TY - BOOK
T1 - Trustworthy Machine Learning: From Data to Models
AU - Han, Bo
AU - Yao, Jiangchao
AU - Liu, Tongliang
AU - Li, Bo
AU - Koyejo, Sanmi
AU - Liu, Feng
PY - 2025/4/29
Y1 - 2025/4/29
N2 - The success of machine learning algorithms relies not only on achieving good performance but also on ensuring trustworthiness across diverse applications and scenarios. Trustworthy machine learning seeks to handle critical problems in addressing the issues of robustness, privacy, security, reliability, and other desirable properties. The broad research area has achieved remarkable advancement and brings various emerging topics along with the progress. We present this survey to provide a systematic overview of the research problems under trustworthy machine learning covering the perspectives from data to model. Starting with fundamental data-centric learning, the survey reviews learning with noisy data, long-tailed distribution, out-of-distribution data, and adversarial examples to achieve robustness. Delving into private and secured learning, the survey elaborates on core methodologies differential privacy, different attacking threats, and learning paradigms, to realize privacy protection and enhance security. Finally, it introduces several trendy issues related to the foundation models, including jailbreak prompts, watermarking, and hallucination, as well as causal learning and reasoning. The survey integrates commonly isolated research problems in a unified manner, which provides general problem setups, detailed sub-directions, and further discussion on its challenges or future developments. We hope the comprehensive investigation presented in this survey can serve as a clear introduction for the problem evolution from data to models and also bring new insight for developing trustworthy machine learning.
AB - The success of machine learning algorithms relies not only on achieving good performance but also on ensuring trustworthiness across diverse applications and scenarios. Trustworthy machine learning seeks to handle critical problems in addressing the issues of robustness, privacy, security, reliability, and other desirable properties. The broad research area has achieved remarkable advancement and brings various emerging topics along with the progress. We present this survey to provide a systematic overview of the research problems under trustworthy machine learning covering the perspectives from data to model. Starting with fundamental data-centric learning, the survey reviews learning with noisy data, long-tailed distribution, out-of-distribution data, and adversarial examples to achieve robustness. Delving into private and secured learning, the survey elaborates on core methodologies differential privacy, different attacking threats, and learning paradigms, to realize privacy protection and enhance security. Finally, it introduces several trendy issues related to the foundation models, including jailbreak prompts, watermarking, and hallucination, as well as causal learning and reasoning. The survey integrates commonly isolated research problems in a unified manner, which provides general problem setups, detailed sub-directions, and further discussion on its challenges or future developments. We hope the comprehensive investigation presented in this survey can serve as a clear introduction for the problem evolution from data to models and also bring new insight for developing trustworthy machine learning.
U2 - 10.1561/3300000043
DO - 10.1561/3300000043
M3 - Book or report
SN - 9781638285489
T3 - Foundations and Trends® in Privacy and Security
BT - Trustworthy Machine Learning: From Data to Models
PB - Now Publishers Inc
ER -