The visual object tracking VOT2016 challenge results

Matej Kristan*, Aleš Leonardis, Jiři Matas, Michael Felsberg, Roman Pflugfelder, Luka Čehovin, Tomáš Vojír, Gustav Häger, Alan Lukežič, Gustavo Fernández, Abhinav Gupta, Alfredo Petrosino, Alireza Memarmoghadam, Alvaro Garcia Martin, Andrés Solís Montero, Andrea Vedaldi, Andreas Robinson, Andy J. Ma, Anton Varfolomieiev, Aydin AlatanAykut Erdem, Bernard Ghanem, Bin Liu, Bohyung Han, Brais Martinez, Chang Ming Chang, Changsheng Xu, Chong Sun, Daijin Kim, Dapeng Chen, Dawei Du, Deepak Mishra, Dit Yan Yeung, Erhan Gundogdu, Erkut Erdem, Fahad Khan, Fatih Porikli, Fei Zhao, Filiz Bunyak, Francesco Battistone, Gao Zhu, Giorgio Roffo, Gorthi R.K. Sai Subrahmanyam, Guilherme Bastos, Guna Seetharaman, Henry Medeiros, Hongdong Li, Honggang Qi, Horst Bischof, Horst Possegger, Huchuan Lu, Hyemin Lee, Hyeonseob Nam, Hyung Jin Chang, Isabela Drummond, Jack Valmadre, Jae Chan Jeong, Jae Il Cho, Jae Yeong Lee, Jianke Zhu, Jiayi Feng, Jin Gao, Jin Young Choi, Jingjing Xiao, Ji Wan Kim, Jiyeoup Jeong, João F. Henriques, Jochen Lang, Jongwon Choi, Jose M. Martinez, Junliang Xing, Junyu Gao, Kannappan Palaniappan, Karel Lebeda, Ke Gao, Krystian Mikolajczyk, Lei Qin, Lijun Wang, Longyin Wen, Luca Bertinetto, Madan Kumar Rapuru, Mahdieh Poostchi, Mario Maresca, Martin Danelljan, Matthias Mueller, Mengdan Zhang, Michael Arens, Michel Valstar, Ming Tang, Mooyeol Baek, Muhammad Haris Khan, Naiyan Wang, Nana Fan, Noor Al-Shakarji, Ondrej Miksik, Osman Akin, Payman Moallem, Pedro Senna, Philip H.S. Torr, Pong Chi YUEN, Qingming Huang, Rafael Martin Nieto, Rengarajan Pelapur, Richard Bowden, Robert Laganière, Rustam Stolkin, Ryan Walsh, Sebastian B. Krah, Shengkun Li, Shengping Zhang, Shizeng Yao, Simon Hadfield, Simone Melzi, Siwei Lyu, Siyi Li, Stefan Becker, Stuart Golodetz, Sumithra Kakanuru, Sunglok Choi, Tao Hu, Thomas Mauthner, Tianzhu Zhang, Tony Pridmore, Vincenzo Santopietro, Weiming Hu, Wenbo Li, Wolfgang Hübner, Xiangyuan LAN, Xiaomeng Wang, Xin Li, Yang Li, Yiannis Demiris, Yifan Wang, Yuankai Qi, Zejian Yuan, Zexiong Cai, Zhan Xu, Zhenyu He, Zhizhen Chi

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference contributionpeer-review

554 Citations (Scopus)

Abstract

The Visual Object Tracking challenge VOT2016 aims at comparing short-term single-object visual trackers that do not apply pre-learned models of object appearance. Results of 70 trackers are presented, with a large number of trackers being published at major computer vision conferences and journals in the recent years. The number of tested state-of-the-art trackers makes the VOT 2016 the largest and most challenging benchmark on short-term tracking to date. For each participating tracker, a short description is provided in the Appendix. The VOT2016 goes beyond its predecessors by (i) introducing a new semi-automatic ground truth bounding box annotation methodology and (ii) extending the evaluation system with the no-reset experiment. The dataset, the evaluation kit as well as the results are publicly available at the challenge website (http: //votchallenge.net).

Original languageEnglish
Title of host publicationComputer Vision – ECCV 2016 Workshops, Proceedings
EditorsHerve Jegou, Gang Hua
PublisherSpringer Verlag
Pages777-823
Number of pages47
ISBN (Print)9783319488806
DOIs
Publication statusPublished - 2016
Event14th European Conference on Computer Vision, ECCV 2016 - Amsterdam, Netherlands
Duration: 8 Oct 201616 Oct 2016

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume9914 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference14th European Conference on Computer Vision, ECCV 2016
Country/TerritoryNetherlands
CityAmsterdam
Period8/10/1616/10/16

Scopus Subject Areas

  • Theoretical Computer Science
  • Computer Science(all)

User-Defined Keywords

  • Performance evaluation
  • Short-term single-object trackers
  • VOT

Fingerprint

Dive into the research topics of 'The visual object tracking VOT2016 challenge results'. Together they form a unique fingerprint.

Cite this