TY - JOUR
T1 - Synthesis and Direct Observation of Thermoresponsive DNA Copolymers
AU - Li, Songsong
AU - Schroeder, Charles M.
N1 - Publisher Copyright:
© 2018 American Chemical Society.
PY - 2018/3/20
Y1 - 2018/3/20
N2 - Single-molecule techniques allow for the direct observation of long-chain macromolecules, and these methods can provide a molecular understanding of chemically heterogeneous and stimuli-response polymers. In this work, we report the synthesis and direct observation of thermoresponsive DNA copolymers using single-molecule techniques. DNA-PNIPAM copolymers are synthesized using a two-step strategy based on polymerase chain reaction (PCR) for generating linear DNA backbones containing non-natural nucleotides (dibenzocyclooctyne-dUTP), followed by grafting thermoresponsive side branches (poly(N-isopropylacrylamide), PNIPAM) onto DNA backbones using copper-free click chemistry. Single-molecule fluorescence microscopy is used to directly observe the stretching and relaxation dynamics of DNA-PNIPAM copolymers both below and above the lower critical solution temperature (LCST) of PNIPAM. Our results show that the intramolecular conformational dynamics of DNA-PNIPAM copolymers are affected by temperature, branch density, and branch molecular weight. Single-molecule experiments reveal an underlying molecular heterogeneity associated with polymer stretching and relaxation behavior, which arises in part due to heterogeneous chemical identity on DNA copolymer dynamics.
AB - Single-molecule techniques allow for the direct observation of long-chain macromolecules, and these methods can provide a molecular understanding of chemically heterogeneous and stimuli-response polymers. In this work, we report the synthesis and direct observation of thermoresponsive DNA copolymers using single-molecule techniques. DNA-PNIPAM copolymers are synthesized using a two-step strategy based on polymerase chain reaction (PCR) for generating linear DNA backbones containing non-natural nucleotides (dibenzocyclooctyne-dUTP), followed by grafting thermoresponsive side branches (poly(N-isopropylacrylamide), PNIPAM) onto DNA backbones using copper-free click chemistry. Single-molecule fluorescence microscopy is used to directly observe the stretching and relaxation dynamics of DNA-PNIPAM copolymers both below and above the lower critical solution temperature (LCST) of PNIPAM. Our results show that the intramolecular conformational dynamics of DNA-PNIPAM copolymers are affected by temperature, branch density, and branch molecular weight. Single-molecule experiments reveal an underlying molecular heterogeneity associated with polymer stretching and relaxation behavior, which arises in part due to heterogeneous chemical identity on DNA copolymer dynamics.
UR - http://www.scopus.com/inward/record.url?scp=85044226261&partnerID=8YFLogxK
U2 - 10.1021/acsmacrolett.8b00016
DO - 10.1021/acsmacrolett.8b00016
M3 - Journal article
C2 - 35632918
AN - SCOPUS:85044226261
SN - 2161-1653
VL - 7
SP - 281
EP - 286
JO - ACS Macro Letters
JF - ACS Macro Letters
IS - 3
ER -