Towards Realistic Model Selection for Semi-supervised Learning

Muyang Li, Xiaobo Xia, Runze Wu, Fengming Huang, Jun Yu, Bo Han, Tongliang Liu*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

Abstract

Semi-supervised Learning (SSL) has shown remarkable success in applications with limited supervision. However, due to the scarcity of labels in the training process, SSL algorithms are known to be impaired by the lack of proper model selection, as splitting a validation set will further reduce the limited labeled data, and the size of the validation set could be too small to provide a reliable indication to the generalization error. Therefore, we seek alternatives that do not rely on validation data to probe the generalization performance of SSL models. Specifically, we find that the distinct margin distribution in SSL can be effectively utilized in conjunction with the model’s spectral complexity, to provide a non-vacuous indication of the generalization error. Built upon this, we propose a novel model selection method, specifically tailored for SSL, known as Spectral-normalized Labeled-margin Minimization (SLAM). We prove that the model selected by SLAM has upper-bounded differences w.r.t. the best model within the search space. In addition, comprehensive experiments showcase that SLAM can achieve significant improvements compared to its counterparts, verifying its efficacy from both theoretical and empirical standpoints.

Original languageEnglish
Title of host publicationProceedings of the 41st International Conference on Machine Learning, ICML 2024
EditorsRuslan Salakhutdinov, Zico Kolter, Katherine Heller, Adrian Weller, Nuria Oliver, Jonathan Scarlett, Felix Berkenkamp
PublisherML Research Press
Pages28965-28977
Number of pages13
Publication statusPublished - 21 Jul 2024
Event41st International Conference on Machine Learning, ICML 2024 - Vienna, Austria
Duration: 21 Jul 202427 Jul 2024
https://icml.cc/
https://openreview.net/group?id=ICML.cc/2024/Conference#tab-accept-oral
https://proceedings.mlr.press/v235/

Publication series

NameProceedings of the International Conference on Machine Learning
NameProceedings of Machine Learning Research
Volume235
ISSN (Print)2640-3498

Conference

Conference41st International Conference on Machine Learning, ICML 2024
Country/TerritoryAustria
CityVienna
Period21/07/2427/07/24
Internet address

Fingerprint

Dive into the research topics of 'Towards Realistic Model Selection for Semi-supervised Learning'. Together they form a unique fingerprint.

Cite this