Source Apportionment of Aerosol Ammonium in an Ammonia-Rich Atmosphere: An Isotopic Study of Summer Clean and Hazy Days in Urban Beijing

Yuepeng Pan, Shili Tian, Dongwei Liu, Yunting Fang, Xiaying Zhu, Meng Gao, Gregory R. Wentworth, Greg Michalski, Xiaojuan Huang, Yuesi Wang

    Research output: Contribution to journalJournal articlepeer-review

    63 Citations (Scopus)

    Abstract

    Aerosol ammonium (NH4+) can be a major component of fine particles, especially during severe haze episodes. The abatement of ammonia (NH3) emissions is important for reducing fine particles, but NH3 sources remain poorly constrained and are largely unregulated in China and most other regions. This study uses stable isotopes to interpret the role NH3 sources play in generating different sized NH4+ aerosols in Beijing between 21 June and 4 July 2013 with fine particle concentrations of 20?242 ?g/m3. The concentrations and nitrogen stable isotope composition of aerosol NH4+ (δ15N-NH4+) were both elevated during the five haze episodes that were sampled. These increases were driven by enhancements in the fine mode as opposed to substantial increases in the coarse mode aerosol. After accounting for the isotope fractionation that occurs during gas-to-particle partitioning (17.7? to 28.2?), the ?initial? (prepartitioning) δ15N-NH3 values were estimated to be ?35? for a clean period (i.e., a nonhazy day) and ranged from ?14.3? to ?22.8? for hazy days. Source apportionment using the ?IsoSources? isotopic mixing model indicated that the dominant contribution to NH3 shifted from agricultural sources during the clean period (86%) to fossil fuel emissions (54%?81%) during hazy days and when back trajectories rotate from the northwest to the west and/or south. These results together suggest that even in summer, fossil fuel-related sources from Beijing and the surrounding areas are the major source of NH3 during haze events and that controlling these sources may be important for alleviating particulate matter pollution.
    Original languageEnglish
    Pages (from-to)5681-5689
    Number of pages9
    JournalJournal of Geophysical Research: Atmospheres
    Volume123
    Issue number10
    DOIs
    Publication statusPublished - 27 May 2018

    User-Defined Keywords

    • ammonia
    • ammonium
    • stable nitrogen isotope
    • source apportionment
    • haze pollution
    • North China Plain

    Fingerprint

    Dive into the research topics of 'Source Apportionment of Aerosol Ammonium in an Ammonia-Rich Atmosphere: An Isotopic Study of Summer Clean and Hazy Days in Urban Beijing'. Together they form a unique fingerprint.

    Cite this