Variation generalized feature learning via intra-view variation adaptation

Jiawei Li, Mang Ye, Andy J. Ma, Pong Chi YUEN

Research output: Chapter in book/report/conference proceedingConference contributionpeer-review

Abstract

This paper addresses the variation generalized feature learning problem in unsupervised video-based person re-identification (re-ID). With advanced tracking and detection algorithms, large-scale intra-view positive samples can be easily collected by assuming that the image frames within the tracking sequence belong to the same person. Existing methods either directly use the intra-view positives to model cross-view variations or simply minimize the intra-view variations to capture the invariant component with some discriminative information loss. In this paper, we propose a Variation Generalized Feature Learning (VGFL) method to learn adaptable feature representation with intra-view positives. The proposed method can learn a discriminative re-ID model without any manually annotated cross-view positive sample pairs. It could address the unseen testing variations with a novel variation generalized feature learning algorithm. In addition, an Adaptability-Discriminability (AD) fusion method is introduced to learn adaptable video-level features. Extensive experiments on different datasets demonstrate the effectiveness of the proposed method.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages826-832
Number of pages7
ISBN (Electronic)9780999241141
DOIs
Publication statusPublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Scopus Subject Areas

  • Artificial Intelligence

Fingerprint

Dive into the research topics of 'Variation generalized feature learning via intra-view variation adaptation'. Together they form a unique fingerprint.

Cite this