TY - JOUR
T1 - XIAOPI formula inhibits the pre-metastatic niche formation in breast cancer via suppressing TAMs/CXCL1 signaling
AU - Zheng, Yifeng
AU - Wang, Neng
AU - Wang, Shengqi
AU - Yang, Bowen
AU - Situ, Honglin
AU - Zhong, Lidan
AU - Lin, Yi
AU - Wang, Zhiyu
N1 - Funding information:
This work was supported by the National Natural Science Foundation of China (81873306, 81973526, 81703749, 81703764), Guangdong Science and Technology Department (2016A030306025), Guangdong High-level Personnel of Special Support Program (A1–3002–16-111-003), Department of Education of Guangdong Province (2018KZDXM022 and A1–2606–19-111-009), Guangdong traditional Chinese medicine bureau project (20181132 and 20182044), the PhD Start-up Fund of Natural Science Foundation of Guangdong Province (2017A030310213 and 2018A030310506), Science and Technology Planning Project of Guangdong Province (2017B030314166), Guangzhou science and technology project (201904010407), the Specific Research Fund for TCM Science and Technology of Guangdong provincial Hospital of Chinese Medicine (YN2018MJ07, YN2018QJ08).
Publisher copyright:
Copyright © 2020, The Author(s).
PY - 2020/3/26
Y1 - 2020/3/26
N2 - Background: Recent findings suggested that premetastatic niche (PMN) is a prerequisite in mediating cancer metastasis. Previously we demonstrated that XIAOPI formula could inhibit breast cancer lung metastasis via inhibiting tumor associated macrophages (TAMs)-secreted CXCL1. Herein, we aimed to explore the effects of XIAOPI formula on preventing breast cancer PMN formation and its underlying molecular mechanisms.Methods: CXCL1 expression of TAMs was detected by qPCR and Western blotting assay. The influences of XIAOPI formula on the proliferation of TAMs and 4 T1 in the co-culture system were tested by CCK8 or EdU staining. Transwell experiment was applied to determine the effects of XIAOPI formula on the invasion ability of HSPCs and 4 T1. Breast cancer xenografts were built by inoculating 4 T1 cells into the mammary pads of Balb/c mice and lung metastasis was monitored by luciferase imaging. Immune fluorescence assay was used to test the epithelial-mesenchymal transition process and PMN formation in the lung tissues. The effects of XIAOPI formula on TAMs phenotype, hematopoietic stem/progenitor cells (HSPCs) and myeloid-derived suppressor cells (MDSCs) were determined by flow cytometry.Results: It was found that XIAOPI formula could inhibit the proliferation and polarization of M2 phenotype macrophages, and reduce CXCL1 expression in a dose-dependent manner. However, M1 phenotype macrophages were not significantly affected by XIAOPI formula. TAMs/CXCL1 signaling was subsequently found to stimulate the recruitment of c-Kit+/Sca-1+ HSPCs and their differentiation into CD11b+/Gr-1+ MDSCs, which were symbolic events accounting for PMN formation. Moreover, XIAOPI formula was effective in inhibiting HSPCs activation and suppressing the proliferation and metastasis of breast cancer cells 4 T1 induced by HSPCs and TAMs co-culture system, implying that XIAOPI was effective in preventing PMN formation in vitro. Breast cancer xenograft experiments further demonstrated that XIAOPI formula could inhibit breast cancer PMN formation and subsequent lung metastasis in vivo. The populations of HSPCs in the bone marrow and MDSCs in the lung tissues were all remarkably declined by XIAOPI formula treatment. However, the inhibitory effects of XIAOPI formula could be relieved by CXCL1 overexpression in the TAMs.Conclusions: Taken together, our study provided preclinical evidence supporting the application of XIAOPI formula in preventing breast cancer PMN formation, and highlighted TAMs/CXCL1 as a potential therapeutic strategy for PMN targeting therapy. [MediaObject not available: See fulltext.] Graphical abstract: [Figure not available: See fulltext.]
AB - Background: Recent findings suggested that premetastatic niche (PMN) is a prerequisite in mediating cancer metastasis. Previously we demonstrated that XIAOPI formula could inhibit breast cancer lung metastasis via inhibiting tumor associated macrophages (TAMs)-secreted CXCL1. Herein, we aimed to explore the effects of XIAOPI formula on preventing breast cancer PMN formation and its underlying molecular mechanisms.Methods: CXCL1 expression of TAMs was detected by qPCR and Western blotting assay. The influences of XIAOPI formula on the proliferation of TAMs and 4 T1 in the co-culture system were tested by CCK8 or EdU staining. Transwell experiment was applied to determine the effects of XIAOPI formula on the invasion ability of HSPCs and 4 T1. Breast cancer xenografts were built by inoculating 4 T1 cells into the mammary pads of Balb/c mice and lung metastasis was monitored by luciferase imaging. Immune fluorescence assay was used to test the epithelial-mesenchymal transition process and PMN formation in the lung tissues. The effects of XIAOPI formula on TAMs phenotype, hematopoietic stem/progenitor cells (HSPCs) and myeloid-derived suppressor cells (MDSCs) were determined by flow cytometry.Results: It was found that XIAOPI formula could inhibit the proliferation and polarization of M2 phenotype macrophages, and reduce CXCL1 expression in a dose-dependent manner. However, M1 phenotype macrophages were not significantly affected by XIAOPI formula. TAMs/CXCL1 signaling was subsequently found to stimulate the recruitment of c-Kit+/Sca-1+ HSPCs and their differentiation into CD11b+/Gr-1+ MDSCs, which were symbolic events accounting for PMN formation. Moreover, XIAOPI formula was effective in inhibiting HSPCs activation and suppressing the proliferation and metastasis of breast cancer cells 4 T1 induced by HSPCs and TAMs co-culture system, implying that XIAOPI was effective in preventing PMN formation in vitro. Breast cancer xenograft experiments further demonstrated that XIAOPI formula could inhibit breast cancer PMN formation and subsequent lung metastasis in vivo. The populations of HSPCs in the bone marrow and MDSCs in the lung tissues were all remarkably declined by XIAOPI formula treatment. However, the inhibitory effects of XIAOPI formula could be relieved by CXCL1 overexpression in the TAMs.Conclusions: Taken together, our study provided preclinical evidence supporting the application of XIAOPI formula in preventing breast cancer PMN formation, and highlighted TAMs/CXCL1 as a potential therapeutic strategy for PMN targeting therapy. [MediaObject not available: See fulltext.] Graphical abstract: [Figure not available: See fulltext.]
KW - Breast Cancer
KW - CXCL1
KW - Premetastatic niche
KW - Tumor-associated macrophages
KW - XIAOPI formula
UR - http://www.scopus.com/inward/record.url?scp=85082485077&partnerID=8YFLogxK
U2 - 10.1186/s12964-020-0520-6
DO - 10.1186/s12964-020-0520-6
M3 - Journal article
C2 - 32213179
AN - SCOPUS:85082485077
SN - 1478-811X
VL - 18
JO - Cell Communication and Signaling
JF - Cell Communication and Signaling
IS - 1
M1 - 48
ER -