Tertiary Oxidation of Deoxycholate Is Predictive of CYP3A Activity in Dogs

Wushuang Zeng, Lanlan Gui, Xianwen Tan, Pingping Zhu, Yiting Hu, Qingliang Wu, Xuejing Li, Lian Yang, Wei Jia, Changxiao Liu, Ke Lan*

*Corresponding author for this work

Research output: Contribution to journalJournal article

8 Citations (Scopus)

Abstract

Deoxycholic acid (DCA, 3α, 12α-dihydroxy-5β-cholan-24-oic acid) is the major circulating secondary bile acid, which is synthesized by gut flora in the lower gut and selectively oxidized by CYP3A into tertiary metabolites, including 1β,3α,12α-trihydroxy-5β-cholan-24-oic acid (DCA-1β-ol) and 3α,5β,12α-trihydroxy-5β-cholan-24-oic acid (DCA-5β-ol) in humans. Since DCA has the similar exogenous nature and disposition mechanisms as xenobiotics, this work aimed to investigate whether the tertiary oxidations of DCA are predictive of in vivo CYP3A activities in beagle dogs. In vitro metabolism of midazolam (MDZ) and DCA in recombinant canine CYP1A1, 1A2, 2B11, 2C21, 2C41, 2D15, 3A12, and 3A26 enzymes clarified that CYP3A12 was primarily responsible for either the oxidation elimination of MDZ or the regioselective oxidation metabolism of DCA into DCA-1β-ol and DCA-5β-ol in dog liver microsomes. Six male dogs completed the CYP3A intervention studies including phases of baseline, inhibition (ketoconazole treatments), recovery, and induction (rifampicin treatments). The oral MDZ clearance after a single dose was determined on the last day of the baseline, inhibition, and induction phases, and subjected to correlation analysis with the tertiary oxidation ratios of DCA detected in serum and urine samples. The results confirmed that the predosing serum ratios of DCA oxidation, DCA-5β-ol/DCA, and DCA-1β-ol/DCA were significantly and positively correlated both intraindividually and interindividually with oral MDZ clearance. It was therefore concluded that the tertiary oxidation of DCA is predictive of CYP3A activity in beagle dogs. Clinical transitional studies following the preclinical evidence are promising to provide novel biomarkers of the enterohepatic CYP3A activities.

Significance Statement: Drug development, clinical pharmacology, and therapeutics are under insistent demands of endogenous CYP3A biomarkers that avoid unnecessary drug exposure and invasive sampling. This work has provided the first proof-of-concept preclinical evidence that the CYP3A catalyzed tertiary oxidation of deoxycholate, the major circulating secondary bile acid synthesized in the lower gut by bacteria, may be developed as novel in vivo biomarkers of the enterohepatic CYP3A activities.
Original languageEnglish
Pages (from-to)369-378
Number of pages10
JournalDrug Metabolism and Disposition
Volume49
Issue number5
DOIs
Publication statusPublished - 1 May 2021

Fingerprint

Dive into the research topics of 'Tertiary Oxidation of Deoxycholate Is Predictive of CYP3A Activity in Dogs'. Together they form a unique fingerprint.

Cite this