Using live algae at the anode of a microbial fuel cell to generate electricity

Chang Xu, Karen Poon, Martin M.F. Choi, Ruihua Wang*

*Corresponding author for this work

Research output: Contribution to journalJournal articlepeer-review

99 Citations (Scopus)

Abstract

Live green microalgae Chlorella pyrenoidosa was introduced in the anode of a microbial fuel cell (MFC) to act as an electron donor. By controlling the oxygen content, light intensity, and algal cell density at the anode, microalgae would generate electricity without requiring externally added substrates. Two models of algal microbial fuel cells (MFCs) were constructed with graphite/carbon electrodes and no mediator. Model 1 algal MFC has live microalgae grown at the anode and potassium ferricyanide at the cathode, while model 2 algal MFC had live microalgae in both the anode and cathode in different growth conditions. Results indicated that a higher current produced in model 1 algal MFC was obtained at low light intensity of 2500 lx and algal cell density of 5 × 106 cells/ml, in which high algal density would limit the electricity generation, probably by increasing oxygen level and mass transfer problem. The maximum power density per unit anode volume obtained in model 1 algal MFC was relatively high at 6030 mW/m2, while the maximum power density at 30.15 mW/m2 was comparable with that of previous reported bacteria-driven MFC with graphite/carbon electrodes. A much smaller power density at 2.5 mW/m2 was observed in model 2 algal MFC. Increasing the algal cell permeability by 4-nitroaniline would increase the open circuit voltage, while the mitochondrial acting and proton leak promoting agents resveratrol and 2,4-dinitrophenol would increase the electric current production in algal MFC.

Original languageEnglish
Pages (from-to)15621-15635
Number of pages15
JournalEnvironmental Science and Pollution Research
Volume22
Issue number20
DOIs
Publication statusPublished - 1 Oct 2015

Scopus Subject Areas

  • Environmental Chemistry
  • Pollution
  • Health, Toxicology and Mutagenesis

User-Defined Keywords

  • Algae at anode
  • Chlorella pyrenoidosa
  • Electricity generation
  • Microbial fuel cell

Fingerprint

Dive into the research topics of 'Using live algae at the anode of a microbial fuel cell to generate electricity'. Together they form a unique fingerprint.

Cite this