Testing and Understanding Second-Order Statistics of Spike Patterns Using Spike Shuffling Methods

Zedong Bi, Changsong ZHOU*

*Corresponding author for this work

Research output: Chapter in book/report/conference proceedingConference proceedingpeer-review

Abstract

We introduce a framework of spike shuffling methods to test the significance and understand the biological meanings of the second-order statistics of spike patterns recorded in experiments or simulations. In this framework, each method is to evidently alter a specific pattern statistics, leaving the other statistics unchanged. We then use this method to understand the contribution of different second-order statistics to the variance of synaptic changes induced by the spike patterns self-organized by an integrate-and-fire (LIF) neuronal network under STDP and synaptic homeostasis. We find that burstiness/regularity and heterogeneity of cross-correlations are important to determine the variance of synaptic changes under asynchronous states, while heterogeneity of cross-correlations is the main factor to cause the variance of synaptic changes when the network moves into strong synchronous states.

Original languageEnglish
Title of host publicationNeural Information Processing - 24th International Conference, ICONIP 2017, Proceedings
EditorsDerong Liu, Shengli Xie, Yuanqing Li, El-Sayed M. El-Alfy, Dongbin Zhao
PublisherSpringer Verlag
Pages602-612
Number of pages11
ISBN (Print)9783319700922
DOIs
Publication statusPublished - 2017
Event24th International Conference on Neural Information Processing, ICONIP 2017 - Guangzhou, China
Duration: 14 Nov 201718 Nov 2017

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume10637 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349

Conference

Conference24th International Conference on Neural Information Processing, ICONIP 2017
Country/TerritoryChina
CityGuangzhou
Period14/11/1718/11/17

Scopus Subject Areas

  • Theoretical Computer Science
  • Computer Science(all)

User-Defined Keywords

  • Spike pattern statistics
  • Spike shuffling methods

Fingerprint

Dive into the research topics of 'Testing and Understanding Second-Order Statistics of Spike Patterns Using Spike Shuffling Methods'. Together they form a unique fingerprint.

Cite this