TY - JOUR
T1 - Validation of whole-blood transcriptome signature during microdose recombinant human erythropoietin (rHuEpo) administration
AU - Wang, Guan
AU - Durussel, Jérôme
AU - Shurlock, Jonathan
AU - Mooses, Martin
AU - Fuku, Noriyuki
AU - Bruinvels, Georgie
AU - Pedlar, Charles
AU - Burden, Richard
AU - Murray, Andrew
AU - Yee, Brendan
AU - Keenan, Anne
AU - McClure, John D.
AU - Sottas, Pierre Edouard
AU - Pitsiladis, Yannis P.
N1 - Publisher Copyright:
© 2017 The Author(s).
PY - 2017/9/29
Y1 - 2017/9/29
N2 - Background: Recombinant human erythropoietin (rHuEpo) can improve human performance and is therefore frequently abused by athletes. As a result, the World Anti-Doping Agency (WADA) introduced the Athlete Biological Passport (ABP) as an indirect method to detect blood doping. Despite this progress, challenges remain to detect blood manipulations such as the use of microdoses of rHuEpo. Methods: Forty-five whole-blood transcriptional markers of rHuEpo previously derived from a high-dose rHuEpo administration trial were used to assess whether microdoses of rHuEpo could be detected in 14 trained subjects and whether these markers may be confounded by exercise (n=14 trained subjects) and altitude training (n=21 elite runners and n=4 elite rowers, respectively). Differential gene expression analysis was carried out following normalisation and significance declared following application of a 5% false discovery rate (FDR) and a 1.5 fold-change. Adaptive model analysis was also applied to incorporate these markers for the detection of rHuEpo. Results: ALAS2, BCL2L1, DCAF12, EPB42, GMPR, SELENBP1, SLC4A1, TMOD1 and TRIM58 were differentially expressed during and throughout the post phase of microdose rHuEpo administration. The CD247 and TRIM58 genes were significantly up- and down-regulated, respectively, immediately following exercise when compared with the baseline both before and after rHuEpo/placebo. No significant gene expression changes were found 30min after exercise in either rHuEpo or placebo groups. ALAS2, BCL2L1, DCAF12, SLC4A1, TMOD1 and TRIM58 tended to be significantly expressed in the elite runners ten days after arriving at altitude and one week after returning from altitude (FDR>0.059, fold-change varying from 1.39 to 1.63). Following application of the adaptive model, 15 genes showed a high sensitivity (≥ 93%) and specificity (≥ 71%), with BCL2L1 and CSDA having the highest sensitivity (93%) and specificity (93%). Conclusions: Current results provide further evidence that transcriptional biomarkers can strengthen the ABP approach by significantly prolonging the detection window and improving the sensitivity and specificity of blood doping detection. Further studies are required to confirm, and if necessary, integrate the confounding effects of altitude training on blood doping.
AB - Background: Recombinant human erythropoietin (rHuEpo) can improve human performance and is therefore frequently abused by athletes. As a result, the World Anti-Doping Agency (WADA) introduced the Athlete Biological Passport (ABP) as an indirect method to detect blood doping. Despite this progress, challenges remain to detect blood manipulations such as the use of microdoses of rHuEpo. Methods: Forty-five whole-blood transcriptional markers of rHuEpo previously derived from a high-dose rHuEpo administration trial were used to assess whether microdoses of rHuEpo could be detected in 14 trained subjects and whether these markers may be confounded by exercise (n=14 trained subjects) and altitude training (n=21 elite runners and n=4 elite rowers, respectively). Differential gene expression analysis was carried out following normalisation and significance declared following application of a 5% false discovery rate (FDR) and a 1.5 fold-change. Adaptive model analysis was also applied to incorporate these markers for the detection of rHuEpo. Results: ALAS2, BCL2L1, DCAF12, EPB42, GMPR, SELENBP1, SLC4A1, TMOD1 and TRIM58 were differentially expressed during and throughout the post phase of microdose rHuEpo administration. The CD247 and TRIM58 genes were significantly up- and down-regulated, respectively, immediately following exercise when compared with the baseline both before and after rHuEpo/placebo. No significant gene expression changes were found 30min after exercise in either rHuEpo or placebo groups. ALAS2, BCL2L1, DCAF12, SLC4A1, TMOD1 and TRIM58 tended to be significantly expressed in the elite runners ten days after arriving at altitude and one week after returning from altitude (FDR>0.059, fold-change varying from 1.39 to 1.63). Following application of the adaptive model, 15 genes showed a high sensitivity (≥ 93%) and specificity (≥ 71%), with BCL2L1 and CSDA having the highest sensitivity (93%) and specificity (93%). Conclusions: Current results provide further evidence that transcriptional biomarkers can strengthen the ABP approach by significantly prolonging the detection window and improving the sensitivity and specificity of blood doping detection. Further studies are required to confirm, and if necessary, integrate the confounding effects of altitude training on blood doping.
KW - Recombinant human erythropoietin
KW - Whole blood
KW - Transcriptome
KW - Altitude
KW - Exercise
KW - Athlete biological passport
UR - http://www.scopus.com/inward/record.url?scp=85033789617&partnerID=8YFLogxK
U2 - 10.1186/s12864-017-4191-7
DO - 10.1186/s12864-017-4191-7
M3 - Conference article
C2 - 29143667
AN - SCOPUS:85033789617
SN - 1471-2164
VL - 18
JO - BMC Genomics
JF - BMC Genomics
IS - Supplement 8
M1 - 817
T2 - 34th FIMS World Sports Medicine Congress, FIMS 2017
Y2 - 29 September 2017 through 2 October 2017
ER -