Unsupervised embedding learning via invariant and spreading instance feature

Mang Ye, Xu Zhang, Pong Chi YUEN, Shih Fu Chang

Research output: Chapter in book/report/conference proceedingConference contributionpeer-review

253 Citations (Scopus)

Abstract

This paper studies the unsupervised embedding learning problem, which requires an effective similarity measurement between samples in low-dimensional embedding space. Motivated by the positive concentrated and negative separated properties observed from category-wise supervised learning, we propose to utilize the instance-wise supervision to approximate these properties, which aims at learning data augmentation invariant and instance spread-out features. To achieve this goal, we propose a novel instance based softmax embedding method, which directly optimizes the 'real' instance features on top of the softmax function. It achieves significantly faster learning speed and higher accuracy than all existing methods. The proposed method performs well for both seen and unseen testing categories with cosine similarity. It also achieves competitive performance even without pre-trained network over samples from fine-grained categories.

Original languageEnglish
Title of host publicationProceedings - 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
PublisherIEEE Computer Society
Pages6203-6212
Number of pages10
ISBN (Electronic)9781728132938
DOIs
Publication statusPublished - Jun 2019
Event32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019 - Long Beach, United States
Duration: 16 Jun 201920 Jun 2019

Publication series

NameProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
Volume2019-June
ISSN (Print)1063-6919

Conference

Conference32nd IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2019
Country/TerritoryUnited States
CityLong Beach
Period16/06/1920/06/19

Scopus Subject Areas

  • Software
  • Computer Vision and Pattern Recognition

User-Defined Keywords

  • Categorization
  • Recognition: Detection
  • Representation Learning
  • Retrieval

Fingerprint

Dive into the research topics of 'Unsupervised embedding learning via invariant and spreading instance feature'. Together they form a unique fingerprint.

Cite this