TY - JOUR
T1 - Structural and optical properties of penicillamine-protected gold nanocluster fractions separated by sequential size-selective fractionation
AU - Yang, Xiupei
AU - Yang, Zhengli
AU - Tang, Fenglin
AU - Xu, Jing
AU - Zhang, Maoxue
AU - Choi, Martin M.F.
N1 - Funding Information:
This research was funded by the National Natural Science Foundation of China (21277109, 21777130), the Fundamental Research Funds of China West Normal University (416390) and the Meritocracy Research Funds of China West Normal University (463132).
PY - 2019/4/25
Y1 - 2019/4/25
N2 - Polydisperse water-soluble gold nanoclusters (AuNCs) protected by penicillamine have been synthesized in this work. The sequential size-selective precipitation (SSSP) technique has been applied for the size fractionation and purification of the monolayer-protected AuNCs. Through continuously adding acetone to a crude AuNC aqueous solution and controlling the volume percentage of acetone, we successfully separated the polydisperse AuNCs with diameters ranging from 0.5 to 5.4 nm into four different fractions sequentially. High-resolution transmission electron microscopy (HRTEM) shows that the four fractions are well-dispersed spherical particles of diameter 3.0 ± 0.6, 2.3 ± 0.5, 1.7 ± 0.4, and 1.2 ± 0.4 nm. Proton nuclear magnetic resonance spectroscopy suggests that disulfide, excess ligands and gold(I) complexes were removed from the AuNCs fractions. These results demonstrate the considerable potential of the SSSP technique for size-based separation and purification of AuNCs, achieving not only the isolation of larger nanoclusters (NCs) from small NCs in a continuous fashion, but also for the removal of small-molecule impurities. Based on the results from the mass spectrometry and thermogravimetric analysis, the average composition of the four fractions can be represented by Au38(SR)18, Au28(SR)15, Au18(SR)12, and Au11(SR)8, respectively. This indicates that the SSSP separation is mainly dependent on the core size and the ratio of Au atoms to ligands of AuNCs. X-ray photoelectron spectroscopy (XPS) has also been applied to observe the molecular dependence on the gold and sulfur chemical state of organosulfur monolayers of the fractions. The photoluminescence spectra of these AuNCs in the range of 900-790 nm was investigated at room temperature. The results show that the peak emission energy of the size-selected AuNCs undergoes a blue shift when the size is decreased, which can be attributed to the quantum confinement effect.
AB - Polydisperse water-soluble gold nanoclusters (AuNCs) protected by penicillamine have been synthesized in this work. The sequential size-selective precipitation (SSSP) technique has been applied for the size fractionation and purification of the monolayer-protected AuNCs. Through continuously adding acetone to a crude AuNC aqueous solution and controlling the volume percentage of acetone, we successfully separated the polydisperse AuNCs with diameters ranging from 0.5 to 5.4 nm into four different fractions sequentially. High-resolution transmission electron microscopy (HRTEM) shows that the four fractions are well-dispersed spherical particles of diameter 3.0 ± 0.6, 2.3 ± 0.5, 1.7 ± 0.4, and 1.2 ± 0.4 nm. Proton nuclear magnetic resonance spectroscopy suggests that disulfide, excess ligands and gold(I) complexes were removed from the AuNCs fractions. These results demonstrate the considerable potential of the SSSP technique for size-based separation and purification of AuNCs, achieving not only the isolation of larger nanoclusters (NCs) from small NCs in a continuous fashion, but also for the removal of small-molecule impurities. Based on the results from the mass spectrometry and thermogravimetric analysis, the average composition of the four fractions can be represented by Au38(SR)18, Au28(SR)15, Au18(SR)12, and Au11(SR)8, respectively. This indicates that the SSSP separation is mainly dependent on the core size and the ratio of Au atoms to ligands of AuNCs. X-ray photoelectron spectroscopy (XPS) has also been applied to observe the molecular dependence on the gold and sulfur chemical state of organosulfur monolayers of the fractions. The photoluminescence spectra of these AuNCs in the range of 900-790 nm was investigated at room temperature. The results show that the peak emission energy of the size-selected AuNCs undergoes a blue shift when the size is decreased, which can be attributed to the quantum confinement effect.
KW - Gold nanoclusters
KW - Monolayer-protected gold nanoclusters
KW - Sequential size-selective fractionation
UR - http://www.scopus.com/inward/record.url?scp=85073893157&partnerID=8YFLogxK
U2 - 10.3762/BJNANO.10.96
DO - 10.3762/BJNANO.10.96
M3 - Journal article
AN - SCOPUS:85073893157
SN - 2190-4286
VL - 10
SP - 955
EP - 966
JO - Beilstein Journal of Nanotechnology
JF - Beilstein Journal of Nanotechnology
ER -