Abstract
In this paper, we study canonical correlation analysis (CCA), which is a powerful tool in multivariate data analysis for finding the correlation between two sets of multidimensional variables. The main contributions of the paper are: 1) to reveal the equivalent relationship between a recursive formula and a trace formula for the multiple CCA problem, 2) to obtain the explicit characterization for all solutions of the multiple CCA problem even when the corresponding covariance matrices are singular, 3) to develop a new sparse CCA algorithm, and 4) to establish the equivalent relationship between the uncorrelated linear discriminant analysis and the CCA problem. We test several simulated and real-world datasets in gene classification and cross-language document retrieval to demonstrate the effectiveness of the proposed algorithm. The performance of the proposed method is competitive with the state-of-the-art sparse CCA algorithms.
Original language | English |
---|---|
Article number | 6520858 |
Pages (from-to) | 3050-3065 |
Number of pages | 16 |
Journal | IEEE Transactions on Pattern Analysis and Machine Intelligence |
Volume | 35 |
Issue number | 12 |
DOIs | |
Publication status | Published - Dec 2013 |
Scopus Subject Areas
- Software
- Computer Vision and Pattern Recognition
- Computational Theory and Mathematics
- Artificial Intelligence
- Applied Mathematics
User-Defined Keywords
- canonical correlation analysis
- linear discriminant analysis
- multivariate data
- orthogonality
- Sparsity