TY - JOUR
T1 - Temporal kinematic and kinetics differences throughout different landing ways following volleyball spike shots
AU - Xu, Datao
AU - Lu, Jingying
AU - Baker, Julien
AU - Fekete, Gusztáv
AU - Gu, Yaodong
N1 - Funding Information:
The author(s) disclosed receipt of the following financial support for the research, authorship, and/or publication of this article: This study is supported by National Natural Science Foundation of China (81772423), National Key R&D Program of China (2018YFF0300905), NSFC-RSE Joint Research Programme (8181101592), and K.C. Wong Magna Fund in Ningbo University
PY - 2022/9/1
Y1 - 2022/9/1
N2 - Volleyball players often land on a single leg following a spike shot because of a shift in the center of gravity. This landing is one of the high-risk actions for non-contact ACL injury. The purpose of this study was to compare and analyze the discrete and temporal kinematics and kinetics associated with functional valgus collapse during volleyball in player landing phases during a single-leg landing and double-leg landing following a spike shot. Kinematics and kinetics data were collected (captured by a Vicon motion system and AMTI force plate, processed by Visual-3D software) during the single-leg and double-leg landing phases in 13 semi-professional male volleyball players. The landing phase was defined as initial ground contact (0% landing phase) to maximum knee flexion (100% landing phase). Statistical Parametric Mapping (SPM) analysis revealed that single-leg landing depicted a significantly greater knee abduction angle and hip adduction moment than double-leg landing during the 0%–68% landing phase (single-leg: 7°–16°, double-leg: 0°–9°, p < 0.001) and 18%–22% (single-leg: 0.62–0.91 Nm/kg, double-leg: 0.08–0.19 Nm/kg, p = 0.0063) landing phase, respectively. The traditional discrete analysis revealed that single-leg landing depicted a significantly greater peak knee internal rotation moment (single-leg: 1.46 ± 0.38 Nm/kg, double-leg: 0.79 ± 0.19 Nm/kg, p = 0.006) and peak hip internal rotation moment (single-leg: −2.20 ± 0.54 Nm/kg, double-leg: −0.88 ± 0.30 Nm/kg, p = 0.011) than double-leg landing. Most differences were within a time frame during the landing phase of 30–50 ms in which non-contact ACL injuries are considered to happen. These recorded time frames are consistent with biomechanical measures that are deemed dangerous. To reduce lower limb injury, a volleyball player should consciously swing the arms to influence the body to maintain a better-balanced state. Adjusting the landing mode of the lower limbs can achieve a good cushioning effect during landing following a spike shot.
AB - Volleyball players often land on a single leg following a spike shot because of a shift in the center of gravity. This landing is one of the high-risk actions for non-contact ACL injury. The purpose of this study was to compare and analyze the discrete and temporal kinematics and kinetics associated with functional valgus collapse during volleyball in player landing phases during a single-leg landing and double-leg landing following a spike shot. Kinematics and kinetics data were collected (captured by a Vicon motion system and AMTI force plate, processed by Visual-3D software) during the single-leg and double-leg landing phases in 13 semi-professional male volleyball players. The landing phase was defined as initial ground contact (0% landing phase) to maximum knee flexion (100% landing phase). Statistical Parametric Mapping (SPM) analysis revealed that single-leg landing depicted a significantly greater knee abduction angle and hip adduction moment than double-leg landing during the 0%–68% landing phase (single-leg: 7°–16°, double-leg: 0°–9°, p < 0.001) and 18%–22% (single-leg: 0.62–0.91 Nm/kg, double-leg: 0.08–0.19 Nm/kg, p = 0.0063) landing phase, respectively. The traditional discrete analysis revealed that single-leg landing depicted a significantly greater peak knee internal rotation moment (single-leg: 1.46 ± 0.38 Nm/kg, double-leg: 0.79 ± 0.19 Nm/kg, p = 0.006) and peak hip internal rotation moment (single-leg: −2.20 ± 0.54 Nm/kg, double-leg: −0.88 ± 0.30 Nm/kg, p = 0.011) than double-leg landing. Most differences were within a time frame during the landing phase of 30–50 ms in which non-contact ACL injuries are considered to happen. These recorded time frames are consistent with biomechanical measures that are deemed dangerous. To reduce lower limb injury, a volleyball player should consciously swing the arms to influence the body to maintain a better-balanced state. Adjusting the landing mode of the lower limbs can achieve a good cushioning effect during landing following a spike shot.
KW - functional valgus collapse
KW - landing tasks
KW - Non-contact ACL injuries
KW - statistical parametric mapping
UR - http://www.scopus.com/inward/record.url?scp=85104235527&partnerID=8YFLogxK
U2 - 10.1177/17543371211009485
DO - 10.1177/17543371211009485
M3 - Journal article
AN - SCOPUS:85104235527
SN - 1754-3371
VL - 236
SP - 200
EP - 208
JO - Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology
JF - Proceedings of the Institution of Mechanical Engineers, Part P: Journal of Sports Engineering and Technology
IS - 3
ER -