## Abstract

Let

*H*and*s*be a graph and a positive integer respectively. An*s-duplicate*of*H*, denoted by*sH*, is a graph consisting of*s*identical components*H*. In this paper, we shall show that for*n*≥ 2,*sK*_{n,n }is supermagic if and only if n is even or both*s*and*n*are odd.Original language | English |
---|---|

Pages (from-to) | 119-124 |

Number of pages | 6 |

Journal | Congressus Numerantium |

Volume | 146 |

Publication status | Published - Dec 2000 |

## User-Defined Keywords

- Supermagic
- orthogonal Latin square
- balanced partition

## Fingerprint

Dive into the research topics of 'Supermagic Labeling of an*s*-duplicate of K

_{n,n}'. Together they form a unique fingerprint.