Abstract
Cross-modality person re-identification between the thermal and visible domains is extremely important for night-time surveillance applications. Existing works in this filed mainly focus on learning sharable feature representations to handle the cross-modality discrepancies. However, besides the cross-modality discrepancy caused by different camera spectrums, visible thermal person re-identification also suffers from large cross-modality and intra-modality variations caused by different camera views and human poses. In this paper, we propose a dual-path network with a novel bi-directional dual-constrained top-ranking loss to learn discriminative feature representations. It is advantageous in two aspects: 1) end-to-end feature learning directly from the data without extra metric learning steps, 2) it simultaneously handles the cross-modality and intra-modality variations to ensure the discriminability of the learnt representations. Meanwhile, identity loss is further incorporated to model the identity-specific information to handle large intra-class variations. Extensive experiments on two datasets demonstrate the superior performance compared to the state-of-the-arts.
Original language | English |
---|---|
Title of host publication | Proceedings of the 27th International Joint Conference on Artificial Intelligence, IJCAI 2018 |
Editors | Jerome Lang |
Publisher | International Joint Conferences on Artificial Intelligence |
Pages | 1092-1099 |
Number of pages | 8 |
ISBN (Electronic) | 9780999241127 |
DOIs | |
Publication status | Published - Jul 2018 |
Event | 27th International Joint Conference on Artificial Intelligence, IJCAI 2018 - Stockholm, Sweden Duration: 13 Jul 2018 → 19 Jul 2018 http://ijcai-18.org/ https://www.ijcai.org/proceedings/2018/ |
Publication series
Name | IJCAI International Joint Conference on Artificial Intelligence |
---|---|
Volume | 2018-July |
ISSN (Print) | 1045-0823 |
Conference
Conference | 27th International Joint Conference on Artificial Intelligence, IJCAI 2018 |
---|---|
Country/Territory | Sweden |
City | Stockholm |
Period | 13/07/18 → 19/07/18 |
Internet address |
Scopus Subject Areas
- Artificial Intelligence