Abstract
Intracellular pH, especially cytoplasmic pH (~7.2) plays a crucial role in cell functions and metabolism. A ratiometric fluorescent probe namely, 6-(2-(benzothiazol-2-yl)vinyl)naphthalen-2-ol (BTNO) was facilely synthesized by the condensation of 6-hydroxy-2-naphthaldehyde and 2-methylbenzothiazole. BTNO exhibited a remarkable ratiometric emission (F456/F526) enhancement in response to a pH change with a linear range of pH = 9.50–7.00 and a pKa value of 7.91 ± 0.03, which is desirable for measuring and monitoring the cytoplasmic pH fluctuations. In addition, because of the high fluorescence quantum yield of BTNO (Φ = 0.88 in DMSO and 0.61 in water relative to quinine sulfate solution in 0.1 M H2SO4), the interferences of the probe on the physiological functions could be greatly reduced. This could also provide enhanced measurement sensitivity. The successful demonstration of BTNO in detecting and monitoring the intracellular pH changes in live HeLa cells via a ratiometric approach confirmed that BTNO held a practical potential in biomedical research.
Original language | English |
---|---|
Article number | 120279 |
Journal | Talanta |
Volume | 208 |
Early online date | 19 Aug 2019 |
DOIs | |
Publication status | Published - 1 Feb 2020 |
Scopus Subject Areas
- Analytical Chemistry
User-Defined Keywords
- Fluorescent probe
- High quantum yield
- pH imaging
- Ratiometric