Spatial Tessellations: Concepts and Applications of Voronoi Diagrams

Atsuyuki Okabe, Barry Boots, Kokichi Sugihara, Sung Nok Chiu

Research output: Book/ReportBook or reportpeer-review

Abstract

China Spatial data analysis is a fast growing area and Voronoi diagrams provide a means of naturally partitioning space into subregions to facilitate spatial data manipulation, modelling of spatial structures, pattern recognition and locational optimization. With such versatility, the Voronoi diagram and its relative, the Delaunay triangulation, provide valuable tools for the analysis of spatial data. This is a rapidly growing research area and in this fully updated second edition the authors provide an up-to-date and comprehensive unification of all the previous literature on the subject of Voronoi diagrams.

The authors guide the reader through all the necessary mathematical background, before introducing a number of generalizations of Voronoi diagrams in Chapter 3. The subsequent chapters cover algorithms, random Voronoi diagrams, spatial interpolation, multivariate data manipulation, spatial process models, point pattern analysis and locational optimization. Emphasis of a particular perspective is deliberately avoided in order to provide a comprehensive and balanced treatment of the topic. A wide range of applications are discussed, enabling this book to serve as an important reference volume on the topic. The text will appeal to students and researchers studying spatial data in a number of areas, in particular applied probability, computational geometry and Geographic Information Science (GIS). This book will appeal equally to those whose interests in Voronoi diagrams are theoretical, practical or both.
Original languageEnglish
PublisherWiley
Number of pages696
Edition2nd
ISBN (Electronic)9780470317853
ISBN (Print)9780471986355
Publication statusPublished - Jul 2000

Publication series

NameWiley Series in Probability and Statistics

Fingerprint

Dive into the research topics of 'Spatial Tessellations: Concepts and Applications of Voronoi Diagrams'. Together they form a unique fingerprint.

Cite this