Abstract
The development of doped g-C3N4photocatalyst has demonstrated potential advantages for the artificial photosynthesis of hydrocarbon fuels by utilizing solar energy and CO2. Herein, a new two-dimensional S-doped g-C3N4(S-CN) was designed and synthesized. S-CN displayed a high CO evolution rate of 16.02 μmol g−1in water (10 times more than bulk g-C3N4) at a molar ratio of thiourea to DCNA of 0.4. Also, S-CN could maintain its activity for up to 15 h during the stability test. S-C bond formation was revealed for the first time by combining material characterization and density functional theory (DFT) calculations. The S 3p state made an excellent contribution to moving up the conduction band position and altering the S-CN band gap. The doped S atoms caused charge rearrangement and significantly enhanced the electron-hole separation, enhancing the CO2reduction activity compared to bulk-CN. The present work provides a broadening window for the development of non-metal-doped g-C3N4with outstanding CO2photoreduction performance.
Original language | English |
---|---|
Pages (from-to) | 1725-1736 |
Number of pages | 12 |
Journal | Catalysis Science and Technology |
Volume | 11 |
Issue number | 5 |
Early online date | 5 Feb 2021 |
DOIs | |
Publication status | Published - 7 Mar 2021 |
Scopus Subject Areas
- Catalysis