TY - JOUR
T1 - The Reactive Oxygen Species in Macrophage Polarization
T2 - Reflecting Its Dual Role in Progression and Treatment of Human Diseases
AU - Tan, Hor Yue
AU - Wang, Ning
AU - Li, Sha
AU - Hong, Ming
AU - Wang, Xuanbin
AU - Feng, Yibin
N1 - Funding information:
This research was partially supported by the Research Council of the University of Hong Kong (Project codes: 104002889 and 104003422), Wong’s donation (Project code: 200006276), the donation of Gaia Family Trust, New Zealand (Project code: 200007008), the donation of Vita Green Health Products Co., Ltd. (Project code: 200007477), and the Open Project of Hubei Key Laboratory of Wudang Local Chinese Medicine Research, Hubei University of Medicine (WDCM001).
Publisher Copyright:
© 2016 Hor-Yue Tan et al.
PY - 2016/4/6
Y1 - 2016/4/6
N2 - High heterogeneity of macrophage is associated with its functions in polarization to different functional phenotypes depending on environmental cues. Macrophages remain in balanced state in healthy subject and thus macrophage polarization may be crucial in determining the tissue fate. The two distinct populations, classically M1 and alternatively M2 activated, representing the opposing ends of the full activation spectrum, have been extensively studied for their associations with several disease progressions. Accumulating evidences have postulated that the redox signalling has implication in macrophage polarization and the key roles of M1 and M2 macrophages in tissue environment have provided the clue for the reasons of ROS abundance in certain phenotype. M1 macrophages majorly clearing the pathogens and ROS may be crucial for the regulation of M1 phenotype, whereas M2 macrophages resolve inflammation which favours oxidative metabolism. Therefore how ROS play its role in maintaining the homeostatic functions of macrophage and in particular macrophage polarization will be reviewed here. We also review the biology of macrophage polarization and the disturbance of M1/M2 balance in human diseases. The potential therapeutic opportunities targeting ROS will also be discussed, hoping to provide insights for development of target-specific delivery system or immunomodulatory antioxidant for the treatment of ROS-related diseases.
AB - High heterogeneity of macrophage is associated with its functions in polarization to different functional phenotypes depending on environmental cues. Macrophages remain in balanced state in healthy subject and thus macrophage polarization may be crucial in determining the tissue fate. The two distinct populations, classically M1 and alternatively M2 activated, representing the opposing ends of the full activation spectrum, have been extensively studied for their associations with several disease progressions. Accumulating evidences have postulated that the redox signalling has implication in macrophage polarization and the key roles of M1 and M2 macrophages in tissue environment have provided the clue for the reasons of ROS abundance in certain phenotype. M1 macrophages majorly clearing the pathogens and ROS may be crucial for the regulation of M1 phenotype, whereas M2 macrophages resolve inflammation which favours oxidative metabolism. Therefore how ROS play its role in maintaining the homeostatic functions of macrophage and in particular macrophage polarization will be reviewed here. We also review the biology of macrophage polarization and the disturbance of M1/M2 balance in human diseases. The potential therapeutic opportunities targeting ROS will also be discussed, hoping to provide insights for development of target-specific delivery system or immunomodulatory antioxidant for the treatment of ROS-related diseases.
UR - http://www.scopus.com/inward/record.url?scp=84965127146&partnerID=8YFLogxK
U2 - 10.1155/2016/2795090
DO - 10.1155/2016/2795090
M3 - Review article
C2 - 27143992
AN - SCOPUS:84965127146
SN - 1942-0900
VL - 2016
JO - Oxidative Medicine and Cellular Longevity
JF - Oxidative Medicine and Cellular Longevity
M1 - 2795090
ER -