TY - JOUR
T1 - The effect of prolonged running on the symmetry of biomechanical variables of the lower limb joints
AU - Gao, Zixiang
AU - Mei, Qichang
AU - Fekete, Gusztáv
AU - Baker, Julien
AU - Gu, Yaodong
N1 - Funding Information:
This research was funded by the National Natural Science Foundation of China (81772423), National Key R&D Program of China (2018YFF0300903), and K. C. Wong Magna Fund in Ningbo University.
PY - 2020/5/2
Y1 - 2020/5/2
N2 - The aim of this study was to examine whether there are kinematic and kinetic differences in the lower limb and whether the symmetry of the lower extremities is different after prolonged-running. Fifteen healthy male amateur runners (age: 22 ± 1 years, height: 173 ± 8 cm, mass: 65 ± 7 kg, BMI: 21.62 ± 2 kg/m2) were recruited as participants for this study. A Vicon eight-camera motion capture system and Kistler force plate were used to collect kinematic and kinetic parameters. A motorized treadmill, 15-point Borg scale and heart rate bands were used to monitor fatigue during a running-induced fatigue protocol. Paired sample T tests were used to check statistical difference (p = 0.05) between the lower limbs and the symmetry changes in pre-fatigue and post-fatigue running sessions. The symmetry angle (SA) of the knee flexion angle, hip flexion angle and hip extension angle in post-fatigue was significantly greater than in pre-fatigue, increasing by 4.32%, 10.71%, and 23.12%, respectively. Moreover, the SA of hip flexion moment increased by 2.61%. However, the knee extension velocity and hip flexion velocity became more symmetrical than in pre-fatigue (p < 0.05), the SA decreased by 5.91% and 5.45%, respectively. Differences in limb function during post-fatigue may lead to changes of symmetry in the lower limbs. The variables of asymmetry may be used as a compensation mechanism to maintain gait stability. Physical therapy assessment of fatigue injuries and long-distance running training programs may want to consider the changes in symmetry due to limb dominance.
AB - The aim of this study was to examine whether there are kinematic and kinetic differences in the lower limb and whether the symmetry of the lower extremities is different after prolonged-running. Fifteen healthy male amateur runners (age: 22 ± 1 years, height: 173 ± 8 cm, mass: 65 ± 7 kg, BMI: 21.62 ± 2 kg/m2) were recruited as participants for this study. A Vicon eight-camera motion capture system and Kistler force plate were used to collect kinematic and kinetic parameters. A motorized treadmill, 15-point Borg scale and heart rate bands were used to monitor fatigue during a running-induced fatigue protocol. Paired sample T tests were used to check statistical difference (p = 0.05) between the lower limbs and the symmetry changes in pre-fatigue and post-fatigue running sessions. The symmetry angle (SA) of the knee flexion angle, hip flexion angle and hip extension angle in post-fatigue was significantly greater than in pre-fatigue, increasing by 4.32%, 10.71%, and 23.12%, respectively. Moreover, the SA of hip flexion moment increased by 2.61%. However, the knee extension velocity and hip flexion velocity became more symmetrical than in pre-fatigue (p < 0.05), the SA decreased by 5.91% and 5.45%, respectively. Differences in limb function during post-fatigue may lead to changes of symmetry in the lower limbs. The variables of asymmetry may be used as a compensation mechanism to maintain gait stability. Physical therapy assessment of fatigue injuries and long-distance running training programs may want to consider the changes in symmetry due to limb dominance.
KW - Fatigue
KW - Gait
KW - Prolonged running
KW - Symmetry
UR - http://www.scopus.com/inward/record.url?scp=85085519653&partnerID=8YFLogxK
U2 - 10.3390/SYM12050720
DO - 10.3390/SYM12050720
M3 - Journal article
AN - SCOPUS:85085519653
SN - 2073-8994
VL - 12
JO - Symmetry
JF - Symmetry
IS - 5
M1 - 720
ER -