Abstract
Three-dimension ordered macroporous (3D-OM) bismuth vanadates with a monoclinic crystal structure and high surface area (18-24 m 2 g -1) have been prepared using ascorbic acid (AA)- or citric acid (CA)-assisted poly(methyl methacrylate) (PMMA)-templating strategy with bismuth nitrate and ammonium metavanadate as the metal sources, HNO 3 as the pH adjuster and ethylene glycol and methanol as the solvent. The materials were characterized by a number of analytical techniques. The photocatalytic performance of the porous BiVO 4 samples was evaluated for the degradation of phenol in the presence of a small amount of H 2O 2 under visible light illumination. The effects of the initial phenol concentration and the H 2O 2 amount on the photocatalytic activity of the photocatalyst were examined. It is shown that the chelating agent, AA or CA, and the amount in which it is added had a significant impact on the quality of the 3D-OM structure, with a "(Bi + V):chelating agent" molar ratio of 2:1 being the most appropriate. Among the as-prepared BiVO 4 samples, the one with a surface area of ca. 24 m 2 g -1 showed the best visible light-driven photocatalytic performance for phenol degradation (phenol conversion = ca. 94% at phenol concentration = 0.1 mmol L -1 and in the presence of 0.6 mL H 2O 2). A higher phenol conversion could be achieved within the same reaction time if the phenol concentration in the aqueous solution was lowered, but an excess amount of H 2O 2 was not a favorable factor for the enhancement of the catalytic activity. It is concluded that the excellent photocatalytic activity of 3D-OM BiVO 4 is due to the high quality 3D-OM structured BiVO 4 that has a high surface area and surface oxygen vacancy density. We are sure that the 3D-OM material is a promising photocatalyst for the removal of organics from wastewater under visible light illumination.
Original language | English |
---|---|
Pages (from-to) | 2317-2325 |
Number of pages | 9 |
Journal | Nanoscale |
Volume | 4 |
Issue number | 7 |
DOIs | |
Publication status | Published - 7 Apr 2012 |
Scopus Subject Areas
- General Materials Science