 700 hPa (E) 

and 850 hPa (G) over the period from 1979 to 2018. Spatial distribution of 

geopotential height variations on 100 hPa (B), 500 hPa (D), 700 hPa (F) and 850 

hPa (H) over the period from 1979 to 2018. Black dots denote areas with significant 

trend (P < 0.05). 
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Figure C.15 Changes of atmospheric circulations. Spatial distribution of 

differences in average summertime geopotential height and atmospheric circulation 

on 100 hPa (A), 500 hPa (B), 700 hPa (C) and 850 hPa (D) between the period of 

1979-1998 and 1999-2018. 
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Figure C.16 Observed and simulated variations of wet bulb temperature (Tw). 

(A) Spatial distribution of observed Tw variations during the period of 1979-2014. 

Only sites with significant trend (P < 0.05) are displayed. (B) Spatial distribution of 

simulated Tw variations under all-forcing conditions during the period of 1979-2014. 

Black dots denote areas with significant trend (P < 0.05). Spatial distribution of 

simulated Tw variations under GHG-only (C), aerosols-only (D), natural-only (E) 

and land use-only (F) forcing conditions during the period of 1979-2014. Black dots 

denote areas with significant trend (P < 0.05).  
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