Towards plug-and-play visual graph query interfaces: Data-driven selection of canned patterns for large networks

Zifeng Yuan*, Huey Eng Chua, Sourav S. Bhowmick, Zekun Ye, Wook Shin Han, Byron Choi

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

3 Citations (Scopus)


Canned patterns (i.e., small subgraph patterns) in visual graph query interfaces (a.k.a GUI) facilitate efficient query formulation by enabling pattern-at-a-time construction mode. However, existing GUIS for querying large networks either do not expose any canned patterns or if they do then they are typically selected manually based on domain knowledge. Unfortunately, manual generation of canned patterns is not only labor intensive but may also lack diversity for supporting efficient visual formulation of a wide range of subgraph queries. In this paper, we present a novel, generic, and extensi-ble framework called TATTOO that takes a data-driven approach to automatically select canned patterns for a GUI from large networks. Specifically, it first decomposes the underlying network into truss-infested and truss-oblivious regions. Then candidate canned patterns capturing different real-world query topologies are generated from these regions. Canned patterns based on a user-specified plug are then selected for the GUI from these candidates by maximizing coverage and diversity, and by minimizing the cognitive load of the pattern set. Experimental studies with real-world datasets demonstrate the benefits of TATTOO. Importantly, this work takes a concrete step towards realizing plug-and-play visual graph query interfaces for large networks.

Original languageEnglish
Pages (from-to)1979-1991
Number of pages13
JournalProceedings of the VLDB Endowment
Issue number11
Publication statusPublished - Jul 2021
Event47th International Conference on Very Large Data Bases, VLDB 2021 - Virtual, Online
Duration: 16 Aug 202120 Aug 2021

Scopus Subject Areas

  • Computer Science (miscellaneous)
  • Computer Science(all)


Dive into the research topics of 'Towards plug-and-play visual graph query interfaces: Data-driven selection of canned patterns for large networks'. Together they form a unique fingerprint.

Cite this