TY - JOUR
T1 - Synchronization in complex networks
AU - Arenas, Alex
AU - Díaz-Guilera, Albert
AU - Kurths, Jurgen
AU - Moreno, Yamir
AU - Zhou, Changsong
N1 - Funding Information:
We thank all those that have actively collaborated with us along the years in the subject. Special thanks go to S. Boccaletti for many suggestions and enlightening discussions on the subject of this review. We are also indebted to J. García-Ojalvo, C.J. Pérez-Vicente, J. Schmidt, M. Thiel, for having carefully read the manuscript and for their very helpful comments. A.A. and A.D.-G. thank funding from Spanish Government (BFM-2003-08258 and FIS-2006-13321) and Generalitat de Catalunya (2005SGR00889). JK acknowledges support from the EU Network of Excellence BIOSIM (Contract No. LSHB-CT-2004-005137), the EU Network BRACCIA, the DFG SFB 555, and the BMBF GoFORSYS. Y.M. is supported by MEC through the Ramón y Cajal Program, the Spanish DGICYT Projects FIS2006-12781-C02-01 and FIS2005-00337, and by the European NEST Pathfinder project GABA (contract 043309). C.S.Z. is supported by the Faculty Research Grant (FRG) of Hong Kong Baptist University (FRG /07-08/II-08 and FRG/07-08/II-62).
PY - 2008/12
Y1 - 2008/12
N2 - Synchronization processes in populations of locally interacting elements are the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understanding synchronization phenomena in natural systems now take advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also take an overview of the new emergent features coming out from the interplay between the structure and the function of the underlying patterns of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
AB - Synchronization processes in populations of locally interacting elements are the focus of intense research in physical, biological, chemical, technological and social systems. The many efforts devoted to understanding synchronization phenomena in natural systems now take advantage of the recent theory of complex networks. In this review, we report the advances in the comprehension of synchronization phenomena when oscillating elements are constrained to interact in a complex network topology. We also take an overview of the new emergent features coming out from the interplay between the structure and the function of the underlying patterns of connections. Extensive numerical work as well as analytical approaches to the problem are presented. Finally, we review several applications of synchronization in complex networks to different disciplines: biological systems and neuroscience, engineering and computer science, and economy and social sciences.
KW - Complex networks
KW - Synchronization
UR - http://www.scopus.com/inward/record.url?scp=56549084695&partnerID=8YFLogxK
U2 - 10.1016/j.physrep.2008.09.002
DO - 10.1016/j.physrep.2008.09.002
M3 - Review article
AN - SCOPUS:56549084695
SN - 0370-1573
VL - 469
SP - 93
EP - 153
JO - Physics Reports
JF - Physics Reports
IS - 3
ER -