Visible-to-near-infrared light-harvesting A-π-D-π-A porphyrins for boosted photocatalytic hydrogen evolution

Govardhana Babu Bodedla, Venkatesh Piradi, Muhammad Imran, Jianzhang Zhao, Xunjin Zhu*, Wai Yeung Wong*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

8 Citations (Scopus)

Abstract

Developing visible-to-near-infrared light-harvesting porphyrin photosensitizers is very important for efficient photocatalytic hydrogen evolution (PHE) since most of the tetra-meso-substituted porphyrins absorb up to the visible region only. Herein, two new A-π-D-π-A porphyrins ZnP-CPDT and ZnP-BT containing a meso-2,6-dodecyloxyphenyl substituted porphyrin donor (D) moiety, cyclopentadithiophene (CPDT)/bithiophene (BT)-ethynylene π-linkers, and a 3-ethylrhodanine acceptor (A) group are synthesized and characterized by UV-vis absorption, photoluminescence, and morphological, density functional theoretical (DFT) and PHE studies. The two porphyrins are capable of absorbing in the region of 370 to 800 nm in solution and 300 to 1100 nm in the solid state indicating their visible-to-near-infrared light-harvesting ability. The Soret- and Q-band absorption peaks of ZnP-CPDT with a CPDT linker are more red-shifted than those of ZnP-BT containing a BT linker due to the enhanced intramolecular charge transfer (ICT) between the porphyrin donor and 3-ethylrhodanine acceptor moieties. Moreover, better photoinduced charge separation was observed for ZnP-CPDT than ZnP-BT as manifested by the photocurrent-time studies. Noteworthily, a well-defined nanosphere morphology was observed for ZnP-CPDT, while agglomerated morphology was found for ZnP-BT in the solid-state. As a consequence, the ZnP-CPDT porphyrin produced a PHE rate (ηH2) of 1.80 mmol g−1 h−1 which is 4.5-fold higher than that of the ZnP-BT porphyrin (0.40 mmol g−1 h−1). Under the same photocatalytic conditions, the typical zinc(ii)-tetraphenylporphyrin (ZnTPP) which absorbs visible light, delivered a very low ηH2 of 0.05 mmol g−1 h−1. The higher ηH2 of ZnP-CPDT than that of ZnP-BT is attributed to the efficient light harvesting in the visible-to-near-infrared region, facile photoinduced charge separation and well-defined nanosphere morphology, resulting in improved electron transfer from the photoexcited porphyrin moiety to the Pt cocatalyst for proton reduction. Moreover, the superior PHE performance of both ZnP-CPDT and ZnP-BT porphyrins compared to that of ZnTPP is mainly ascribed to the visible-to-near-infrared light-harvesting ability and efficient photoinduced charge separation. This work helps to develop efficient A-π-D-π-A-based porphyrins for PHE by suitable molecular design.

Original languageEnglish
Pages (from-to)1473-1481
Number of pages9
JournalJournal of Materials Chemistry A
Volume11
Issue number3
Early online date12 Dec 2022
DOIs
Publication statusPublished - 21 Jan 2023

Scopus Subject Areas

  • Chemistry(all)
  • Renewable Energy, Sustainability and the Environment
  • Materials Science(all)

Fingerprint

Dive into the research topics of 'Visible-to-near-infrared light-harvesting A-π-D-π-A porphyrins for boosted photocatalytic hydrogen evolution'. Together they form a unique fingerprint.

Cite this