TY - JOUR
T1 - Variations of Gut Microbiome Profile Under Different Storage Conditions and Preservation Periods
T2 - A Multi-Dimensional Evaluation
AU - Ma, Junli
AU - Sheng, Lili
AU - Hong, Ying
AU - Xi, Chuchu
AU - Gu, Yu
AU - Zheng, Ningning
AU - Li, Mengci
AU - Chen, Linlin
AU - Wu, Gaosong
AU - Li, Yue
AU - Yan, Juan
AU - Han, Ruiting
AU - Li, Bingbing
AU - Qiu, Huihui
AU - Zhong, Jing
AU - Jia, Wei
AU - Li, Houkai
N1 - Funding Information:
Funding. This work was funded by National Natural Science Foundation of China (Nos. 81873059 and 81673662), National Key Research and Development Program of China (No. 2017YFC1700200), and Program for Professor of Special Appointment (Eastern Scholar) and Shuguang Scholar (16SG36) at Shanghai Institutions of Higher Learning from Shanghai Municipal Education Commission.
PY - 2020/5/27
Y1 - 2020/5/27
N2 - Gut dysbiosis is heavily involved in the development of various human diseases. There are thousands of publications per year for investigating the role of gut microbiota in diseases. However, emerging evidence has indicated the frequent data inconsistency between different studies, which is largely overlooked. There are many factors that can cause data variation and inconsistency during the process of microbiota study, in particular, sample storage conditions and sequencing process. Here, we systemically evaluated the impacts of six fecal sample storage conditions (three non-commercial storage protocols, −80°C, −80°C with 70% ethanol (ET_−80°C), 4°C with 70% ethanol (ET_4°C), and three commercial storage reagents, OMNIgeneGUT OMR-200 (GT) and MGIEasy (MGIE) at room temperature, and Longsee at 4°C (LS) on gut microbiome profile based on 16S rRNA gene sequencing. In addition, we also investigated the impacts of storage periods (1 and 2 weeks, or 6 months) and sequencing platform on microbiome profile. The efficacy of storage conditions was evaluated by DNA yield and quality, α and β diversity, relative abundance of the dominant and functional bacteria associated with short-chain fatty acid (SCFA) production, and BAs metabolism. Our current study suggested that −80°C was acceptable for fecal sample storage, and the addition of 70% ethanol had some benefits in maintaining the microbial community structure. Meanwhile, we found that samples in ET_4°C and GT reagents were comparable, both of them introduced some biases in α or β diversity, and the relative abundance of functional bacteria. Samples stored in MGIE reagent resulted in the least variation, whereas the most obvious variations were introduced by LS reagents. In addition, our results indicated that variations caused by storage condition were larger than that of storage time and sequencing platform. Collectively, our study provided a multi-dimensional evaluation on the impacts of storage conditions, storage time periods, and sequencing platform on gut microbial profile.
AB - Gut dysbiosis is heavily involved in the development of various human diseases. There are thousands of publications per year for investigating the role of gut microbiota in diseases. However, emerging evidence has indicated the frequent data inconsistency between different studies, which is largely overlooked. There are many factors that can cause data variation and inconsistency during the process of microbiota study, in particular, sample storage conditions and sequencing process. Here, we systemically evaluated the impacts of six fecal sample storage conditions (three non-commercial storage protocols, −80°C, −80°C with 70% ethanol (ET_−80°C), 4°C with 70% ethanol (ET_4°C), and three commercial storage reagents, OMNIgeneGUT OMR-200 (GT) and MGIEasy (MGIE) at room temperature, and Longsee at 4°C (LS) on gut microbiome profile based on 16S rRNA gene sequencing. In addition, we also investigated the impacts of storage periods (1 and 2 weeks, or 6 months) and sequencing platform on microbiome profile. The efficacy of storage conditions was evaluated by DNA yield and quality, α and β diversity, relative abundance of the dominant and functional bacteria associated with short-chain fatty acid (SCFA) production, and BAs metabolism. Our current study suggested that −80°C was acceptable for fecal sample storage, and the addition of 70% ethanol had some benefits in maintaining the microbial community structure. Meanwhile, we found that samples in ET_4°C and GT reagents were comparable, both of them introduced some biases in α or β diversity, and the relative abundance of functional bacteria. Samples stored in MGIE reagent resulted in the least variation, whereas the most obvious variations were introduced by LS reagents. In addition, our results indicated that variations caused by storage condition were larger than that of storage time and sequencing platform. Collectively, our study provided a multi-dimensional evaluation on the impacts of storage conditions, storage time periods, and sequencing platform on gut microbial profile.
KW - fecal samples
KW - microbial profile
KW - sequencing platform
KW - storage conditions
KW - storage periods
UR - http://www.scopus.com/inward/record.url?scp=85086160096&partnerID=8YFLogxK
U2 - 10.3389/fmicb.2020.00972
DO - 10.3389/fmicb.2020.00972
M3 - Journal article
AN - SCOPUS:85086160096
SN - 1664-302X
VL - 11
JO - Frontiers in Microbiology
JF - Frontiers in Microbiology
M1 - 972
ER -