Star-shaped triazine-cored ladder-type ter(p-phenylene)s for high-performance multiphoton absorption and amplified spontaneous blue emission

Lei Guo, Xiao Liu, Tongxin Zhang, Hai Bin Luo, Hai Hua Fan, Ricky M S WONG

Research output: Contribution to journalArticlepeer-review

2 Citations (Scopus)

Abstract

Lacking high-performance blue emissive multiphoton absorption (MPA) materials particularly for frequency up-converted amplified spontaneous emission (ASE) or lasing hampers novel breakthroughs in a wide-range of laser-based applications. Besides, it is fundamentally challenging to develop highly efficient organic multiphoton-pumped ASE or lasing materials because of intrinsically weak MPA responses restricted by limited and inefficient intramolecular π-electron delocalization. Despite such short π-conjugated ter(p-phenylene) backbones, newly developed star-shaped triazine-cored ladder-type ter(p-phenylene)s exhibit not only remarkably strong multiphoton (from two- to five-photon) induced photoluminescence but also highly efficient MPA properties including a record high intrinsic 2PA cross-section of 5120 GM and outstandingly large intrinsic 3PA cross-section of 3.3 × 10-76 cm6 s2 at 1200 nm for a blue emissive fluorophore as well as highly efficient 2PA pumped blue ASE with efficiency up to ∼1.0%, in sharp contrast to triarylamine-based star-shaped analogues. As a result, TA(TL)-Ph(3)-CBZ is a highly efficient blue emissive MPA material for practical MPA applications. The synergy of the triazine core and the end-groups in this multidimensional structural framework proved indispensable to such a high-performance MPA response.

Original languageEnglish
Pages (from-to)1768-1772
Number of pages5
JournalJournal of Materials Chemistry C
Volume8
Issue number5
DOIs
Publication statusPublished - 2020

Scopus Subject Areas

  • Chemistry(all)
  • Materials Chemistry

Fingerprint

Dive into the research topics of 'Star-shaped triazine-cored ladder-type ter(p-phenylene)s for high-performance multiphoton absorption and amplified spontaneous blue emission'. Together they form a unique fingerprint.

Cite this