Abstract
Out-of-distribution (OOD) detection is an indispensable aspect of secure AI when deploying machine learning models in real-world applications. Previous paradigms either explore better scoring functions or utilize the knowledge of outliers to equip the models with the ability of OOD detection. However, few of them pay attention to the intrinsic OOD detection capability of the given model. In this work, we generally discover the existence of an intermediate stage of a model trained on in-distribution (ID) data having higher OOD detection performance than that of its final stage across different settings, and further identify one critical data-level attribution to be learning with the atypical samples. Based on such insights, we propose a novel method, Unleashing Mask, which aims to restore the OOD discriminative capabilities of the well-trained model with ID data. Our method utilizes a mask to figure out the memorized atypical samples, and then finetune the model or prune it with the introduced mask to forget them. Extensive experiments and analysis demonstrate the effectiveness of our method. The code is available at: https://github.com/tmlr-group/Unleashing-Mask.
Original language | English |
---|---|
Title of host publication | Proceedings of the 40th International Conference on Machine Learning, ICML 2023 |
Editors | Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, Jonathan Scarlett |
Publisher | ML Research Press |
Pages | 43068-43104 |
Number of pages | 37 |
Volume | 202 |
Publication status | Published - Jul 2023 |
Event | 40th International Conference on Machine Learning, ICML 2023 - Honolulu, United States Duration: 23 Jul 2023 → 29 Jul 2023 https://icml.cc/Conferences/2023 https://proceedings.mlr.press/v202/ https://openreview.net/group?id=ICML.cc/2023/Conference |
Publication series
Name | Proceedings of Machine Learning Research |
---|---|
Volume | 202 |
ISSN (Print) | 2640-3498 |
Conference
Conference | 40th International Conference on Machine Learning, ICML 2023 |
---|---|
Country/Territory | United States |
City | Honolulu |
Period | 23/07/23 → 29/07/23 |
Internet address |