Triple ANet: Adaptive Abnormal-aware Attention Network for WCE Image Classification

Xiaoqing Guo, Yixuan Yuan*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

48 Citations (Scopus)

Abstract

Accurate detection of abnormal regions in Wireless Capsule Endoscopy (WCE) images is crucial for early intestine cancer diagnosis and treatment, while it still remains challenging due to the relatively low contrasts and ambiguous boundaries between abnormalities and normal regions. Additionally, the huge intra-class variances, alone with the high degree of visual similarities shared by inter-class abnormalities prevent the network from robust classification. To tackle these dilemmas, we propose an Adaptive Abnormal-aware Attention Network (Triple ANet) with Adaptive Dense Block (ADB) and Abnormal-aware Attention Module (AAM) for automatic WCE image analysis. ADB is designed to assign one attention score for each dense connection in dense blocks and to enhance useful features, while AAM aims to adaptively adjust the respective field according to the abnormal regions and help pay attention to abnormalities. Moreover, we propose a novel Angular Contrastive loss (AC Loss) to reduce the intra-class variances and enlarge the inter-class differences effectively. Our methods achieved 89.41% overall accuracy and showed better performance compared with state-of-the-art WCE image classification methods. The source code is available at https://github.com/Guo-Xiaoqing/Triple-ANet.

Original languageEnglish
Title of host publicationMedical Image Computing and Computer Assisted Intervention – MICCAI 2019
Subtitle of host publication22nd International Conference, Shenzhen, China, October 13–17, 2019, Proceedings, Part I
EditorsDinggang Shen, Pew-Thian Yap, Tianming Liu, Terry M. Peters, Ali Khan, Lawrence H. Staib, Caroline Essert, Sean Zhou
PublisherSpringer Cham
Pages293-301
Number of pages9
Edition1st
ISBN (Electronic)9783030322397
ISBN (Print)9783030322380
DOIs
Publication statusPublished - 10 Oct 2019
Event22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019 - Shenzhen, China
Duration: 13 Oct 201917 Oct 2019

Publication series

NameLecture Notes in Computer Science
Volume11764
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference22nd International Conference on Medical Image Computing and Computer-Assisted Intervention, MICCAI 2019
Country/TerritoryChina
CityShenzhen
Period13/10/1917/10/19

Fingerprint

Dive into the research topics of 'Triple ANet: Adaptive Abnormal-aware Attention Network for WCE Image Classification'. Together they form a unique fingerprint.

Cite this